1
|
Li M, Liang X, Liu C, Han S. Revealing the Impact of Gel Electrolytes on the Performance of Organic Electrochemical Transistors. Gels 2025; 11:202. [PMID: 40136909 PMCID: PMC11942148 DOI: 10.3390/gels11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Gel electrolyte-gated organic electrochemical transistors (OECTs) are promising bioelectronic devices known for their high transconductance, low operating voltage, and integration with biological systems. Despite extensive research on the performance of OECTs, a precise model defining the dependence of OECT performance on gel electrolytes is still lacking. In this work, we refine the device model to comprehensively account for the electrical double layer (EDL)'s capacitance of the gel electrolyte. Both experimental data and theoretical calculations indicate that the maximum transconductance of the OECT is contingent upon ion concentration, drain voltage, and scan rate, highlighting a strong correlation between the transconductance and the hydrogel electrolyte. Overall, this model serves as a theoretical tool for improving the performance of OECTs, enabling the further development of bioelectronic devices.
Collapse
Affiliation(s)
- Mancheng Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Xiaoci Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; (M.L.); (X.L.); (C.L.)
| | - Songjia Han
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
3
|
Granelli R, Kovács-Vajna ZM, Torricelli F. Additive Manufacturing of Organic Electrochemical Transistors: Methods, Device Architectures, and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410499. [PMID: 39945058 PMCID: PMC11922034 DOI: 10.1002/smll.202410499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Organic electrochemical transistors (OECTs) are key devices in a large set of application fields including bioelectronics, neuromorphics, sensing, and flexible electronics. This review explores the advancements in additive manufacturing techniques accounting for printing technologies, device architectures, and emerging applications. The promising applications of printed OECTs, ranging from biochemical sensors to neuromorphic computing are examined, showcasing their versatility. Despite significant advancements, ongoing challenges persist, such as material-related issues, inconsistencies in film homogeneity, and the scalability of integration processes. This review identifies these critical obstacles and offers targeted solutions and future research directions aimed at enhancing the performance and reliability of fully-printed OECTs. By addressing these challenges, the aim of this study is to facilitate the development of next-generation OECTs that can meet the demands of emerging applications in sustainable and intelligent electronic and bioelectronic systems.
Collapse
Affiliation(s)
- Roberto Granelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Zsolt M Kovács-Vajna
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| | - Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, via Branze 38, Brescia, 25123, Italy
| |
Collapse
|
4
|
Tang CG, Wu R, Chen Y, Zhou Z, He Q, Li T, Wu X, Hou K, Kousseff CJ, McCulloch I, Leong WL. A Universal Biocompatible and Multifunctional Solid Electrolyte in p-Type and n-Type Organic Electrochemical Transistors for Complementary Circuits and Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405556. [PMID: 39021303 DOI: 10.1002/adma.202405556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage. Conversely, solid electrolytes offer advantages such as mechanical flexibility, robustness against environmental factors, and ability to bridge the interface between rigid dry electronics systems and soft wet biological tissues. However, few systems have demonstrated generality and compatibility with a wide range of state-of-the-art organic mixed ionic-electronic conductors (OMIECs). This paper introduces a highly stretchable, flexible, biocompatible, self-healable gelatin-based solid-state electrolyte, compatible with both p- and n-type OMIEC channels while maintaining high performance and excellent stability. Furthermore, this nonvolatile electrolyte is stable up to 120 °C and exhibits high ionic conductivity even in dry environment. Additionally, an OECT-based complementary inverter with a record-high normalized-gain of 228 V-1 and a corresponding ultralow static power consumption of 1 nW is demonstrated. These advancements pave the way for versatile applications ranging from bioelectronics to power-efficient implants.
Collapse
Affiliation(s)
- Cindy G Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruhua Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yingjun Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kunqi Hou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Mei T, Liu W, Xu G, Chen Y, Wu M, Wang L, Xiao K. Ionic Transistors. ACS NANO 2024. [PMID: 38285731 DOI: 10.1021/acsnano.3c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|