1
|
Charkiolakis EK, Gracia D, Cervera MUI, Evangelisti M, Milios CJ. A Linear {Fe III 2Ni II} Cluster, a Structurally Closely Related Quasi 1D {Fe III 2Ni II} Chain. Chemistry 2025:e202500911. [PMID: 40391732 DOI: 10.1002/chem.202500911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/22/2025]
Abstract
The solvothermal reaction between FeCl3·6H2O, NiCl2·6H2O, 2-hydroxynaphthaldehyde, and glycine (gly) in MeOH results in the formation of the trinuclear heterometallic cluster [FeΙΙΙ 2NiΙΙ(L1)4(MeOH)4] (1) in good yield, while the same reaction upon replacing gly with methyl-alanine (mAla), results in the formation of the closely related quasi 1D coordination polymer {[FeΙΙΙ 2NiΙΙ(L2)4(MeOH)2]n} (2) (L1, L2: the dianionic form of the Schiff-base ligand derived from the condensation of 2-hydroxynaphthaldehyde and gly (L1 for 1), or mAla (L2 for 2)). The structure of 1 describes a linear trimetallic {FeIII 2Ni} unit, whereas complex 2 consists of repeating linear {FeIII 2Ni} units with each one connected to two neighboring units via four coordination bonds, forming a quasi-1D chain. The structural similarity between complex 1 and the repeating unit of complex 2 is remarkable. However, their magnetic properties differ significantly, with complex 1 displaying dominant ferromagnetic interactions, and complex 2 showing antiferromagnetic interactions.
Collapse
Affiliation(s)
- Emmanouil K Charkiolakis
- Department of Chemistry, The University of Crete, Voutes, Herakleion, 71003, Greece
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - David Gracia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Marc Ubach I Cervera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Marco Evangelisti
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | | |
Collapse
|
2
|
Jia H, Chen L, Yang D, Zou Y, Wang H, Yin B, Bai S, Zhang C, Yao J. Magnetic Switching of Second-Harmonic Generation from Single Cerium-Based Coordination Polymer Microcrystals. J Phys Chem Lett 2024; 15:6728-6735. [PMID: 38905137 DOI: 10.1021/acs.jpclett.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Conventional access and modulation of second-harmonic generation (SHG) require precise control of crystal orientation, which faces great mechanical challenges in the case of micro/nanocrystals. Here, we demonstrate the magnetic-field-tunable SHG performance of lanthanide coordination polymer (Ce-BTC CP) microcrystals through field-aligned orientations. The coordination of Ce ions and organic ligands constructs a noncentrosymmetric structure, which not only contributes to a favorable powder SHG efficiency 3.2 times larger than that of the benchmark KH2PO4 (KDP) but also endows the microcrystals with strong magnetic anisotropy. The SHG efficiency (∼0 to 10 × KDP) depends on the orientation of the crystallographic c-axis, whereas magnetic anisotropy always aligns the c-axis with the magnetic field at a specific angle. Accordingly, the SHG can be magnetically switched by field-induced alignments. The adsorption of dyes by Ce-BTC CPs further facilitates the magnetic switching of multicolor fluorescence that can be excited by the SHG. Our work provides a new pathway for achieving SHG modulation at the microscopic level.
Collapse
Affiliation(s)
- Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfang Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongchun Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Quiroz M, Darensbourg MY. Development of (NO)Fe(N 2S 2) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach. Acc Chem Res 2024; 57:831-844. [PMID: 38416694 PMCID: PMC10979402 DOI: 10.1021/acs.accounts.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
ConspectusThe ubiquity of sulfur-metal connections in nature inspires the design of bi- and multimetallic systems in synthetic inorganic chemistry. Common motifs for biocatalysts developed in evolutionary biology include the placement of metals in close proximity with flexible sulfur bridges as well as the presence of π-acidic/delocalizing ligands. This Account will delve into the development of a (NO)Fe(N2S2) metallodithiolate ligand that harnesses these principles. The Fe(NO) unit is the centroid of a N2S2 donor field, which as a whole is capable of serving as a redox-active, bidentate S-donor ligand. Its paramagnetism as well as the ν(NO) vibrational monitor can be exploited in the development of new classes of heterobimetallic complexes. We offer four examples in which the unpaired electron on the {Fe(NO)}7 unit is spin-paired with adjacent paramagnets in proximal and distal positions.First, the exceptional stability of the (NO)Fe(N2S2)-Fe(NO)2 platform, which permits its isolation and structural characterization at three distinct redox levels, is linked to the charge delocalization occurring on both the Fe(NO) and the Fe(NO)2 supports. This accommodates the formation of a rare nonheme {Fe(NO)}8 triplet state, with a linear configuration. A subsequent FeNi complex, featuring redox-active ligands on both metals (NO on iron and dithiolene on nickel), displayed unexpected physical properties. Our research showed good reversibility in two redox processes, allowing isolation in reduced and oxidized forms. Various spectroscopic and crystallographic analyses confirmed these states, and Mössbauer data supported the redox change at the iron site upon reduction. Oxidation of the complex produced a dimeric dication, revealing an intriguing magnetic behavior. The monomer appears as a spin-coupled diradical between {Fe(NO)}7 and the nickel dithiolene monoradical, while dimerization couples the latter radical units via a Ni2S2 rhomb. Magnetic data (SQUID) on the dimer dication found a singlet ground state with a thermally accessible triplet state that is responsible for magnetism. A theoretical model built on an H4 chain explains this unexpected ferromagnetic low-energy triplet state arising from the antiferromagnetic coupling of a four-radical molecular conglomerate. For comparison, two (NO)Fe(N2S2) were connected through diamagnetic group 10 cations producing diradical trimetallic complexes. Antiferromagnetic coupling is observed between {Fe(NO)}7 units, with exchange coupling constants (J) of -3, -23, and -124 cm-1 for NiII, PdII, and PtII, respectively. This trend is explained by the enhanced covalency and polarizability of sulfur-dense metallodithiolate ligands. A central paramagnetic trans-Cr(NO)(MeCN) receiver unit core results in a cissoid structural topology, influenced by the stereoactivity of the lone pair(s) on the sulfur donors. This {Cr(NO)}5 radical bridge, unlike all previous cases, finds the coupling between the distal Fe(NO) radicals to be ferromagnetic (J = 24 cm-1).The stability and predictability of this S = 1/2 moiety and the steric/electronic properties of the bridging thiolate sulfurs suggest it to be a likely candidate for the development of novel molecular (magnetic) compounds and possibly materials. The role of synthetic inorganic chemistry in designing synthons that permit connections of the (NO)Fe(N2S2) metalloligand is highlighted as well as the properties of the heterobi- and polymetallic complexes derived therefrom.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas
A & M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Guerrero-Almaraz P, Quiroz M, Rodriguez DR, Jana M, Hall MB, Darensbourg MY. Sulfur Lone Pairs Control Topology in Heterotrimetallic Complexes: An Experimental and Theoretical Study. ACS ORGANIC & INORGANIC AU 2023; 3:393-402. [PMID: 38075453 PMCID: PMC10704581 DOI: 10.1021/acsorginorgau.3c00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 02/12/2024]
Abstract
Heterotrimetallic complexes with (N2S2)M metallodithiolates, M = Ni2+, [Fe(NO)]2+, and [Co(NO)]2+, as bidentate chelating ligands to a central trans-Cr(NO)(MeCN) unit were characterized as the first members of a new class, NiCrNi, FeCrFe, CoCrCo. The complexes exhibit a cisoid structural topology, ascribed to the stereoactivity of the available lone pair(s) on the sulfur donors, resulting in a dispersed, electropositive pocket from the N/N and N/S hydrocarbon linkers wherein the Cr-NO site is housed. Computational studies explored alternative isomers (transoid and inverted cisoid) that suggest a combination of electronic and steric effects govern the geometrical selectivity. Electrostatic potential maps readily display the dominant electronegative potential from the sulfurs which force the NO to the electropositive pocket. The available S lone pairs work in synergy with the π-withdrawing ability of NO to lift Cr out of the S4 plane toward the NO and stabilize the geometry. The metallodithiolate ligands bound to Cr(NO) thus find structural consistency across the three congeners. Although the dinitrosyl [(bme-dach)Co(NO)-Mo(NO)(MeCN)-(bme-dach)Co(MeCN)][PF6]2 (CoMoCo') analogue displays chemical noninnocence and a partial Mo-Co bond toward (N2S2)Co'(NCCH3) in an "asymmetric butterfly" topology [Guerrero-Almaraz P.Inorg. Chem.2021, 60(21 (21), ), 15975-15979], the stability of the {Cr(NO)}5 unit prohibits such bond rearrangement. Magnetism and EPR studies illustrate spin coupling across the sulfur thiolate sulfur bridges.
Collapse
Affiliation(s)
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - David R. Rodriguez
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Manish Jana
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | | |
Collapse
|