1
|
He J, Shen Z, Hu S, Zhao Y, Yuan Q, Wu Y, Sun K, Wang S, Jiang J, Fan M. Rationally Designing Efficient Biomass Carbon Electrocatalysts for H 2O 2 Synthesis and Near-Neutral Zn-Air Batteries with Preliminary Machine Learning Guidance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23937-23947. [PMID: 40198573 DOI: 10.1021/acsami.5c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Biomass-based carbon materials are considered promising metal-free catalysts for the 2e- oxygen reduction reaction (ORR) to synthesize H2O2 and act as air electrodes in Zn-air batteries. However, optimization of the catalyst structure is a complex process due to the diversity of biomass precursors and synthesis parameters. Machine learning, a new artificial intelligence technology, has recently been used in various fields owing to its ability to rapidly analyze large amounts of data and guide material synthesis. Consequently, we constructed a machine learning model based on previously reported experimental data and guided the fabrication of a boron-doped biomass carbon catalyst for the 2e- ORR. The achieved catalytic performance exceeded most reported ORR catalysts in terms of H2O2 selectivity (90-95% in broad potentials of 0.30-0.68 V vs reversible hydrogen electrode), stability (maintaining over 90% selectivity for 12 h), yield (3450 mmol gcatalyst-1 h-1), and Faraday efficiency (over 90%). We applied the catalysts to Zn-air batteries and showed a high capacity (2856 mAh g-1) and stability twice that of traditional commercial metal catalysts. Therefore, this study proposed an effective machine learning model to guide the fabrication of biomass-based catalysts in the field of electrocatalysis.
Collapse
Affiliation(s)
- Jiawei He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijun Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shengchun Hu
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yuying Zhao
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kang Sun
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Shule Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jianchun Jiang
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|
2
|
Liu Y, Liu H, Qian J, Luan J, Mu Y, Xiao C, Zhang Q, Lam SS, Li W, Zeng L. Enhanced Electrocatalytic Hydrogen Peroxide Production via a CuWO 4/WO 3 Heterojunction with High Selectivity and Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5026-5037. [PMID: 39801065 DOI: 10.1021/acsami.4c19881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach. Cu-PW served as a precursor to construct a composite electrocatalyst featuring a heterointerface between CuWO4 and WO3 (CuWO4/WO3) through pyrolysis. The CuWO4/WO3 heterojunction exhibits an impressive H2O2 selectivity of 91.84% at 0.5 V, marking a 19.65% improvement compared to the pristine Cu-PW. Furthermore, the CuWO4/WO3 catalyst demonstrates exceptional stability, maintaining continuous operation for 29 h. At 0.1 V, it delivers a hydrogen peroxide yield of 1537.8 mmol g-1 h-1, with a Faraday efficiency (FE) of 85%. Additionally, this catalyst effectively degrades methyl blue, achieving a 95% removal from an aqueous system within 30 min. Theoretical analysis further corroborates the high electroactivity of CuWO4/WO3 heterojunction structure. The Cu-O-W bridge formed during the reaction facilitates interfacial electron transport and enhances the role of the W-O bond in proton adsorption and transfer kinetics. This strong interfacial coupling in CuWO4/WO3 promotes electron transfer and the formation of *OOH intermediates, thereby favoring hydrogen peroxide generation. Hence, the as-prepared CuWO4/WO3 demonstrates great potential as an efficient electrocatalyst for the green synthesis of hydrogen peroxide, exhibiting high efficiency as a two-electron oxygen reduction reaction catalyst. This work offers a new approach for fabricating CuWO4/WO3 electrocatalyst with high electroactivity and selectivity, paving the way for cost-effective and sustainable hydrogen peroxide production, significantly reducing reliance on the conventional anthraquinone process.
Collapse
Affiliation(s)
- Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Hongxiao Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junning Qian
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailin Xiao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wenjia Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Qu N, Sun H, Sun Y, He M, Xing R, Gu J, Kong J. 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat Commun 2024; 15:5642. [PMID: 38969643 PMCID: PMC11226717 DOI: 10.1038/s41467-024-49762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
The combination between macroscopic structure designs and microscopic material designs offers tremendous possibilities for the development of advanced electromagnetic wave (EMW) absorbers. Herein, we propose a metamaterial design to address persistent challenges in this field, including narrow bandwidth, low-frequency bottlenecks, and, particularly, the urgent issue of robustness (i.e., oblique, and polarized incidence). Our absorber features a semiconductive metal-organic framework/iron 2D/2D assembly (CuHT-FCIP) with abundant crystal/crystal heterojunctions and strong magneto-electric coupling networks. This design achieves remarkable EMW absorption across a broad range (2 to 40 GHz) at a thickness of just 9.3 mm. Notably, it maintains stable performance against oblique incidence (within 75°) and polarizations (both transverse electric and transverse magnetic). Furthermore, the absorber demonstrates high specific compressive strength (201.01 MPa·cm3·g-1) and low density (0.89 g·cm-3). This advancement holds promise for developing robust EMW absorbers with superior performance.
Collapse
Affiliation(s)
- Ning Qu
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hanxu Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yuyao Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ruizhe Xing
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology and MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
4
|
Zhao Y, Raj J, Xu X, Jiang J, Wu J, Fan M. Carbon Catalysts Empowering Sustainable Chemical Synthesis via Electrochemical CO 2 Conversion and Two-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311163. [PMID: 38308114 DOI: 10.1002/smll.202311163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Indexed: 02/04/2024]
Abstract
Carbon materials hold significant promise in electrocatalysis, particularly in electrochemical CO2 reduction reaction (eCO2 RR) and two-electron oxygen reduction reaction (2e- ORR). The pivotal factor in achieving exceptional overall catalytic performance in carbon catalysts is the strategic design of specific active sites and nanostructures. This work presents a comprehensive overview of recent developments in carbon electrocatalysts for eCO2 RR and 2e- ORR. The creation of active sites through single/dual heteroatom doping, functional group decoration, topological defect, and micro-nano structuring, along with their synergistic effects, is thoroughly examined. Elaboration on the catalytic mechanisms and structure-activity relationships of these active sites is provided. In addition to directly serving as electrocatalysts, this review explores the role of carbon matrix as a support in finely adjusting the reactivity of single-atom molecular catalysts. Finally, the work addresses the challenges and prospects associated with designing and fabricating carbon electrocatalysts, providing valuable insights into the future trajectory of this dynamic field.
Collapse
Affiliation(s)
- Yuying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianchun Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Key Lab of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, 210042, China
| |
Collapse
|