1
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
2
|
Mayol B, García-Díez E, Hoppe A, Espejo L, Muñoz M, González M, Villalonga A, Moreno T, Sánchez A, Vilela D, Martinez-Quiles N, Martínez-Ruíz P, Villalonga R. A novel Janus nanomachine based on mesoporous silica nanoparticles anisotropically modified with PAMAM dendrimers for enzyme-controlled drug delivery. NANOSCALE 2025; 17:8183-8191. [PMID: 40062393 DOI: 10.1039/d4nr03740e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A masking/toposelective modification approach was employed to prepare a new organic-inorganic Janus nanomaterial by attaching ethylenediamine core polyamidoamine G-4.5 dendrimers to a defined face of mesoporous silica nanoparticles. The anisotropic colloid was then sequentially functionalized on the mesoporous face with (3-isocyanatopropyl)triethoxysilane, 1-(4-aminophenyl)-2-phenylethane-1,2-dione and β-cyclodextrin to assemble a novel H2O2-sensitive gating mechanism. The Janus nanomachine was finally constructed by immobilizing glucose oxidase on the dendrimeric face. The smart nanodevice released the encapsulated payload in the presence of H2O2 and glucose, and was successfully evaluated for the enzyme-controlled delivery of the antitumoral drug doxorubicin into HeLa cancer cells.
Collapse
Affiliation(s)
- Beatriz Mayol
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Esther García-Díez
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alexander Hoppe
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Lucía Espejo
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Miranda Muñoz
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Marta González
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Anabel Villalonga
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Teresa Moreno
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Diana Vilela
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Narcisa Martinez-Quiles
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Paloma Martínez-Ruíz
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Kapare H, Bhosale M, Bhole R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. J Drug Deliv Sci Technol 2025; 104:106495. [DOI: 10.1016/j.jddst.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Irannejad F, Shahbazi S, Reiisi S, Heidari R. Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer. Med Oncol 2025; 42:39. [PMID: 39760958 DOI: 10.1007/s12032-024-02593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress. The ZnO-, Se-, and Ag-NPs were then synthesized via a green synthesis method and subsequently characterized using techniques, such as FTIR, XRD, DLS, zeta potential analysis, FESEM, and TEM. The antioxidant capacity of the NPs was evaluated using a DPPH scavenging assay and their effect on superoxide dismutase enzyme activity was determined. HDF and A2780 cells were treated with varying concentrations of ZnO-, Se-, and Ag-NPs, and cell viability and colony formation were assessed using MTT and clonogenic assays, respectively. Additionally, qPCR was performed to analyze the expression of the candidate genes NOX4, SOD2, and NR4A4. Characterization techniques confirmed the successful synthesis of pure, crystalline, and spherical NPs. Antioxidant assays demonstrated the significant antioxidant properties of ZnO-, Se-, and Ag-NPs. In vitro studies indicated that ZnO-, Se-, and Ag-NPs effectively inhibited cell proliferation and suppressed colony formation, likely owing to the downregulation of NOX4 and upregulation of SOD2 genes. Our findings suggest that ZnO-, Se-, and Ag-NPs may serve as promising anticancer agents for ovarian cancer and NOX4 downregulation and SOD2 upregulation can be proposed as oxidative stress biomarkers; however, further experimental investigation is required to elucidate the therapeutic potential of NPs and the early detection potential of biomarkers.
Collapse
Affiliation(s)
- Fatemeh Irannejad
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Fornasier M, Krautforst K, Kulbacka J, Jönsson P, Murgia S, Bazylińska U. Cubosomes and hexosomes stabilized by sorbitan monooleate as biocompatible nanoplatforms against skin metastatic human melanoma. J Colloid Interface Sci 2025; 677:842-852. [PMID: 39173516 DOI: 10.1016/j.jcis.2024.08.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Nanoparticles have become versatile assets in the medical field, providing notable benefits across diverse medical arenas including controlled drug delivery, imaging, and immunological assays. Among these, non-lamellar lipid nanoparticles, notably cubosomes and hexosomes, showcase remarkable biocompatibility and stability, rendering them as optimal choices for theranostic applications. Particularly, incorporating edge activators like sodium taurocholate enhances the potential of these nanoparticles for dermal and transdermal drug delivery, overcoming the stratum corneum, a first line of defense in our skin. This study reports on the formulation of monoolein-based cubosomes and hexosomes incorporating taurocholate and stabilized by Span 80 and co-encapsulating Chlorin e6 and coenzyme QH for photodynamic therapy in skin metastatic melanoma. The formulations were optimized using small-angle X-ray scattering, and cryo-transmission electron microscopy confirmed the presence of cubosomes or hexosomes, depending on the ratio between taurocholate and Span 80. Furthermore, the co-loaded nanoparticles exhibited high encapsulation efficiencies for both Ce6 and the coenzyme QH. In vitro studies on human melanoma cells (Me45) demonstrated the biocompatibility and photodynamic activity of the loaded formulations. These findings show the possibility of formulating more biocompatible cubosomes and hexosomes for photodynamic therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Karolina Krautforst
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy; Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Peter Jönsson
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
6
|
Meng X, Yao J, Gu J. Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems. J Pharm Anal 2025; 15:101070. [PMID: 39885973 PMCID: PMC11780097 DOI: 10.1016/j.jpha.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 02/01/2025] Open
Abstract
Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of in vivo processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks. However, the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies. Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug, the encapsulated drug, and the nanomaterial, which present a higher level of complexity compared to traditional small-molecule drugs. Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines. This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years. We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiayi Yao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
8
|
Waglewska E, Kulbacka J, Bazylinska U. Superior Drug Delivery Performance of Multifunctional Bilosomes: Innovative Strategy to Kill Skin Cancer Cells for Nanomedicine Application. Int J Nanomedicine 2024; 19:4701-4717. [PMID: 38808148 PMCID: PMC11131132 DOI: 10.2147/ijn.s450181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Purpose Numerous failures in melanoma treatment as a highly aggressive form of skin cancer with an unfavorable prognosis and excessive resistance to conventional therapies are prompting an urgent search for more effective therapeutic tools. Consequently, to increase the treatment efficiency and to reduce the side effects of traditional administration ways, herein, it has become crucial to combine photodynamic therapy as a promising therapeutic approach with the selectivity and biocompatibility of a novel colloidal transdermal nanoplatform for effective delivery of hybrid cargo with synergistic effects on melanoma cells. Methods The self-assembled bilosomes, co-stabilized with L-α-phosphatidylcholine, sodium cholate, Pluronic® P123, and cholesterol, were designated, and the stability of colloidal vesicles was studied using dynamic and electrophoretic light scattering, also provided in cell culture medium (Dulbecco's Modified Eagle's Medium). The hybrid compounds - a classical photosensitizer (Methylene Blue) along with a complementary natural polyphenolic agent (curcumin), were successfully co-loaded, as confirmed by UV-Vis, ATR-FTIR, and fluorescent spectroscopies. The biocompatibility and usefulness of the polymer functionalized bilosome with loaded double cargo were demonstrated in vitro cyto- and phototoxicity experiments using normal keratinocytes and melanoma cancer cells. Results The in vitro bioimaging and immunofluorescence study upon human skin epithelial (A375) and malignant (Me45) melanoma cell lines established the protective effect of the PEGylated bilosome surface. This effect was confirmed in cytotoxicity experiments, also determined on human cutaneous (HaCaT) keratinocytes. The flow cytometry experiments indicated the enhanced uptake of the encapsulated hybrid cargo compared to the non-loaded MB and CUR molecules, as well as a selectivity of the obtained nanocarriers upon tumor cell lines. The phyto-photodynamic action provided 24h-post irradiation revealed a more significant influence of the nanoplatform on Me45 cells in contrast to the A375 cell line, causing the cell viability rate below 20% of the control. Conclusion As a result, we established an innovative and effective strategy for potential metastatic melanoma treatment through the synergism of phyto-photodynamic therapy and novel bilosomal-origin nanophotosensitizers.
Collapse
Affiliation(s)
- Ewelina Waglewska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Urszula Bazylinska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
9
|
M E Gaafar P, Farid RM, Hazzah HA, AbouKilila HY, Helmy MW, Abdallah OY. Magnetic Lipid-Based hybrid nanosystems: A combined stimuli- responsive nanocarriers for enriched chemotherapeutic potential of L-carnosine in induced breast Ehrlich ascites tumor model. Int J Pharm 2024; 655:124000. [PMID: 38493840 DOI: 10.1016/j.ijpharm.2024.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Magnetic Lipid-Based Hybrid Nanosystems (M-LCNPs) is a novel nanoplatform that can respond to magnetic stimulus and are designed for delivering L-carnosine (CN), a challenging dipeptide employed in the treatment of breast cancer. CN exhibits considerable water solubility and undergoes in-vivo degradation, hence restricting its application. Consequently, it is anticipated that the developed M-LCNPs will enhance the effectiveness of CN. To ensure the physical stability of MNPs, they were initially coated with a mixture of oleic acid and oleylamine before being included in pegylated liquid crystalline nanoparticles (PLCNPs). The proposed M-LCNPs exhibited promising in-vitro characteristics, notably a small particle size (143.5 nm ± 1.25) and a high zeta potential (-39.5 mV ± 1.54), together with superparamagnetic behavior. The in-vitro release profile exhibited a prolonged release pattern. The IC50 values of M-LCNPs were 1.57 and 1.59 times lower than these of the CN solution after 24 and 48 hours, respectively. Female BALB/C female mice with an induced breast cancer (Ehrlich Ascites tumor [EAT] model) were used to study the influence of an external magnetic field on the chemotherapeutic activity and toxicity of CN loaded in the developed M-LCNPs. Stimuli-responsive M-LCNPs exhibited no apparent systemic toxicity in addition to enhanced chemotherapeutic efficacy compared to nontargeted M-LCNPs and CN solution, as evidenced by a reduction of % tumor growth (11.7%), VEGF levels (22.95 pg/g tissue), and cyclin D1 levels (27.61 ng/g tissue), and an increase in caspase-3 level (28.9 ng/g tissue). Ultimately, the developed stimuli-responsive CN loaded M-LCNPs presented a promising nanoplatform for breast cancer therapy.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - HussamElDin Y AbouKilila
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|