1
|
Yin N, Yu H, Zhang L, Luo F, Wang W, Han X, He Y, Zhang Y, Wu Y, Pu J, Feng T, Yang G, Chen T, Xie G. Regulation of CRISPR trans-cleavage activity by an overhanging activator. Nucleic Acids Res 2025; 53:gkaf117. [PMID: 39995038 PMCID: PMC11850226 DOI: 10.1093/nar/gkaf117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system exhibits extraordinary capability in the field of molecular diagnosis and biosensing, attributed to its trans-cleavage ability. The precise modulation of performance has emerged as a significant challenge in advancing CRISPR technology to the next stage of development. Herein, we reported a CRISPR/Cas12a regulation strategy based on an overhanging activator. The presence of overhanging domains in activators creates steric hindrances that have a substantial impact on the trans-cleavage activity and activation timing of Cas12a. The trans-cleavage activity of Cas12a can be finely tuned by adjusting the position, length, and complementarity of the overhanging domains. Moreover, specific structures exhibit characteristics of automatic delayed activation. The presence of overhanging domains enables precise and timely activation of Cas12a, facilitating multifunctional applications. This system effectively accomplishes dynamic regulation, programmable release of cargo, logical operations, and multi-enzyme detection. The flexibility and versatility of this simple and powerful CRISPR regulatory strategy will pave the way for expanded applications of CRISPR/Cas in biotechnology, bioengineering, and biomedicine.
Collapse
Affiliation(s)
- Na Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fei Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu He
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiqi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiu Pu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, P.R. China
| |
Collapse
|
2
|
Li S, Yang B, Ye L, Hu S, Li B, Yang Y, Hu Y, Jia X, Feng L, Xiong Z. Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation. Eur J Pharm Biopharm 2025; 207:114616. [PMID: 39694079 DOI: 10.1016/j.ejpb.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics. Using the multi-stage microfluidic TrH chip, hybrid nanoparticles (HNPs) loaded with paclitaxel (PTX)-simvastatin (SV), PTX-lenvatinib (LV), and SV-LV were synthesized. Unlike conventional Bulk methods and existing commercial microfluidic Tesla and Baffle chips, the HNPs produced here exhibit a core-shell structure and uniform particle size distribution, crucial for enhancing drug delivery efficacy. Notably, this method achieves nearly 100 % encapsulation efficiency for both drugs across a dual-drug feed ratio range from 1:4 to 4:1. Drug loading efficiencies were quantified for PTX-SV/HNPs (14.97 ± 1.19 %), PTX-LV/HNPs (16.58 ± 0.69 %), and SV-LV/HNPs (19.21 ± 2.38 %). PTX-SV/HNPs demonstrated sequential release characteristics of SV and PTX, as confirmed by in vitro drug release experiments. Significantly, PTX-SV/HNPs exhibited superior cytotoxicity against HepG2 cells compared to individual PTX and SV treatments, underscoring their potential in cancer therapy. In conclusion, the developed multi-stage microfluidic platform represents a robust strategy for co-encapsulating drugs with substantial physicochemical disparities, thereby offering a promising avenue for advancing multi-drug delivery in nanomedicine applications.
Collapse
Affiliation(s)
- Shixin Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Shuqi Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Benhong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yichuan Hu
- School of Pharmacy, Nanchang Medical College, 330052 Nanchang, Jiangxi, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; Affiliated Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, 211100 Nanjing, Jiangsu, PR China.
| | - Zhiwei Xiong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Guo D, Lin Q, Liu N, Jin Q, Liu C, Wang Y, Zhu X, Zong L. Copper-based metal-organic framework co-loaded doxorubicin and curcumin for anti-cancer with synergistic apoptosis and ferroptosis therapy. Int J Pharm 2024; 666:124744. [PMID: 39317244 DOI: 10.1016/j.ijpharm.2024.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yubo Wang
- Medical College, Guangxi University, Nanning 530004, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
4
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
5
|
Yang C, Liu P. Regulating Drug Release Performance of Acid-Triggered Dimeric Prodrug-Based Drug Self-Delivery System by Altering Its Aggregation Structure. Molecules 2024; 29:3619. [PMID: 39125024 PMCID: PMC11313937 DOI: 10.3390/molecules29153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Dimeric prodrugs have been investigated intensely as carrier-free drug self-delivery systems (DSDSs) in recent decades, and their stimuli-responsive drug release has usually been controlled by the conjugations between the drug molecules, including the stimuli (pH or redox) and responsive sensitivity. Here, an acid-triggered dimeric prodrug of doxorubicin (DOX) was synthesized by conjugating two DOX molecules with an acid-labile ketal linker. It possessed high drug content near the pure drug, while the premature drug leakage in blood circulation was efficiently suppressed. Furthermore, its aggregation structures were controlled by fabricating nanomedicines via different approaches, such as fast precipitation and slow self-assembly, to regulate the drug release performance. Such findings are expected to enable better anti-tumor efficacy with the desired drug release rate, beyond the molecular structure of the dimeric prodrug.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
6
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. REVIEW APPROACH Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. KEY RESULTS The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. CONCLUSION This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
7
|
Cheng Y, Huangfu Y, Zhao T, Wang L, Yang J, Liu J, Feng Z, Que K. Thermosensitive hydrogel with programmed dual-octenidine release combating biofilm for the treatment of apical periodontitis. Regen Biomater 2024; 11:rbae031. [PMID: 38605850 PMCID: PMC11007118 DOI: 10.1093/rb/rbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
The utilization of intracanal medicaments is an indispensable procedure in root-canal treatment. However, the conventional intracanal medicaments still need improvement regarding antimicrobial efficacy and ease of clinical operation. To address the above issues, OCT/PECT@OCT + ALK composite hydrogel characterized by programming sequential release of dual antimicrobial agents has been proposed. Thanks to the self-assemble ability of amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT), dual hydrophilic and hydrophobic antimicrobial agents could be easily encapsulated in the hydrogel system and tailored for sequential drug release for a better antibiofilm effect. The hydrophilic octenidine (Octenidine dihydrochloride, OCT-HCl) is encapsulated in the hydrophilic part of hydrogel for instantaneous elevating the drug concentration through bursting release, and the hydrophobic octenidine (Octenidine, OCT) is further loaded into the PECT nanoparticles to achieve a slower and sustained-release profile. Additionally, calcium hydroxide (Ca(OH)2) was incorporated into the system and evenly dispersed among PECT nanoparticles to create an alkaline (ALK) environment, synergistically enhancing the antibiofilm effect with higher efficiency and prolonged duration. The antibiofilm effect has been demonstrated in root-canal models and apical periodontitis rats, exhibiting superior performance compared to clinically used Ca(OH)2 paste. This study demonstrates that OCT/PECT@OCT + ALK composite thermosensitive hydrogel is a potential intracanal medicament with excellent antibiofilm effect and clinical operability.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yini Huangfu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Tingyuan Zhao
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Linxian Wang
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yang
- Department of Oral Implantology, Tianjin Stomatological Hospital, Tianjin 300041, China
| | - Jie Liu
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kehua Que
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Zhang Y, Shi D, Wang W, Li W, Li W, Zhao L, Ma L, Peng Z, Sun X, Yang C. Injectable hydrogels embedded with chitosan nanoparticles coated with hyaluronic acid for sequential release of dual drugs. Int J Biol Macromol 2024; 256:128527. [PMID: 38040140 DOI: 10.1016/j.ijbiomac.2023.128527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
An effective treatment for some disease, such as the model disease acute retinal necrosis (ARN), requires a combination of different drugs which should be administered at a certain interval. The precise sequential and long-term drug release are the critical questions. In this work, the as-prepared chitosan nanoparticles (CS-NPs) coated with hyaluronic acid (HA) were embedded in the aldehyde β-cyclodextrin (ACD)/aminated hyaluronic acid (NHA) hydrogels to synthesize injectable hydrogels loaded with dual drugs named DEX-CS-NPs/GCV-Gel and HA-DEX-CS-NPs/GCV-Gel. In the first 24 h and 48 h, the releases of DEX from DEX-CS-NPs/GCV-Gel were 128.5 % and 82.8 % faster than those from HA-DEX-CS-NPs/GCV-Gel, respectively. There was no DEX released from HA-DEX-CS-NPs/GCV-Gel at the first 7 h, which has never been reported before, although some hydrogel systems loaded with different drugs release different drugs simultaneously at different rate which have been well studied. This is a good start of a precise sequence release. The composite hydrogels possessed appropriate rheology, gel time, degradation performance, and ideal cytocompatibility. The injectable hydrogel loaded with dual drugs presenting a precise sequential and long-term release has great potential in the treatment of diseases requiring combinations of drugs being released sequentially at different treating stages.
Collapse
Affiliation(s)
- Yongfei Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Depeng Shi
- Medical College of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Wenqian Wang
- Shangdong Dongyue Research Institute Co., Ltd., Zibo, Shandong 255000, China
| | - Weiyi Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Wenhui Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Lihua Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266071, China
| | - Lichun Ma
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhi Peng
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Xianyong Sun
- Weifang Eye Institute, National Key Clinical Specialty, Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang, Shandong 261000, China.
| | - Chao Yang
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|