1
|
Yu Z, Wang Z, Chen Y, Wang Y, Tang L, Xi Y, Lai K, Zhang Q, Li S, Xu D, Tian A, Wu M, Wang Y, Yang G, Gao C, Huang T. Programmed surface platform orchestrates anti-bacterial ability and time-sequential bone healing for implant-associated infection. Biomaterials 2025; 313:122772. [PMID: 39190942 DOI: 10.1016/j.biomaterials.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.
Collapse
Affiliation(s)
- Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Shuangyang Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danyu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Anrong Tian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Zaimoglu M, Secinti KD, Altinoz MA, Bozkurt M, Eroglu U, Ozpiskin O, Mammadkhanli O, Bayatli E, Caglar YS, Attar A. Organelle-level toxicity of nanometals relevant to titanium implants. Original research and comprehensive literature overview. Tissue Cell 2024; 91:102612. [PMID: 39546971 DOI: 10.1016/j.tice.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study analyzed organelle toxicities of nanometals applied as free formulations or titanium rod-coating materials in rats. METHODS All materials were injected intraperitoneally, including the physiological saline applied to the control group. The first experimental group was implanted with nanosilver-coated titanium rods, and the second, third, and fourth groups received free nanosilver at rising levels. The fifth group was implanted with nanosilver, nanocopper, and nanozinc-coated titanium rods, and the sixth group received the same nanometals as free formulations. Light and electron microscopy and ICP-Mass Spectrometry were utilized to determine the neural, hepatic, and renal toxicities and tissue metal levels. RESULTS In brains, neuropil, myelin, and cellular damages occurred, especially in groups receiving high-dose nanosilver or nanometal combinations. Histiocyte accumulation and dark mitochondria within hepatocytes were discernible in the liver. Kidneys were the organs that were most severely affected by nanometal toxicity. The nephrotoxicity was apparent with the perturbations of the membrane infoldings and mitochondrial damage in the proximal and distal convoluted epithelia. Large angular peroxisomes developed inside the mesangial cells, and Golgi bodies increased in epithelial cells. Systemic metal levels increased on the thirtieth and prominently dropped on the sixtieth day. CONCLUSION These results provide insights into the extent of injury and organelle targets of nanometals and will guide optimizing the nanomaterials and implants used in the surgical practice.
Collapse
Affiliation(s)
- Murat Zaimoglu
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Kutsal Devrim Secinti
- Department of Neurosurgery, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Altunizade, Istanbul, Turkey
| | - Melih Bozkurt
- Department of Neurosurgery, Istanbul Arel University, Istanbul, Turkey; Department of Neurosurgery, Memorial Bahcelievler Hospital, Memorial Health Group, Istanbul, Turkey
| | - Umit Eroglu
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Omer Ozpiskin
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Orkhan Mammadkhanli
- Department of Neurosurgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Eyup Bayatli
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Sukru Caglar
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ayhan Attar
- Department of Neurosurgery, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Li Y, Yin Y, Li L. Conferring NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance by exploiting Ag@PDA films as a platform through a one-pot construction route. Heliyon 2024; 10:e34154. [PMID: 39113964 PMCID: PMC11304019 DOI: 10.1016/j.heliyon.2024.e34154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
The lack of antibacterial activity and the leaching of Ni ions seriously limit the potential applications of the near equiatomic nickel-titanium (NiTi) alloy in the biomedical field. In this study, a silver nanoparticles (Ag NPs) wrapped in a polydopamine (Ag@PDA) film modified NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance was achieved using a one-pot approach in a mixed solution of AgNO3 and dopamine. The controllable antibacterial activity could be achieved by adjusting the initial concentration of dopamine (Cdop), which obtained Ag@PDA films with varying thickness of polydopamine layers coated on Ag NPs, thereby conferring different levels of antibacterial activity to the modified NiTi alloy. In vitro antibacterial ratios (24 h) of Ag@PDA film-modified NiTi alloy against E.coli and S.aureus ranged from 46 % to 100 % and from 42 % to 100 %, respectively. The release curves of Ag ions indicated the persistent antibacterial effect of Ag@PDA film-modified NiTi alloy for at least 21 days. Moreover, in vitro cytotoxicity and in vivo implantation tests demonstrated the satisfactory biosafety of the Ag@PDA film-modified NiTi alloy when used as bioimplants. This research offers valuable insight into meeting various antibacterial demands for NiTi alloy implantations and highlights the potential of Ag-containing film-modified biomaterials in addressing different types of infections induced by implantations.
Collapse
Affiliation(s)
- Ying Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
- School of Health Management, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| |
Collapse
|
4
|
Sugumaran V, Pavithra AJ, Purushothaman B, Subramanian B. Crucial Chemical Revelations in 45S5 Bioactive Glass via Sequential Precursor Integration Order. ACS APPLIED BIO MATERIALS 2024; 7:1600-1620. [PMID: 38349355 DOI: 10.1021/acsabm.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Among the wet chemical nanoparticle fabrication techniques, the sol-gel process happens through hydrolysis and subsequent polycondensation reactions. The bioactive glass known as the 45S5 SiO2-Na2O-CaO-P2O5 quaternary system has intricate chemistry, yet its advantages benefit the biomedical field on an enormous scale. The order in which the ethanol and TEOS inclusions are exchanged was investigated in this work because it has a direct impact on the early hydrolysis process. Another strategy involves adding phosphate species to the sol before gelation, modifying the network chemistry, and interpreting the findings. Adding phosphate species before gelation in the biomaterial (E-Si-P) resulted in the formation of hydroxyapatite and other calcium silicate phases at 800 °C. Swapping ethanol and TEOS biomaterials (E-Si and Si-E) resulted in the sodium-calcium silicate phase only. Si-E with strong Si-O-Si siloxane rings demonstrated superior mechanical stability, hemocompatibility, and bioactivity. This compact Si-O-Si decreased the surface area of Si-E. XPS spectra revealed that E-Si-P has the lowest Na 1s binding energy (BE) and the highest BE for Si 2p. More Si-O-/Si-OH groups formed by E-Si make the network weak and decrease the surface area and protein adsorption. These differences significantly influenced the morphology, surface properties, mechanical studies, and compatibility test. This study has further unraveled the protocol to design a biomaterial with mechanical stability and load-bearing ability. In addition, the appropriate protocol to yield the desired property-rich biomaterial with preserved bioactivity, mechanical stability, cytocompatibility, as well and surface porosity has been elaborated in detail.
Collapse
Affiliation(s)
- Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| | - A J Pavithra
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamilnadu 603103, India
| | - Bargavi Purushothaman
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamilnadu 600077, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai, Tamilnadu 600025, India
| |
Collapse
|
5
|
Sun XD, Liu TT, Wang QQ, Zhang J, Cao MS. Surface Modification and Functionalities for Titanium Dental Implants. ACS Biomater Sci Eng 2023; 9:4442-4461. [PMID: 37523241 DOI: 10.1021/acsbiomaterials.3c00183] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dental implants have become the mainstream strategy for oral restoration, and implant materials are the most important research hot spot in this field. So far, Ti implants dominate all kinds of implants. The surface properties of the Ti implant play decisive roles in osseointegration and antibacterial performance. Surface modifications can significantly change the surface micro/nanotopography and composition of Ti implants, which will effectively improve their hydrophilicity, mechanical properties, osseointegration performance, antibacterial performance, etc. These optimizations will thus improve implant success and service life. In this paper, the latest surface modification techniques of Ti dental implants are systematically and comprehensively reviewed. The various biomedical functionalities of surface modifications are discussed in-depth. Finally, a profound comment on the challenges and opportunities of this frontier is proposed, and the most promising directions for the future were explored.
Collapse
Affiliation(s)
- Xiao-Di Sun
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Ting-Ting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang-Qiang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|