1
|
Ojima KO, Dayarathne SH, Kelly MT, Zhao B. Quaternary Ammonium-Containing Polyelectrolyte Brush Particles for Removal of Perrhenate Anion From Water: Effect of N-Substituents. Macromol Rapid Commun 2025; 46:e2401087. [PMID: 39992302 DOI: 10.1002/marc.202401087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Radioactive pertechnetate (TcO4 -) from the nuclear fuel cycle presents a severe risk to the environment due to its large solubility in water and non-complexing nature. By utilizing the chaotropic properties of TcO4 - and its nonradioactive surrogate perrhenate (ReO4 -) and the principle of chaotropic interactions, a series of quaternary ammonium-containing polyelectrolyte brush-grafted silica particles are designed and applied to remove ReO4 - from water. These cationic hairy particles (HPs) are synthesized by surface-initiated atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate and subsequent quaternization with various halogen compounds. Dynamic light scattering (DLS) studies showed that the HPs with sufficiently long N-alkyl and N-benzyl substituents underwent sharp size reduction transitions in water when titrated with a KReO4 solution, indicating strong chaotropic interactions between the brushes and ReO4 -. All the HPs exhibited fast adsorption kinetics; the HPs with longer N-alkyl and N-benzyl substituents showed higher capabilities of removing ReO4 - than those with shorter N-alkyls. Moreover, the brush particles with longer N-substituents displayed a significantly stronger ability in selective adsorption of ReO4 - than the particles with shorter N-substituents in the presence of competing anions, such as F-, Cl-, NO3 -, and SO4 2-. This work opens a new avenue to design high-performance adsorbent materials for TcO4 - and ReO4 -.
Collapse
Affiliation(s)
- Kingsley O Ojima
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
2
|
Hansen K, Erichsen A, Larsen D, Beeren SR. Enzyme-Mediated Dynamic Combinatorial Chemistry Enables Large-Scale Synthesis of δ-Cyclodextrin. J Am Chem Soc 2025; 147:13851-13858. [PMID: 40202199 PMCID: PMC12022984 DOI: 10.1021/jacs.5c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
α-, β-, and γ-cyclodextrins (CDs) are macrocycles formed from six, seven, and eight α-1,4-linked d-glucopyranose units and are industrially produced on ton scales for use as hosts for bioactive guests in foods, cosmetics, and pharmaceuticals. Large-ring cyclodextrins, with more than eight glucose units, have been known for decades but never isolated in more than milligram quantities. We report a scalable method to synthesize δ-CD, formed from nine glucose units, in high yield (>40%), high purity (>95% purity without chromatography), and unprecedented quantities (multigram scale). We exploit a superchaotropic dodecaborate template, B12Cl122-, to direct the selective synthesis of δ-CD from within an enzyme-mediated dynamic combinatorial library of interconverting cyclodextrins. Our single-step reaction uses a recyclable template, cheap starting materials, and a commercial 'food-grade' enzyme and can thus give access to large quantities of δ-CD. This work will enable the first large-scale investigations of the properties and applications of this little-known larger CD.
Collapse
Affiliation(s)
| | | | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kongens Lyngby 2800, Denmark
| | - Sophie R. Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Barba‐Bon A, El Haitami A, Pasquier C, Nikšić‐Franjić I, Diat O, Bauduin P, Cantin S, Nau WM. Boron Cluster Anions Dissolve En Masse in Lipids Causing Membrane Expansion and Thinning. Angew Chem Int Ed Engl 2024; 63:e202412834. [PMID: 39292508 PMCID: PMC11627137 DOI: 10.1002/anie.202412834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
Boron clusters are applied in medicinal chemistry because of their high stability in biological environments and intrinsic ability to capture neutrons. However, their intermolecular interactions with lipid membranes, which are critical for their cellular delivery and biocompatibility, have not been comprehensively investigated. In this study, we combine different experimental methods - Langmuir monolayer isotherms at the air-water interface, calorimetry (DSC, ITC), and scattering techniques (DLS, SAXS) - with MD simulations to evaluate the impact of closo-dodecaborate clusters on model membranes of different lipid composition. The cluster anions interact strongly with zwitterionic membranes (POPC and DPPC) via the chaotropic effect and cause pronounced expansions of lipid monolayers. The resulting lipid membranes contain up to 33 mol % and up to 52 weight % of boron cluster anions even at low aqueous cluster concentrations (1 mM). They show high (μM) affinity to the hydrophilic-hydrophobic interface, affecting the structuring of the lipid chains, and therefore triggering a sequence of characteristic effects: (i) an expansion of the surface area per lipid, (ii) an increase in membrane fluidity, and (iii) a reduction of bilayer thickness. These results aid the design of boron cluster derivatives as auxiliaries in drug design as well as transmembrane carriers and help rationalize potential toxicity effects.
Collapse
Affiliation(s)
- Andrea Barba‐Bon
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Alae El Haitami
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI)Université de Cergy-Pontoise5 mail GayLussacF-95031Cergy-Pontoise-CedexFrance
| | - Coralie Pasquier
- Institut de Chimie Séparative de MarcouleCNRS UMR 5257CEAUniversité de MontpelierENSCMF-30207Bagnols sur Cèze CedexFrance
| | | | - Olivier Diat
- Institut de Chimie Séparative de MarcouleCNRS UMR 5257CEAUniversité de MontpelierENSCMF-30207Bagnols sur Cèze CedexFrance
| | - Pierre Bauduin
- Institut de Chimie Séparative de MarcouleCNRS UMR 5257CEAUniversité de MontpelierENSCMF-30207Bagnols sur Cèze CedexFrance
| | - Sophie Cantin
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI)Université de Cergy-Pontoise5 mail GayLussacF-95031Cergy-Pontoise-CedexFrance
| | - Werner M. Nau
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
4
|
Giri M, Guchhait T. A Synopsis on CO 2 Capture by Synthetic Hydrogen Bonding Receptors. Chempluschem 2024; 89:e202400405. [PMID: 39104329 DOI: 10.1002/cplu.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Carbon dioxide (CO2) is one of the most abundant greenhouse gases in Earth's atmosphere and responsible for global warming. Therefore, aerial CO2 capture and sequestration has become a major task for human community. Though several adsorbents for CO2 including activated carbon, zeolites, metal-organic frameworks (MOFs), and other surface-modified porous materials are well developed, the supramolecular approaches using synthetic hydrogen-bonding receptors are less explored. This review article highlights the synthetic development of various artificial receptors and their properties toward fixation of aerial CO2 as carbonate (CO3 2-), bicarbonate (HCO3 -), or carbamate (-NHCOO-/>NCOO-) ions, induced by excess fluoride (F-) or hydroxide (OH-) ions as their tetrabutylammonium salts. The utilization of encapsulated carbonate/bicarbonate/carbamate complexes in anion exchange metathesis for separation of oxyanions from aqueous solutions are also discussed. In addition, the release of CO2 and regeneration of receptor molecules are described in a number of occasions. Most importantly, the formation of anion complexes as crystalline materials in solid-state is described in terms of supramolecular chemistry and correlated with their solution-state properties. Finally, the types of receptors containing various functional groups are scrutinized in CO2 uptake, storage, and release processes and hints of endeavours for future research are delineated.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| |
Collapse
|
5
|
Ma X, Zhang Z, Barba-Bon A, Han D, Qi Z, Ge B, He H, Huang F, Nau WM, Wang X. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. Proc Natl Acad Sci U S A 2024; 121:e2407515121. [PMID: 39436658 PMCID: PMC11536097 DOI: 10.1073/pnas.2407515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Intracellular protein delivery has the potential to revolutionize cell-biological research and medicinal therapy, with broad applications in bioimaging, disease treatment, and genome editing. Herein, we demonstrate successful delivery of a functional protein, cytochrome c (CYC), by using a boron cluster anion as molecular carrier of the superchaotropic anion type (B12Br11OPr2-). CYC was delivered into lipid bilayer vesicles as well as living cells, with a cellular uptake ratio approaching 90%. Mechanistic studies showed that CYC was internalized into cells through a permeation pathway directly into the cytoplasm, bypassing endosomal entrapment. Upon carrier-assisted internalization, CYC retained its bioactivity, as reflected by an induced cell apoptosis rate of 25% at low dose (1 µM). This study furbishes a direct protein delivery method by a molecular carrier with high efficiency, confirming the potential of inorganic cluster ions as protein transport vehicles with an extensive range of future cell-biological or biomedical applications.
Collapse
Affiliation(s)
- Xiqi Ma
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhixiong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | | | - Dongxue Han
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zichun Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Baosheng Ge
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Hua He
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Werner M. Nau
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
- School of Science, Constructor University, Bremen28759, Germany
| | - Xiaojuan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
6
|
Segado-Centellas M, Falaise C, Leclerc N, Mpacko Priso G, Haouas M, Cadot E, Bo C. Nanoconfinement of polyoxometalates in cyclodextrin: computational inspections of the binding affinity and experimental demonstrations of reactivity modulation. Chem Sci 2024:d4sc01949k. [PMID: 39282647 PMCID: PMC11391412 DOI: 10.1039/d4sc01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Chaotropic polyoxometalates (POMs) form robust host-guest complexes with γ-cyclodextrin (γ-CD), offering promising applications in catalysis, electrochemical energy storage, and nanotechnology. In this article, we provide the first computational insights on the supramolecular binding mechanisms using density-functional theory and classical molecular dynamics simulations. Focusing on the encapsulation of archetypal Keggin-type POMs (PW12O40 3-, SiW12O40 4- and BW12O40 5-), our findings reveal that the lowest-charged POM, namely PW12O40 3- spontaneously confines within the wider rim of γ-CD, but BW12O40 5- does not exhibit this behaviour. This striking affinity for the hydrophobic pocket of γ-CD originates from the structural characteristics of water molecules surrounding PW12O40 3-. Moreover, through validation using 31P NMR spectroscopy, we demonstrate that this nanoconfinement regulates drastically the POM reactivity, including its capability to undergo electron transfer and intermolecular metalate Mo/W exchanges. Finally, we exploit this nanoconfinement strategy to isolate the elusive mixed addenda POM PW11MoO40 3-.
Collapse
Affiliation(s)
- Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Gabrielle Mpacko Priso
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
7
|
Salluce G, Folgar-Cameán Y, Barba-Bon A, Nikšić-Franjić I, El Anwar S, Grüner B, Lostalé-Seijo I, Nau WM, Montenegro J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angew Chem Int Ed Engl 2024; 63:e202404286. [PMID: 38712936 DOI: 10.1002/anie.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.
Collapse
Affiliation(s)
- Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Andrea Barba-Bon
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Ivana Nikšić-Franjić
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Suzan El Anwar
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Xiao J, Li WZ, Xiong RY, Xu SY, Liu CS, Ruan Y, Li H, Zhang H, Wang W, Wang XQ. Boron Cluster Renders Organic Radicals Water-Stable for Photothermal Anti-Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26537-26546. [PMID: 38739859 DOI: 10.1021/acsami.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.
Collapse
Affiliation(s)
- Ju Xiao
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Ren-Yi Xiong
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Chang-Sheng Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Yiru Ruan
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Hang Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Wenjing Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
- Precision Medicine Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Halgreen L, Torres-Huerta A, Norvaisa K, De Leener G, Tumanov N, Wouters J, Bartik K, Valkenier H. A Semiflexible Tetrahydrazone Macrocycle for Binding of Pyrophosphate and Smaller Anions. J Org Chem 2024; 89:6853-6864. [PMID: 38661472 DOI: 10.1021/acs.joc.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Macrocyclization has proven to be a useful design strategy in the development of efficient anion receptors. In addition to the ring size, the overall preorganization due to structural rigidity is key. To explore this in the context of developing an efficient pyrophosphate receptor, three macrocycles featuring a 26-membered interior ring size and similar H-bonding motifs have been synthesized, and their anion binding ability has been investigated. Computational studies and nuclear magnetic resonance (NMR) data showed different degrees of preorganization as a result of differences in flexibility. The interaction of the three macrocycles with chloride, dihydrogen phosphate, and dihydrogen pyrophosphate was investigated in solution by NMR and ultraviolet-visible spectroscopy and in the solid state by X-ray crystallography. The tetrahydrazone-based macrocycle featuring intermediate flexibility exhibited the best affinity for all three anions investigated. Our results suggest that in addition to the proper preorganization of binding groups in a macrocycle a certain degree of flexibility is also required for an optimal affinity with the target guest.
Collapse
Affiliation(s)
- Lau Halgreen
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Karolis Norvaisa
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Gaël De Leener
- Centre d'Instrumentation en REsonance Magnétique (CIREM), Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/08, B-1050 Brussels, Belgium
| | - Nikolay Tumanov
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Johan Wouters
- Namur Institute of Structured Matter and Namur Research Institute for Life Sciences, Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Li WZ, Wang ZX, Xu SY, Zhou N, Xiao J, Wang W, Liu Y, Zhang H, Wang XQ. Chaotropic Effect-Induced Sol-Gel Transition and Radical Stabilization for Bacterially Sensitive Near-Infrared Photothermal Therapy. NANO LETTERS 2024; 24:4649-4657. [PMID: 38572971 DOI: 10.1021/acs.nanolett.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.
Collapse
Affiliation(s)
- Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Na Zhou
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Ju Xiao
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wenjing Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry and Engineering Research Center of Organosilicon Compounds Materials (MOE), Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
11
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Peng X, Cao W, Hu Z, Yang Y, Sun Z, Wang XB, Sun H. Observation of a super-tetrahedral cluster of acetonitrile-solvated dodecaborate dianion via dihydrogen bonding. J Chem Phys 2024; 160:054308. [PMID: 38341708 DOI: 10.1063/5.0186614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.
Collapse
Affiliation(s)
- Xiaogai Peng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
13
|
Khlifi S, Yao S, Falaise C, Bauduin P, Guérineau V, Leclerc N, Haouas M, Salmi-Mani H, Roger P, Cadot E. Switchable Redox and Thermo-Responsive Supramolecular Polymers Based on Cyclodextrin-Polyoxometalate Tandem. Chemistry 2023:e202303815. [PMID: 38146753 DOI: 10.1002/chem.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Supramolecular polymers built from stimuli-responsive host-guest interactions represent an attractive way of tailoring smart materials. Herein, we exploit the chaotropic effect of polyoxometalates and related host-guest properties to design unconventional polymer systems with reversible redox and thermo-responsive sol-gel transition. These supramolecular networks result from the association of cyclodextrin-based oligomers and Keggin-type POMs acting as electro-active crosslinking agents. The structure and the dynamics of such self-assembly systems have been investigated using a multiscale approach involving MALDI-TOF, viscosity measurements, cyclic voltammetry, 1 H-NMR (1D and DOSY), and Small-Angle X-ray Scattering. Our results reveal that the chaotropic effect corresponds to a powerful and efficient force that can be used to induce responsiveness in hybrid supramolecular oligomeric systems.
Collapse
Affiliation(s)
- Soumaya Khlifi
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Sa Yao
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, CNRS UMR 5257, CEA, Université de Marcoule, ENSCM, F-30207, Bagnols sur Cèze Cedex, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| | - Hanene Salmi-Mani
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS UMR 8180, UVSQ, Université Paris-Saclay, 78035, Versailles Cedex, France
| |
Collapse
|
14
|
Wang ZX, Chen X, Liu X, Li WZ, Ye YY, Xu SY, Zhang H, Wang XQ. Chaotropic Effect-Induced Self-Assembly of the Malachite Green and Boron Cluster for Toxicity Regulation and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55486-55494. [PMID: 37995715 DOI: 10.1021/acsami.3c13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Malachite green (MG), a toxic antibacterial agent, is widely used in the farming industry. Effectively regulating the biotoxicity of this highly water-soluble cationic dye is challenging. Here, we present a novel strategy to reduce the biotoxicity of MG through the self-assembly of MG and the closo-dodecaborate cluster ([B12H12]2-) driven by the chaotropic effect. [B12H12]2- and MG in an aqueous solution can rapidly form an insoluble cubic-type supramolecular complex (B12-MG), and the original toxicity of MG is completely suppressed. Surprisingly, this supramolecular complex, B12-MG, has a strong UV-vis absorption peak at 600-800 nm and significant photothermal conversion efficiency under 660 nm laser irradiation. On this basis, B12-MG, the supramolecular complex, can be used as an efficient photothermal agent for antimicrobial photothermal therapy (PTT) both in vitro and in vivo. As a molecular chaperone of MG, [B12H12]2- not only can be applied as an antidote to regulate the biotoxicity of MG but also provides a novel method for the construction of photothermal agents for PTT based on the chaotropic effect.
Collapse
Affiliation(s)
- Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Xiaofang Chen
- Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, P. R. China
| | - Xinyu Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Yu-Yuan Ye
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry; Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
| |
Collapse
|
15
|
Assaf KI, Nau WM. Dispersion Interactions in Condensed Phases and inside Molecular Containers. Acc Chem Res 2023; 56:3451-3461. [PMID: 37956240 DOI: 10.1021/acs.accounts.3c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ConspectusThe past decade has seen significant progress in the understanding and appreciation of the importance of London dispersion interactions (LDIs) in supramolecular systems and solutions. The Slater-Kirkwood formula relates LDIs to the molecular polarizabilities of the two interacting molecular species (α) and their interaction distance (a dependence of R-6). When advancing arguments related to intermolecular interactions, it is frequently assumed that molecules with larger molecular polarizabilities are more amenable to larger LDIs. However, arguments related to molecular polarizabilities are not always transferable to the condensed phase. In fact, the underlying bulk and molecular polarizabilities of common solvents show opposing trends. The intuitive concept that aromatic molecules are more polarizable than saturated hydrocarbons and that perfluorinated molecules are less polarizable than saturated hydrocarbons applies to the condensed phase only. When treating association phenomena in solution, where LDIs are generally very attenuated, the use of bulk polarizabilities is recommended, which are experimentally accessible through either refractive index measurements or suitable solvatochromic probes. Such probes can also be used to assess polarizabilities inside molecular container compounds, such as cucurbit[n]urils (CBn), cyclodextrins, calixarenes, and hemicarcerands. These macrocyclic cavities can have extreme microenvironments. For example, the inner concave phase of CB7 has been shown to be weakly polarizable, falling in between the gas phase and perfluorohexane; those of β-cyclodextrin and p-sulfonatocalix[4]arene have been found to be similarly polarizable as water and alkanes, respectively, and the inside of hemicarcerands displays a very large bulk polarizability, exceeding that of diiodomethane. CBn compounds are privileged molecular container compounds, which we exemplify in this Account through case studies. (1) CBn macrocycles are prime water-soluble receptors for hydrocarbons, allowing for the reduction of the binding free energies to two components: the hydrophobic effect and dispersion interactions. To understand hydrocarbon binding, we initiated the HYDROPHOBE challenge, which revealed the shortcomings of both quantum-chemical and molecular dynamics approaches. (2) The smallest CBn receptor, CB5, is uniquely suited to bind the entire noble gas series, where hydrophobic effects and dispersion interactions operate in opposite directions. CB5 was revaled to be a unique synthetic receptor for noble gases, with the dominant driving force being the recovery of the cavitation energies for the hydration of noble gases in aqueous solution. Computational methods that encounter challenges in predicting hydrocarbon affinities and trends for CB6 and CB7 perform well for noble gases binding to CB5. (3) The larger homologue, CB8, allows one to set up intermolecular interaction chambers by the encapsulation of a (first) aromatic guest, thereby tuning LDIs inside the receptor cavity. In this manner, CB8 can be modulated to preferentially bind unsaturated and aromatic rather than saturated hydrocarbons, while the unmodified cavities of the smaller macrocycles CB6 and CB7 show selective binding of saturated hydrocarbons. (4) The (charged) host-guest complexes of CBn hosts are sufficiently stable in the gas phase, allowing for the study of the influence of LDIs on inner-phase chemical reactions. These studies are particularly interesting for the theoretical analysis of isolated host-guest LDIs, as experimental and computational data are directly comparable in the gas phase due to the absence of the solvation effect.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Al-Balqa Applied University, Faculty of Science, Department of Chemistry, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
16
|
Al-Joumhawy MK, Chang JC, Assaf KI, Bassil BS, Gabel D. Functionalization of Dodecaborates by Mild and Efficient Pd-Catalyzed Formation of B-C Bonds with Boronic Acids. Chemistry 2023; 29:e202302466. [PMID: 37792566 DOI: 10.1002/chem.202302466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Hybrid organic-inorganic molecules have recently received great interest due to their unique properties, which give access to their implementation in biological and material sciences. Herein, a new synthetic approach for the direct-linkage of the purely inorganic dodecaborate cluster to organic building blocks through B-C bond is established, using boronic acids as functional groups on the organic moiety, reacting under Suzuki-Miyaura coupling conditions with iodo-undecahydridododecaborate. The choices of ligand (DavePhos) and solvent (N-methylpyrrolidone for electron-poor, CD3 CN for electron-rich groups) are essential for the successful coupling. Ultimately, the newly described methodology is found to be functional-group tolerant covering a wide spectrum of substrates including electron-poor arenes.
Collapse
Affiliation(s)
| | - Jui-Chi Chang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Bassem S Bassil
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Detlef Gabel
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|