1
|
Shen D, Zhang J, Zhang Y, Du X. Development of analytical method for determination of 1,3-dimethylamylamine in sports nutrition and bodybuilding supplements using pH-switchable deep eutectic solvents followed by high-performance liquid chromatography-diode array detector. J Sep Sci 2024; 47:e2400340. [PMID: 39215580 DOI: 10.1002/jssc.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In this work, an easy, safe, simple, and efficient pH-switchable deep eutectic solvents (DESs)-based liquid phase microextraction followed by high-performance liquid chromatography-diode array detector analysis was developed for the determination of 1,3-dimethylamylamine (DMAA). The switchability of the obtained DESs was investigated by changing the pH. Then the best-selected DES was characterized and the application of the selected DES in the extraction of DMAA from sports nutrition and bodybuilding supplements was investigated. The DES synthesized from l-menthol: oleic acid in a molar ratio of 1:2 had the highest efficiency in the extraction of the target compound. Under the optimum conditions, (50 µL of DES, 100 µL of 4 mol/L KOH, 100 µL of 4 mol/L HCl, extraction time of 40 s and without salt addition) the calibration graph was linear in the range of 0.05-100 µg/kg and limit of detection was 0.02 µg/kg. The relative standard deviations including intra-day and inter-day for 10.0 µg/kg of DMAA in real samples were 2.7% (n = 7) and 5.3% (n = 7), respectively. The enrichment factor and percentage extraction recovery of the method were 283 and 85%, respectively. The relative recoveries for DMAA in different samples were in the range of 90%-109%.
Collapse
Affiliation(s)
- Dijun Shen
- Department of Physical Education, Shanghai Lixin University Accounting and Finance, Shanghai, China
| | - Jie Zhang
- Department of Physical Education, Donghua University, Shanghai, China
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Ying Zhang
- Beijing Yiboni Technology Co., Ltd, Beijing, China
| | - Xiru Du
- College Sport Arts, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
2
|
Umar A, Mubeen M, Ali I, Iftikhar Y, Sohail MA, Sajid A, Kumar A, Solanki MK, Kumar Divvela P, Zhou L. Harnessing fungal bio-electricity: a promising path to a cleaner environment. Front Microbiol 2024; 14:1291904. [PMID: 38352061 PMCID: PMC10861785 DOI: 10.3389/fmicb.2023.1291904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.
Collapse
Affiliation(s)
- Aisha Umar
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ashara Sajid
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|