1
|
Cheng Q, Huang Y, Duan W, Liu L. A pillar[5]arene-based hyaluronic acid-decorated amorphous bimetallic metal-organic framework for multimodal synergistic cancer therapy. Int J Biol Macromol 2025; 309:142994. [PMID: 40210065 DOI: 10.1016/j.ijbiomac.2025.142994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Current antitumor monotherapies have many limitations, and developing novel synergistic anticancer strategies with low side effects and high antitumor efficiency remains a significant challenge. Herein, we developed a pH and GSH dual-responsive pillar[5]arene-based amorphous bimetallic metal-organic framework (DOX@Fe/CuP5H) for synergistic antitumor therapy involving ferroptosis, cuproptosis and apoptosis. The hydrazide-functionalized pillar[5]arene derivatives were coordinated with Cu2+ to form irregular nanoparticles, which were subsequently etched and surface-coordinated using Fe3+. Finally, doxorubicin (DOX) was loaded onto the structures, followed by surface decoration with hyaluronic acid (HA) to yield the multifunctional DOX@Fe/CuP5H. The porous structure and amorphous nature of Fe/CuP5, and the specific binding of HA to CD44 overexpressed in cancer cells endowed the DOX@Fe/CuP5H with a high drug-loading capacity and effective targeting ability, while simultaneously reducing its toxicity to normal cells. DOX@Fe/CuP5H can dissociate in the tumor microenvironment, rapidly releasing DOX to induce apoptosis. Excess Fe3+ and Cu2+ deplete intracellular GSH, leading to a redox imbalance. The accumulation of Fe2+ further promotes the production of reactive oxygen species (ROS) and lipid peroxide (LPO), triggering ferroptosis. Additionally, FDX1 regulates cellular protein lipoylation, while Cu+ binds to lipoylated proteins, causing acute proteotoxic stress and inducing cellular cuproptosis. Therefore, the rationally designed pillar[5]arene-based amorphous bimetallic metal-organic framework provides a safe and high-performance platform for enhancing the efficacy of multimodal synergistic anticancer therapies.
Collapse
Affiliation(s)
- Qi Cheng
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Yan Huang
- Guang xi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guang xi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China.
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China.
| |
Collapse
|
2
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
3
|
Bian JJ, Tang SJ, Miao J, Lin R, Huang GL, Teng MY, Li XM. Synthesis of supramolecular polymers with calix[4]arene and β-cyclodextrin and their application in heavy metal ion absorption. RSC Adv 2024; 14:35697-35703. [PMID: 39524092 PMCID: PMC11545913 DOI: 10.1039/d4ra05559d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Two categories of supramolecular polymer monomers were produced by introducing the ureidopyrimidone quadruple-hydrogen bonding assemblies on the calix[4]arene and the β-cyclodextrin host units. The adsorption capacity of these supramolecular polymers for different metal ions was investigated by static adsorption. The results showed that at pH = 6 and when the adsorption equilibrium was reached, the supramolecular polymer with calixarene and β-cyclodextrin as the main body adsorbed up to 99% of Pb2+ and Cd2+, respectively. Also, the supramolecular polymer connected with six carbon chains on β-cyclodextrin had better recognition of Cd2+ and Pb2+, and the highest adsorption rate reached 99%. Industrial adsorbent materials from such supramolecular polymers will provide more options for water pollution control, especially for heavy metal ions.
Collapse
Affiliation(s)
- Jian-Jian Bian
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| | - Shi-Jin Tang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| | - Jiao Miao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| | - Rui Lin
- Image and Text Information Center, Yunnan Normal University Kunming 650500 China +86 871 65912939 +86 871 65912939
| | - Guo-Li Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| | - Ming-Yu Teng
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| | - Xiao-Mei Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China +86 871 65941088 +86 871 65941087
| |
Collapse
|
4
|
Lu T, Li H, Rao H, Sun K, Liu X, Zhao L. Propanediamine modified pillar[5]arene: A novel stationary phase for the high selectivity separation of versatile analytes. J Chromatogr A 2024; 1730:465134. [PMID: 38959655 DOI: 10.1016/j.chroma.2024.465134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The unique properties of pillar[5]arene, including hydrophobic cavities, π-π conjugated and easy modification, make it a promising candidate as stationary phase for HPLC. Herein, we fabricated a novel propanediamine modified pillar[5]arene bonded silica as the stationary phase (PDA-BP5S) for reversed-phase liquid chromatography (RPLC). Benefiting from the significant hydrophobicity, π-π conjugative, p-π effect, and hydrogen bonding, the PDA-BP5S packed column showed high separation performance of versatile analytes involving polycyclic aromatic hydrocarbons, alkyl benzenes, phenols, arylamine, phenylethane/styrene/ phenylacetylene, toluene/m-xylene/mesitylene, halobenzenes, benzenediol and nitrophenol isomers. Especially, the separation of halobenzenes appeared to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions, which was further confirmed by molecular dynamics simulation. The satisfactory separation and repeatability revealed the promising prospects of amine-pillar[5]arene-based stationary phase for RPLC.
Collapse
Affiliation(s)
- Taotao Lu
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China.
| | - Hui Li
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Kanjun Sun
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Xianyu Liu
- School of Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Liang Zhao
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
6
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
7
|
Sun T, Song Y, Zhang Y, Ba M, Li W, Cai Z, Hu S, Liu X, Zhang S. High-resolution performance of pillar[6]arene functionalized with imidazolium ionic liquids for gas chromatography. Talanta 2024; 273:125877. [PMID: 38460420 DOI: 10.1016/j.talanta.2024.125877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Pillar[n]arenes (P[n]A, n = 5-10) have attracted much attention because of their highly symmetric pillar-shaped architecture with π-electron rich cavity. Nevertheless, the use of ionic liquid functionalized P[n]A in chromatography has not been reported up to data. This work reports the investigation of the imidazolium ionic liquids functionalized pillar[6]arene (P6A-C10-IM-C8[NTf2]) as the stationary phase for gas chromatography (GC). The statically coated P6A-C10-IM-C8[NTf2] column (0.25 mm i.d.) showed moderate polarity and high column efficiency of 4733 plates/m determined by n-dodecane at 120 °C (k = 2.29). Owing to its unique amphiphilic conformation, the P6A-C10-IM-C8[NTf2] showed good column inertness and resolving capability for a wide range of analytes and isomers. Particularly, the P6A-C10-IM-C8[NTf2] column exhibited distinctly advantageous performance for the challenging isomers of halogenated benzenes, benzaldehydes, phenols and anilines over the common commercial columns, namely 5% phenyl methyl polysiloxane (HP-5) and 35% phenyl methyl polysiloxane (HP-35). In addition, it exhibited good column repeatability and reproducibility with RSD values on the retention times less than 0.05% for run-to-run, 0.38% for day-to-day and 2.94% for column-to-column, respectively. This work demonstrates the promising future of ionic liquid P[n]A stationary phases for chromatographic separations.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - YuanYuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, China.
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Jin Y, Liu Y, Zhu J, Liu H. Pillararenes: a new frontier in antimicrobial therapy. Org Biomol Chem 2024; 22:4202-4211. [PMID: 38727528 DOI: 10.1039/d4ob00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Pillararenes have gained great interest among researchers in many fields due to their symmetric structure and facile functionalization. In this review, we summarize recent progress for pillararenes as antimicrobial agents, ranging from cationic pillararenes and peptide-modified pillararenes to sugar-functionalized pillararenes. Moreover, their structure-activity relationships are presented, and their mechanisms of action are discussed. As a state-of-the-art technology, their opportunities and outlook are also outlined in this emerging field. Overall, their potent inhibitory activity and high biocompatibility give them potential for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yanqing Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Yisu Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical college, Nanchong 637000, Sichuan, P. R. China
| | - Hui Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| |
Collapse
|
9
|
Li X, Shen M, Yang J, Liu L, Yang YW. Pillararene-Based Stimuli-Responsive Supramolecular Delivery Systems for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313317. [PMID: 38206943 DOI: 10.1002/adma.202313317] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Meili Shen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Jie Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Ying-Wei Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|