1
|
Vandenabeele D, Rais A, Kirschhock C, Breynaert E. What drives porosity in aluminosilicate zeolites? CrystEngComm 2025; 27:2452-2461. [PMID: 40151831 PMCID: PMC11934025 DOI: 10.1039/d5ce00034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Discovery of their commercial potential gave rise to a massive implementation of zeolites in industrial (petro-)chemical processes. Their robustness and molecular scale porosity in combination with acidic and/or ion exchange properties makes zeolites nearly indispensable for most of these applications. This highlight explores the origins of zeolite porosity. As microporosity is an inherent feature of the formed topology, we emphasize the link with phase selection. For zeolites, phase selection is driven by competition between water and framework elements to coordinate with extra-framework species. This competition is important in the final product, where such coordinations provide thermodynamic stability, as well as in the crystallization medium where supermolecular structrures can play a templating role. Synthesis experiments using hydrated silicate ionic liquids show that limited water availability prompts the formation of less porous (or even dense) phases, while moderate hydration supports the development of more open frameworks. Understanding these interactions is key to deepening the insight into zeolite genesis and can guide strategies for tailoring material properties for industrial applications.
Collapse
Affiliation(s)
- Dries Vandenabeele
- Centrum voor Oppervlakte chemie & Katalyse, Karakterisatie en Applicatie Team (COK-KAT), KU Leuven Belgium
| | - Anjul Rais
- Centrum voor Oppervlakte chemie & Katalyse, Karakterisatie en Applicatie Team (COK-KAT), KU Leuven Belgium
| | - Christine Kirschhock
- Centrum voor Oppervlakte chemie & Katalyse, Karakterisatie en Applicatie Team (COK-KAT), KU Leuven Belgium
| | - Eric Breynaert
- Centrum voor Oppervlakte chemie & Katalyse, Karakterisatie en Applicatie Team (COK-KAT), KU Leuven Belgium
- NMRCoRe - NMR/X-Ray platform for Convergence Research, KU Leuven Celestijnenlaan 200F Box 2461 3001-Heverlee Belgium
| |
Collapse
|
2
|
Devos J, Sushkevich VL, Khalil I, Robijns S, de Oliveira-Silva R, Sakellariou D, van Bokhoven J, Dusselier M. Enhancing the Acidity Window of Zeolites by Low-Temperature Template Oxidation with Ozone. J Am Chem Soc 2024; 146:27047-27059. [PMID: 39298277 DOI: 10.1021/jacs.4c08123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Revisiting the impact of the first and often deemed trivial postsynthetic step, i.e., a high-temperature oxidative calcination to remove organic templates, increases our understanding of thermal acid site evolution and Al distributions. An unprecedented degree of control over the acidity of high-silica zeolites (SSZ-13) was achieved by using a low-temperature ozonation approach. Fourier transform infrared spectroscopy of adsorbed probe molecules and solid-state NMR spectroscopy reveal the complexity of the thermal evolution of acid sites. Low-temperature activated (ozonated) zeolites maintain the original Brønsted acidity content and high defect content and have virtually no Lewis acidity. They also preserve the "as-made" Al distribution after crystallization and show a clear link between synthesis conditions and divalent cation capacity, as measured with aqueous cobalt ion uptake. The synthesis protocol is found to be the main contributor to Al proximity, yielding record high exchange capacity when ozonated. After conventional calcination at 500-600 °C, however, the presence of water leads to the gradual depletion of Brønsted acid sites, in particular, in small crystals. This work indicates that low-temperature ozonation followed by thermal activation at different temperatures can be used as a novel tool for tuning the amount and nature of acid sites, providing insights into the activity of zeolites in acid-catalyzed reactions, such as CO2 hydrogenation to dimethyl ether, and thereby expanding the possibilities of rational acidity tuning.
Collapse
Affiliation(s)
- Julien Devos
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Vitaly L Sushkevich
- Center for Energy and Environment, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
| | - Ibrahim Khalil
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Sven Robijns
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Rodrigo de Oliveira-Silva
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Dimitrios Sakellariou
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Jeroen van Bokhoven
- Center for Energy and Environment, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
3
|
Tao JQ, Jia YJ, Cui Y, Bai TY, Xue XN, Yao RP, Zhou YS, Wei Q. Conventional Hydrothermal Synthesis of MFI Zeolite in Methanol Solution. ACS OMEGA 2024; 9:34081-34088. [PMID: 39130544 PMCID: PMC11308007 DOI: 10.1021/acsomega.4c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
The synthesis of zeolites through more efficient, environmentally friendly, and cost-effective methods was deemed significant in both industrial applications and academic fields. Conventional hydrothermal synthesis strategies have encountered difficulties in producing pure silica MFI zeolite (silicalite-1) under amine-free conditions. This was primarily attributed to the competitive growth of quartz, keatite, or magadiite during the crystallization process. In this work, it was found that the lack of nucleation ability was an important reason for the poor crystallization stability of the methanol solution. Well-crystallized silicalite-1 zeolites with uniform particle sizes were achieved through the cooperative guidance of methanol and seed crystals. Large-scale experiments with silicalite-1 zeolite demonstrated good reproducibility. Combined with the TG-IR and N2 adsorption-desorption results, it was observed that, when an extremely small amount of seed (0.97 wt %) was introduced, methanol could play a role as a crystallization promoter in the hydrothermal synthesis system. Furthermore, a lower alkaline-to-silica ratio and water-to-silica ratio were conducive to the progression of the crystallization process. In summary, this work presented a hydrothermal synthesis strategy for the synthesis of silicalite-1 zeolite in a methanol solution without the need for a large amount of seeds and provided an effective pathway for the low-cost, large-scale production of silicalite-1 zeolite.
Collapse
Affiliation(s)
- Jin Quan Tao
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
- PetroChina
Petrochemical Research Institute, Beijing 102206, China
| | - Yi Jing Jia
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yan Cui
- PetroChina
Petrochemical Research Institute, Beijing 102206, China
| | - Tian Yu Bai
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xi Nan Xue
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Rong Peng Yao
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Ya Song Zhou
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qiang Wei
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
4
|
Houlleberghs M, Radhakrishnan S, Chandran CV, Morais AF, Martens JA, Breynaert E. Harnessing Nuclear Magnetic Resonance Spectroscopy to Decipher Structure and Dynamics of Clathrate Hydrates in Confinement: A Perspective. Molecules 2024; 29:3369. [PMID: 39064947 PMCID: PMC11279878 DOI: 10.3390/molecules29143369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This perspective outlines recent developments in the field of NMR spectroscopy, enabling new opportunities for in situ studies on bulk and confined clathrate hydrates. These hydrates are crystalline ice-like materials, built up from hydrogen-bonded water molecules, forming cages occluding non-polar gaseous guest molecules, including CH4, CO2 and even H2 and He gas. In nature, they are found in low-temperature and high-pressure conditions. Synthetic confined versions hold immense potential for energy storage and transportation, as well as for carbon capture and storage. Using previous studies, this report highlights static and magic angle spinning NMR hardware and strategies enabling the study of clathrate hydrate formation in situ, in bulk and in nano-confinement. The information obtained from such studies includes phase identification, dynamics, gas exchange processes, mechanistic studies and the molecular-level elucidation of the interactions between water, guest molecules and confining interfaces.
Collapse
Affiliation(s)
- Maarten Houlleberghs
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - C. Vinod Chandran
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Alysson F. Morais
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Johan A. Martens
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F—Box 2461, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Collados CC, Huber C, Söllner J, Grass JP, Inayat A, Durdyyev R, Smith AS, Wisser D, Hartmann M, Thommes M. Assessment of Hydrophilicity/Hydrophobicity in Mesoporous Silica by Combining Adsorption, Liquid Intrusion, and Solid-State NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12853-12867. [PMID: 38861921 DOI: 10.1021/acs.langmuir.3c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We have developed a comprehensive strategy for quantitatively assessing the hydrophilicity/hydrophobicity of nanoporous materials by combining advanced adsorption studies, novel liquid intrusion techniques, and solid-state NMR spectroscopy. For this, we have chosen a well-defined system of model materials, i.e., the highly ordered mesoporous silica molecular sieve SBA-15 in its pristine state and functionalized with different amounts of trimethylsilyl (TMS) groups, allowing one to accurately tailor the surface chemistry while maintaining the well-defined pore structure. For an absolute quantification of the trimethylsilyl group density, quantitative 1H solid-state NMR spectroscopy under magic angle spinning was employed. A full textural characterization of the materials was obtained by high-resolution argon 87 K adsorption, coupled with the application of dedicated methods based on nonlocal-density functional theory (NLDFT). Based on the known texture of the model materials, we developed a novel methodology allowing one to determine the effective contact angle of water adsorbed on the pore surfaces from complete wetting to nonwetting, constituting a powerful parameter for the characterization of the surface chemistry inside porous materials. The surface chemistry was found to vary from hydrophilic to hydrophobic as the TMS functionalization content was increased. For wetting and partially wetting surfaces, pore condensation of water is observed at pressures P smaller than the bulk saturation pressure p0 (i.e., at p/p0 < 1) and the effective contact angle of water on the pore walls could be derived from the water sorption isotherms. However, for nonwetting surfaces, pore condensation occurs at pressures above the saturation pressure (i.e., at p/p0 > 1). In this case, we investigated the pore filling of water (i.e., the vapor-liquid phase transition) by the application of a novel, liquid water intrusion/extrusion methodology, allowing one to derive the effective contact angle of water on the pore walls even in the case of nonwetting. Complementary molecular simulations provide density profiles of water on pristine and TMS-grafted silica surfaces (mimicking the tailored, functionalized experimental silica surfaces), which allow for a molecular view on the water adsorbate structure. Summarizing, we present a comprehensive and reliable methodology for quantitatively assessing the hydrophilicity/hydrophobicity of siliceous nanoporous materials, which has the potential to optimize applications in heterogeneous catalysis and separation (e.g., chromatography).
Collapse
Affiliation(s)
- Carlos Cuadrado Collados
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Christoph Huber
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Jakob Söllner
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Jan-Paul Grass
- Institute of Chemical Reaction Engineering (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Rustam Durdyyev
- PULS Group, Institute for Theoretical Physics, Centre for Computational Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 4, Erlangen 91058, Germany
| | - Ana-Suncana Smith
- PULS Group, Institute for Theoretical Physics, Centre for Computational Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 4, Erlangen 91058, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Matthias Thommes
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
6
|
Morais AF, Radhakrishnan S, Arbiv G, Dom D, Duerinckx K, Chandran CV, Martens JA, Breynaert E. Noncontact In Situ Multidiagnostic NMR/Dielectric Spectroscopy. Anal Chem 2024; 96:5071-5077. [PMID: 38513052 DOI: 10.1021/acs.analchem.3c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Introduction of a dielectric material in a nuclear magnetic resonance (NMR) probe head modifies the frequency response of the probe circuit, a phenomenon revealed by detuning of the probe. For NMR spectroscopy, this detuning is corrected for by tuning and matching the probe head prior to the NMR measurement. The magnitude of the probe detuning, "the dielectric shift", provides direct access to the dielectric properties of the sample, enabling NMR spectrometers to simultaneously perform both dielectric and NMR spectroscopy. By measuring sample dielectric permittivity as a function of frequency, dielectric permittivity spectroscopy can be performed using the new methodology. As a proof of concept, this was evaluated on methanol, ethanol, 1-propanol, 1-pentanol, and 1-octanol using a commercial cross-polarization magic angle spinning (CPMAS) NMR probe head. The results accurately match the literature data collected by standard dielectric spectroscopy techniques. Subsequently, the method was also applied to investigate the solvent-surface interactions of water confined in the micropores of an MFI-type, hydrophilic zeolite with a Si/Al ratio of 11.5. In the micropores, water adsorbs to Bro̷nsted acid sites and defect sites, resulting in a drastically decreased dielectric permittivity of the nanoconfined water. Theoretical background for the new methodology is provided using an effective electric circuit model of a CPMAS probe head with a solenoid coil, describing the detuning resulting from the insertion of dielectric samples in the probe head.
Collapse
Affiliation(s)
- Alysson F Morais
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gavriel Arbiv
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Dom
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis - Characterization and Application Team (COK-KAT), Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- Center for Molecular Water Science (CMWS), Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|