1
|
Song G, Sun R, Liu X, Sa Y, Yang M, Kong D. Stereodivergent Ruthenium/Copper Relay Catalysis for Modular Access to δ-Lactones with Two Nonadjacent Carbon Stereocenters. Org Lett 2025; 27:4859-4864. [PMID: 40329582 DOI: 10.1021/acs.orglett.5c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The stereodivergent synthesis of δ-lactones, which are prevalent in natural product frameworks, from simple starting materials via a single transformation remains a significant challenge. Herein, we report an enantio- and diastereodivergent cascade reaction for the modular synthesis of chiral δ-lactones bearing two nonadjacent quaternary and tertiary carbon stereocenters. This approach employs bimetallic Ru/Cu relay catalysis between allylic alcohols and azaaryl acetates. This method integrates Ru-catalyzed asymmetric borrowing hydrogen reaction, Cu-catalyzed asymmetric Michael addition, and rapid lactonization into a one-pot process, with all catalysts and substrates introduced at the outset. By orthogonal permutation of two chiral metal catalysts, precise control over the relative and absolute configurations of the newly formed nonadjacent stereocenters is achieved, allowing selective access to all stereoisomers of the δ-lactone products in a predictable and efficient manner.
Collapse
Affiliation(s)
- Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rongsheng Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Sa
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjiao Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Mi R, Yao X, Xu Y, Hu S, Huang G, Li X. Asymmetric Vicinal and Remote Hydroamination of Olefins by Employing a Heck-Reaction-Derived Hydride Source. J Am Chem Soc 2025. [PMID: 40327331 DOI: 10.1021/jacs.5c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Metal hydrides are reactive intermediates in numerous catalytic processes. In many catalytic processes, metal hydrides are formed, but their potential reactivity is often wasted by reaction with a base or an oxidant to permit catalyst turnover. In this report, the hydroamination of unactivated olefins is described by coupling a Heck reaction with a hydroamination reaction between aryl boronic acid, olefin, and a nitrene precursor dioxazolone. Initiated by a Heck reaction between the olefin and arylboroic acid, a rhodium hydride intermediate is generated and is retained for the hydroamination of a second equivalent of the olefin. Depending on the chain length of the alkyl group of the olefin, α- or β-amino amides were obtained in excellent regio- and enantioselectivity via direct or remote (migratory) hydroamination, respectively. The coupling system features a broad scope, mild conditions, and excellent enantioselectivity, and it also represents a rare example of asymmetric olefin hydroamination using a chiral rhodium(III) cyclopentadienyl catalyst. Mechanistic studies delineated the turnover-limiting and enantio-determining steps of this catalytic system.
Collapse
Affiliation(s)
- Ruijie Mi
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Xuejing Yao
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Youzhi Xu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300073, China
| | - Shunle Hu
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300073, China
| | - Xingwei Li
- Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Liu Z, Li P, Wang H, Zhang J, Huo X, Sun ZL, Zhang W. Ternary Aldehyde-Copper-Iridium Catalysis Enables Stereodivergent Allylation via α-C-H Functionalization of Primary Amines. Angew Chem Int Ed Engl 2025:e202508335. [PMID: 40324954 DOI: 10.1002/anie.202508335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
α-Chiral primary amines are recognized as one of the most valuable and versatile synthetic intermediates, widely utilized in the construction of diverse amine-containing natural products, pharmaceuticals, and agrochemicals. The direct asymmetric α-C-H functionalization of unprotected primary amines is the most straightforward method for creating these motifs. However, this transformation remains underdeveloped, particularly in stereodivergent synthesis of primary amines with multiple stereocenters. Herein, we report an aldehyde/copper/iridium ternary catalytic system, which was successfully employed for the direct enantio- and diastereodivergent α-allylation of primary α-amino-chromanone without requiring additional protection or activation of the NH2 group. A wide range of α-tertiary primary amines bearing vicinal stereocenters were prepared in high yields with excellent enantio- and diastereoselectivities (generally >20:1 dr and >99% ee). Notably, all four stereoisomers of the α-tertiary amines can be readily prepared by simply switching the configuration combinations of the two chiral metal catalysts. Furthermore, the asymmetric induction model for the α-C-H functionalization of primary amines was meticulously elucidated through comprehensive density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Zijiao Liu
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen-Liang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Perveen S, Rahman T, Ali T, Wang L, Zhang J, Khan A. Molybdenum-Catalyzed Asymmetric Amination of α-Hydroxy Esters: Synthesis of α-Amino Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403437. [PMID: 40063505 PMCID: PMC12079543 DOI: 10.1002/advs.202403437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Indexed: 05/16/2025]
Abstract
Unnatural α-amino acids are found in a wide variety of bioactive compounds ranging from proteins to pharmaceutical agents to materials science. As a result, the investigation of efficient and simple methods for their synthesis is a major purpose in reaction development. In this study, it is found that a catalyst based on molybdenum, an earth-abundant transition metal, can facilitate the amination of readily accessible α-hydroxy esters to afford N-protected unnatural α-amino acid esters in high yield. This simple process also enables enantioselective amination, which proceeds through cooperative catalysis of chiral molybdenum complex with chiral phosphoric acid (CPA), and complements earlier procedures to the catalytic synthesis of this important class of compounds. The obtained protected α-amino acid ester products are directly useful or further utilized for the synthesis of commercially available drugs and analogs.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tahir Rahman
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Tariq Ali
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Lingyun Wang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Junjie Zhang
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| | - Ajmal Khan
- Department of ChemistrySchool of ChemistryXi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Jiao Tong UniversityXi'an710049P. R. China
| |
Collapse
|
5
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Cheang DMJ, Crompton JL, Amer MM, Battiti F, Skjelstad BB, Christensen KE, Barton P, Duarte F, Donohoe TJ. Dynamic Kinetic Resolution Allows Control of Remote Stereochemistry in Asymmetric Hydrogen Borrowing Alkylation. Angew Chem Int Ed Engl 2025; 64:e202424959. [PMID: 39907443 DOI: 10.1002/anie.202424959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/06/2025]
Abstract
A catalytic asymmetric method for the synthesis of γ-substituted ketones via hydrogen borrowing alkylation of both racemic linear precursors and 1,5-diols is described. The base mediated racemization of an intermediate cyclohexenone to facilitates a dynamic kinetic resolution, affording highly enantioenriched cyclohexanes in excellent yields, which could be further functionalized by removal of the Ph* group. DFT modelling revealed the mode of enantioinduction to be a stepwise process comprising of a hydride transfer and a coordination change to a π-allylic enolate complex with the iridium catalyst.
Collapse
Affiliation(s)
- Daniella M J Cheang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Mostafa M Amer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Francisco Battiti
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Bastian Bjerkem Skjelstad
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Kirsten E Christensen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Peter Barton
- Oncology R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)
| |
Collapse
|
7
|
Bechara WS, Sagamanova IK, Thai-Savard L, Dauphinais M, Régnier S, Noël C, Jarvis SBD, Charette AB. Universal Reagent for Mild and Stereospecific Nucleophilic Substitution of Alcohols with Amines. Angew Chem Int Ed Engl 2025; 64:e202420312. [PMID: 39921847 DOI: 10.1002/anie.202420312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/10/2025]
Abstract
A user-friendly reagent for mild and general activation of alcohols towards bimolecular nucleophilic substitution (SN2) leveraging diverse nucleophiles, including primary and secondary amines is reported herein. The new ion-paired reagent discovery was based upon the putative zwitterionic betaine intermediate of the Mitsunobu reaction and enabled the one-step conversion of enantioenriched alcohols to valuable chiral C-X bonds (where X=N, C, S, O or halide). The described activating reagent has also been applied to a one-step methylation reaction using methanol and to an intermolecular amination/intramolecular cyclization sequence that generates heterocycles, such as tetrahydroisoquinolines. This work provides the first evidence by X-ray crystallography of a protonated betaine as intermediate in the Mitsunobu reaction.
Collapse
Affiliation(s)
- William S Bechara
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Irina K Sagamanova
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Léa Thai-Savard
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Maxime Dauphinais
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Sophie Régnier
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Charlotte Noël
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Scott B D Jarvis
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - André B Charette
- Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| |
Collapse
|
8
|
Perveen S, Ali T, Rahman T, Huda FNU, Wang L, Zhang J, Khan A. Catalytic Asymmetric Synthesis of β-Amino α-Tertiary Alcohol through Borrowing Hydrogen Amination. Org Lett 2025; 27:2622-2627. [PMID: 40048559 DOI: 10.1021/acs.orglett.5c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The first enantioconvergent transition-metal-catalyzed amination of racemic α-tertiary 1,2-diols providing access to vicinal β-amino α-tertiary alcohols is disclosed. The iridium-catalyzed amination reaction proceeds through a chiral phosphoric acid-mediated borrowing hydrogen pathway with excellent yields and enantioselectivities for a range of amine nucleophiles and α-tertiary 1,2-diols. An array of β-amino α-tertiary alcohols were obtained with high yields and enantioselectivities (50 examples with up to 91% yield and up to 99% ee). These important chiral amino alcohol products can be easily converted into chiral ligands and bioactive skeletons. Mechanistic investigations proposed a dynamic kinetic resolution pathway involving imine formation and then imine reduction as the enantiodetermining step.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tariq Ali
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Fatima Noor Ul Huda
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Wang F, Lin W, Hui Yeh C, Lan Y, Zhao Y. Desymmetrization of 1,4-Diynes by Allylic Alcohol-Triggered Redox Enyne Cycloisomerization. Angew Chem Int Ed Engl 2025; 64:e202421153. [PMID: 39908293 DOI: 10.1002/anie.202421153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
We report herein an unprecedented desymmetrization of 1,4-diynes via a Rh-catalyzed asymmetric redox cycloisomerization. This method adopts allylic alcohol-containing diynes and provides efficient access to multi-functional pyrrolidines and tetrahydrofurans in high to excellent stereoselectivities. Mechanistic studies highlighted an innovative catalytic pathway that differs from the classical enyne cycloisomerization and involves initiation at the allylic alcohol moiety. Diverse derivatizations of the heterocyclic products including intriguing skeletal rearrangements have also been demonstrated.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| | - Wenxuan Lin
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Chia Hui Yeh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| |
Collapse
|
10
|
Liu SH, Li F, He YM, Fan QH. Manganese(I)-Catalyzed Enantioselective Formal Anti-Markovnikov Hydroalkoxylation of Racemic Allylic Alcohols: A Borrowing Hydrogen Access. Org Lett 2025; 27:2139-2145. [PMID: 39977372 DOI: 10.1021/acs.orglett.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
An enantioselective manganese(I)-catalyzed formal anti-Markovnikov hydroalkoxylation of racemic allylic alcohols has been developed using a chiral N6-type macrocyclic ligand, affording a wide range of chiral γ-alkoxypropyl alcohols in high isolated yields with excellent enantioselectivities. The synthetic utility of this protocol was further proven by gram-scale synthesis of chiral γ-alkoxypropanol 3n and derivatization of chiral γ-alkoxypropanol 3a to a drug molecule, (S)-dapoxetine, for the treatment of premature ejaculation and erectile dysfunction. Mechanistic studies support that the reaction proceeds via a hydrogen-borrowing cascade reaction pathway.
Collapse
Affiliation(s)
- Shuai-Hu Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Faju Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, People's Republic of China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Liaw MW, Hirata H, Zou GF, Wu J, Zhao Y. Borrowing Hydrogen/Chiral Enamine Relay Catalysis Enables Diastereo- and Enantioselective β-C-H Functionalization of Alcohols. J Am Chem Soc 2025; 147:7721-7728. [PMID: 39996277 DOI: 10.1021/jacs.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We report herein an unprecedented borrowing hydrogen/chiral enamine relay catalysis strategy that enables a highly efficient enantioselective formal β-alkylation of simple alcohols using electron-deficient alkenes and especially nitroalkenes. A variety of 1,4-difunctional products such as nitro alcohols are readily accessible in one waste-free step from feedstock alcohols in excellent levels of stereoselectivity. It is important to note that the products are formed in much higher diastereoselectivity than the enamine catalysis step alone under identical conditions, highlighting the unique advantage of cascade borrowing hydrogen catalysis in achieving high efficiency, economy, and stereoselectivity.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
| | - Haruka Hirata
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Gong-Feng Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
12
|
Li S, Yahaya S, Bojanowski J, Ragazzon G, Dydio P. Dual relay Rh-/Pd-catalysis enables β-C(sp 3)-H arylation of α-substituted amines. Chem Sci 2025; 16:4167-4174. [PMID: 39911345 PMCID: PMC11791518 DOI: 10.1039/d4sc06806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
A dual relay catalytic protocol, built on reversible dehydrogenation of amines by Rh catalysis and C-H functionalisation of transient imines by Pd catalysis, is reported to enable regioselective arylation of amines at their unactivated β-C(sp3)-H bond. Notably, the new strategy is applicable to secondary anilines and N-PMP-protected primary aliphatic amines of intermediate steric demands, which is in contrast to the existing strategies that involve either free-amine-directed C-H activation for highly sterically hindered secondary aliphatic amines or steric-controlled migrative cross-coupling for unhindered N-Boc protected secondary aliphatic amines. Regioselectivity of the reaction is imposed by the electronic effects of transient imine intermediates rather than by the steric effects between specific starting materials and catalysts, thereby opening the uncharted scope of amines. In a broader sense, this study demonstrates new opportunities in dual relay catalysis involving hydrogen borrowing chemistry, previously explored in the functionalisation of alcohols, to execute otherwise challenging transformations for amines, commonly present in natural products, pharmaceuticals, biologically active molecules, and functional materials.
Collapse
Affiliation(s)
- Shuailong Li
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Sani Yahaya
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Jan Bojanowski
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
13
|
Cheng X, Fu C, Chen BB, Chang X, Dong XQ, Wang CJ. Asymmetric Relay Catalysis Enables Unreactive Allylic Alcohols to Participate in 1,3-Dipolar Cycloaddition of Azomethine Ylides. J Am Chem Soc 2025; 147:5014-5024. [PMID: 39893690 DOI: 10.1021/jacs.4c14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Current synthetic transformations occur readily with starting materials that possess both innate reactivity and steric accessibility or functional-group-oriented reactivity. However, achieving reactions with inactive feedstock substrates remains significantly challenging and normally requires cumbersome prior functional group manipulations. Herein, we report an unprecedented example of catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with nonactivated alkenes enabled by copper/ruthenium relay catalysis. Key to the success is the temporary activation strategy initiated by oxidative dehydrogenation of inert allylic alcohols into electron-demanding reversed highly reactive enones, which triggers the ensuing Cu-catalyzed asymmetric 1,3-dipolar cycloaddition followed by reductive hydrogenation to deliver highly functionalized chiral pyrrolidines with the construction of two C-C bonds and four well-defined stereogenic centers in an atom-/step-economical and redox-neutral manner. This method features mild reaction conditions, operational simplicity, and broad substrate scope and is also characterized by formal dynamic kinetic resolution. Mechanistic studies and control experiments supported a typical borrowing-hydrogen cascade orthogonally merged with 1,3-dipolar cycloaddition and revealed that the superiority and reliability of relay catalysis are enabled by the controlled release of highly reactive but unstable enones to impede the undesired polymerization. It should be noted that up to four stereoisomers of the challenging and otherwise inaccessible pyrrolidines and cyclobutanes could be readily prepared through concise late-stage elaborations.
Collapse
Affiliation(s)
- Xiang Cheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cong Fu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Liu R, Hou Y, Bai M, Han Z, Hao Z, Lin J. Temperature-dependent switchable synthesis of imines and amines via coupling of alcohols and amines using pyrrolyl-imine ruthenium catalysts. J Catal 2025; 442:115895. [DOI: 10.1016/j.jcat.2024.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Zhang M, Qi Z, Xie M, Qu Y. Employing Ammonia for the Synthesis of Primary Amines: Recent Achievements over Heterogeneous Catalysts. CHEMSUSCHEM 2025; 18:e202401550. [PMID: 39189946 DOI: 10.1002/cssc.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
16
|
Tian K, Jin Z, Liu XL, He L, Liu HF, Yu PK, Chang X, Dong XQ, Wang CJ. Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis. Chem Sci 2025; 16:1233-1240. [PMID: 39677940 PMCID: PMC11635979 DOI: 10.1039/d4sc05852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance. Scale-up experiments and synthetic transformations further demonstrated the potential for synthetic applications. Mechanistic experiments support the envisioned bimetallic relay catalytic mechanism, and the key role of Cs2CO3 in promoting lactonization was also revealed.
Collapse
Affiliation(s)
- Kui Tian
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin-Lian Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Hong-Fu Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Pin-Ke Yu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
17
|
Jalwal S, Das S, Chakraborty S. Terpenylation of Ketones and a Secondary Alcohol under Hydrogen-Borrowing Manganese Catalysis. J Org Chem 2025; 90:309-316. [PMID: 39680627 DOI: 10.1021/acs.joc.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An Earth-abundant Mn-PNP pincer complex-catalyzed terpenylation of cyclic and acyclic ketones and secondary alcohol 1-phenylethanol using isoprenoid derivatives prenol, nerol, phytol, solanesol, and E-farnesol as allyl surrogates is reported. The C-C coupling reactions are green and atom-economic, proceeding via dehydrogenation of alcohols following a hydrogen autotransfer methodology aided by metal-ligand cooperation.
Collapse
Affiliation(s)
- Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| | - Sourajit Das
- School of Chemical Science, National Institute of Science Education and Research, Jatni, Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
18
|
Diao H, Liu K, Yu R, Chen J, Liu Y, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Construction of Piperidines and Tetrahydroisoquinolines from Racemic 1,5-Diols. J Am Chem Soc 2025; 147:610-618. [PMID: 39688857 DOI: 10.1021/jacs.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report herein a one-step synthesis of valuable enantioenriched piperidines and tetrahydroisoquinolines from readily available racemic 1,5-diols. Key to the success is the development of new iridacycle catalysts that enable efficient redox-neutral construction of two C-N bonds between diols and amines in an enantioconvergent fashion. Mechanistic studies identified an intriguing preferential oxidation of secondary versus primary alcohol in the diol substrate by the iridacycle catalyst, which set a challenging intermolecular amination of aryl-alkyl-substituted alcohol as the enantiodetermining step for this catalytic N-heterocycle synthesis. Application of this catalytic method to the preparation of important drugs and bioactive compounds is also demonstrated.
Collapse
Affiliation(s)
- Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Kexin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Rong Yu
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Jilin Chen
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| |
Collapse
|
19
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024; 63:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
20
|
Campos PRO, Alberto EE. Pnictogen and Chalcogen Salts as Alkylating Agents. CHEM REC 2024; 24:e202400139. [PMID: 39548904 DOI: 10.1002/tcr.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Alkylation reactions and their products are considered crucial in various contexts. Synthetically, the alkylation of a nucleophile is usually promoted using hazardous alkyl halides. Here, we aim to highlight the potential of pnictogen (ammonium or phosphonium) and chalcogen salts (sulfonium, selenonium, and telluronium) to function as alkylating agents. These compounds can be considered as non-volatile electrophilic alkyl reservoirs. We will center our discussion on the strategies developed in recent years to expand the synthetic utility of these salts in terms of transferable alkyl groups, substrate scope, and product selectivity.
Collapse
Affiliation(s)
- Philipe Raphael O Campos
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Liu C, Wang L, Ge H. Multifunctionalization of Alkenyl Alcohols via a Sequential Relay Process. J Am Chem Soc 2024; 146:30733-30740. [PMID: 39470983 DOI: 10.1021/jacs.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various skeletal structures of alkenols and amines.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ling Wang
- Residual Department, Merieux Testing Technology (Qingdao) Co., Ltd., Qingdao, 266000, China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
22
|
Bari MA, Elsherbeni SA, Maqbool T, Latham DE, Gushlow EB, Harper EJ, Morrill LC. Iron-Catalyzed Transfer Hydrogenation of Allylic Alcohols with Isopropanol. J Org Chem 2024; 89:14571-14576. [PMID: 39320102 PMCID: PMC11459429 DOI: 10.1021/acs.joc.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Herein, we report an iron-catalyzed transfer hydrogenation of allylic alcohols. The operationally simple protocol employs a well-defined bench stable (cyclopentadienone)iron(0) carbonyl complex as a precatalyst in combination with K2CO3 (4 mol %) and isopropanol as the hydrogen donor. A diverse range of allylic alcohols undergo transfer hydrogenation to form the corresponding alcohols in good yields (33 examples, ≤83% isolated yield). The scope and limitations of the method have been investigated, and experiments that shed light on the reaction mechanism have been conducted.
Collapse
Affiliation(s)
- Md Abdul Bari
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Salma A. Elsherbeni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tahir Maqbool
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Daniel E. Latham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Edward B. Gushlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Emily J. Harper
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
23
|
Yu K, Nie Q, Chen Q, Liu W. Manganese-catalyzed cyclopropanation of allylic alcohols with sulfones. Nat Commun 2024; 15:6798. [PMID: 39122745 PMCID: PMC11315923 DOI: 10.1038/s41467-024-51188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cyclopropanes are among the most important structural units in natural products, pharmaceuticals, and agrochemicals. Herein, we report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones as carbene alternative precursors via a borrowing hydrogen strategy under mild conditions. Various allylic alcohols and arylmethyl trifluoromethyl sulfones work efficiently in this borrowing hydrogen transformation and thereby deliver the corresponding cyclopropylmethanol products in 58% to 99% yields. Importantly, a major benefit of this transformation is that the versatile free alcohol moiety is retained in the resultant products, which can undergo a wide range of downstream transformations to provide access to a series of functional molecules. Mechanistic studies support a sequential reaction mechanism that involves catalytic dehydrogenation, Michael addition, cyclization, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qin Nie
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 201620, Shanghai, P. R. China.
| |
Collapse
|
24
|
Alexandridis A, Rancon T, Halliday A, Kochem A, Quintard A. Iron- and Organo-Catalyzed Borrowing Hydrogen for the Stereoselective Construction of Tetrahydropyrans. Org Lett 2024; 26:5788-5793. [PMID: 38935856 DOI: 10.1021/acs.orglett.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Stereocontrolled oxa-Michael additions are challenging, given the high reversibility of the process, which ultimately leads to racemization of the newly formed stereocenters. When iron-catalyzed borrowing hydrogen from allylic alcohols was combined with a stereocontrolled organocatalytic oxa-Michael addition, a wide array of chiral tetrahydropyrans were efficiently prepared. The reaction could be performed in a diastereoselective manner from pre-existing stereocenters or enantioselectively from achiral substrates. The key to success was the reactivity of the iron complex, which was selective for allylic alcohol dehydrogenation and irreversibly led the reaction to the final product.
Collapse
Affiliation(s)
| | - Thibault Rancon
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Amélie Kochem
- Université Grenoble Alpes, CNRS, CEA, LCBM (UMR 5249), F-38000 Grenoble, France
| | - Adrien Quintard
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
25
|
Yang HR, Cheng X, Chang X, Wang ZF, Dong XQ, Wang CJ. Copper/ruthenium relay catalysis enables 1,6-double chiral inductions with stereodivergence. Chem Sci 2024; 15:10135-10145. [PMID: 38966363 PMCID: PMC11220595 DOI: 10.1039/d4sc01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
The dual catalysis strategy is an efficient and powerful tool to fulfill the stereodivergent synthesis of stereoisomeric products from the same set of starting materials. Great attention has been given to the construction of chiral compounds with two contiguous stereocenters. However, the synthesis of two remote noncontiguous stereocenters is more challenging and is less developed, despite the high demand for synthetic tactics. We herein developed an unprecedented example of the stereodivergent preparation of synthetically useful and biologically important chiral ζ-hydroxy amino ester derivatives containing remote 1,6-noncontiguous stereocenters and a unique β,γ-unsaturation moiety. This cascade dehydrogenation/1,6-Michael addition/hydrogenation protocol between readily-available ketoimine esters and racemic branched dienyl carbinols was rationally realized with bimetallic copper/ruthenium relay catalysis. The key features of the process were atom economy, step economy, and redox-neutrality. All four stereoisomers of chiral ζ-hydroxy amino ester derivatives were easily achieved by the orthogonal permutations of a chiral copper catalyst and chiral ruthenium catalyst. Importantly, a much more challenging stereodivergent synthesis of all eight stereoisomers of chiral peptide products containing three remote stereocenters was accomplished with excellent results through the cooperation of two chiral catalyst pairs and substrate enantiomers.
Collapse
Affiliation(s)
- Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
26
|
Bai M, Zhang S, Lin Z, Hao Z, Han Z, Lu GL, Lin J. Ruthenium Complexes with NNN-Pincer Ligands for N-Methylation of Amines Using Methanol. Inorg Chem 2024; 63:11821-11831. [PMID: 38848310 DOI: 10.1021/acs.inorgchem.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A series of ruthenium complexes (Ru1-Ru4) bearing new NNN-pincer ligands were synthesized in 58-78% yields. All of the complexes are air and moisture stable and were characterized by IR, NMR, and high-resolution mass spectra (HRMS). In addition, the structures of Ru1-Ru3 were confirmed by X-ray crystallographic analysis. These Ru(II) complexes exhibited high catalytic efficiency and broad functional group tolerance in the N-methylation reaction of amines using CH3OH as both the C1 source and solvent. Experimental results indicated that the electronic effect of the substituents on the ligands considerably affects the catalytic reactivity of the complexes in which Ru3 bearing an electron-donating OMe group showed the highest activity. Deuterium labeling and control experiments suggested that the dehydrogenation of methanol to generate ruthenium hydride species was the rate-determining step in the reaction. Furthermore, this protocol also provided a ready approach to versatile trideuterated N-methylamines under mild conditions using CD3OD as a deuterated methylating agent.
Collapse
Affiliation(s)
- Mengxuan Bai
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxin Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengguo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiqiang Hao
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhangang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019,Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jin Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
27
|
Ding B, Xue Q, Wei H, Chen J, Liu ZS, Cheng HG, Cong H, Tang J, Zhou Q. Enantioconvergent synthesis of chiral fluorenols from racemic secondary alcohols via Pd(ii)/chiral norbornene cooperative catalysis. Chem Sci 2024; 15:7975-7981. [PMID: 38817591 PMCID: PMC11134410 DOI: 10.1039/d4sc01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
An efficient protocol for the asymmetric synthesis of fluorenols has been developed through an enantioconvergent process enabled by Pd(ii)/chiral norbornene cooperative catalysis. This approach allows facile access to diverse functionalized chiral fluorenols with constantly excellent enantioselectivities, applying readily available racemic secondary ortho-bromobenzyl alcohols and aryl iodides as the starting materials.
Collapse
Affiliation(s)
- Bo Ding
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Qilin Xue
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Han Wei
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Jiangwei Chen
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Ze-Shui Liu
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hong-Gang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hengjiang Cong
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jianting Tang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University Chongqing 404100 China
| | - Qianghui Zhou
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
28
|
Liu ZX, Gao YD, Yang LC. Biocatalytic Hydrogen-Borrowing Cascade in Organic Synthesis. JACS AU 2024; 4:877-892. [PMID: 38559715 PMCID: PMC10976568 DOI: 10.1021/jacsau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Biocatalytic hydrogen borrowing represents an environmentally friendly and highly efficient synthetic method. This innovative approach involves converting various substrates into high-value-added products, typically via a one-pot, two/three-step sequence encompassing dehydrogenation (intermediate transformation) and hydrogenation processes employing the hydride shuffling between NAD(P)+ and NAD(P)H. Represented key transformations in hydrogen borrowing include stereoisomer conversion within alcohols, conversion between alcohols and amines, conversion of allylic alcohols to saturated carbonyl counterparts, and α,β-unsaturated aldehydes to saturated carboxylic acids, etc. The direct transformation methodology and environmentally benign characteristics of hydrogen borrowing have contributed to its advancements in fine chemical synthesis or drug developments. Over the past decades, the hydrogen borrowing strategy in biocatalysis has led to the creation of diverse catalytic systems, demonstrating substantial potential for straightforward synthesis as well as asymmetric transformations. This perspective serves as a detailed exposition of the recent advancements in biocatalytic reactions employing the hydrogen borrowing strategy. It provides insights into the potential of this approach for future development, shedding light on its promising prospects in the field of biocatalysis.
Collapse
Affiliation(s)
- Zong-Xiao Liu
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Ya-Dong Gao
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Li-Cheng Yang
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| |
Collapse
|
29
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
30
|
Li J, Mao A, Hu X, Wang L, Wang D, Duan ZC. Preparation of a novel cadmium-containing coordination polymer and catalytic application in the synthesis of N-alkylated aminoquinoline derivatives via the borrowing hydrogen approach. Dalton Trans 2024; 53:5064-5072. [PMID: 38375833 DOI: 10.1039/d3dt04221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, we report an efficient and straightforward approach for the synthesis of N-alkylated aminoquinoline derivatives by recyclable Cd-containing coordination polymer-catalyzed reactions of aminoquinolines with primary alcohols via the borrowing hydrogen strategy. In this work, a new type of coordination polymer [Cd(CIA)(phen)2(H2O)]n was successfully designed and fabricated. The molecular structure was corroborated by single-crystal X-ray diffraction and fully characterized by PXRD, FT-IR, TGA, and XPS. Importantly, this polymer revealed high catalytic activity for the N-alkylation reaction of 2-aminoquinoline and 8-aminoquinoline with inexpensive and low-toxicity alcohols as alkylating agents in excellent yields up to 95%. Interestingly, the present synthetic protocol was successfully applied for the gram-level synthesis of several biologically active compounds. In addition, several control reactions were carried out to investigate the possible mechanisms of this transformation. Finally, recycling experiments indicated that the cadmium coordination polymer showed good recovery performance for borrowing hydrogen reactions.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Likui Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| |
Collapse
|
31
|
Fu C, He L, Chang X, Cheng X, Wang ZF, Zhang Z, Larionov VA, Dong XQ, Wang CJ. Copper/Ruthenium Relay Catalysis for Stereodivergent Access to δ-Hydroxy α-Amino Acids and Small Peptides. Angew Chem Int Ed Engl 2024; 63:e202315325. [PMID: 38155608 DOI: 10.1002/anie.202315325] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023]
Abstract
An atom- and step-economical and redox-neutral cascade reaction enabled by asymmetric bimetallic relay catalysis by merging a ruthenium-catalyzed asymmetric borrowing-hydrogen reaction with copper-catalyzed asymmetric Michael addition has been realized. A variety of highly functionalized 2-amino-5-hydroxyvaleric acid esters or peptides bearing 1,4-non-adjacent stereogenic centers have been prepared in high yields with excellent enantio- and diastereoselectivity. Judicious selection and rational modification of the Ru catalysts with careful tuning of the reaction conditions played a pivotal role in stereoselectivity control as well as attenuating undesired α-epimerization, thus enabling a full complement of all four stereoisomers that were otherwise inaccessible in previous work. Concise asymmetric stereodivergent synthesis of the key intermediates for biologically important chiral molecules further showcases the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zongpeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russian Federation
- Peoples' Friendship University of Russia, Moscow, 117198, Russian Federation
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Sun F, Chen X, Wang S, Sun F, Zhao SY, Liu W. Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. J Am Chem Soc 2023; 145:25545-25552. [PMID: 37962982 DOI: 10.1021/jacs.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of β-H containing alcohols, methanol, and phosphines for the synthesis of γ-hydroxy phosphines via a borrowing hydrogen strategy. In this development, methanol serves as a sustainable C1 source. A variety of aromatic and aliphatic substituted alcohols and phosphines could undergo the dehydrogenative cross-coupling process efficiently and deliver the corresponding β-phosphinomethylated alcohol products in moderate to good yields. Mechanistic studies suggest that this transformation proceeds in a sequential manner including catalytic dehydrogenation, aldol condensation, Michael addition, and catalytic hydrogenation.
Collapse
Affiliation(s)
- Feixiang Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Siyi Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fan Sun
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|