1
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Nishida Y, Kawamori R, Watada H. Physical inactivity induces insulin resistance in plantaris muscle through protein tyrosine phosphatase 1B activation in mice. Front Physiol 2023; 14:1198390. [PMID: 37389126 PMCID: PMC10300557 DOI: 10.3389/fphys.2023.1198390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Inactivity causes insulin resistance in skeletal muscle and exacerbates various lifestyle-related diseases. We previously found that 24-h hindlimb cast immobilization (HCI) of the predominantly slow-twitch soleus muscle increased intramyocellular diacylglycerol (IMDG) and insulin resistance by activation of lipin1, and HCI after a high-fat diet (HFD) further aggravated insulin resistance. Here, we investigated the effects of HCI on the fast-twitch-predominant plantaris muscle. HCI reduced the insulin sensitivity of plantaris muscle by approximately 30%, and HCI following HFD dramatically reduced insulin sensitivity by approximately 70% without significant changes in the amount of IMDG. Insulin-stimulated phosphorylation levels of insulin receptor (IR), IR substrate-1, and Akt were reduced in parallel with the decrease in insulin sensitivity. Furthermore, tyrosine phosphatase 1B (PTP1B), a protein known to inhibit insulin action by dephosphorylating IR, was activated, and PTP1B inhibition canceled HCI-induced insulin resistance. In conclusion, HCI causes insulin resistance in the fast-twitch-predominant plantaris muscle as well as in the slow-twitch-predominant soleus muscle, and HFD potentiates these effects in both muscle types. However, the mechanism differed between soleus and plantaris muscles, since insulin resistance was mediated by the PTP1B inhibition at IR in plantaris muscle.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Shin-ichi Ikeda
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Naoko Kaga
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Division of Proteomics and Biomolecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Tokyo, Japan
- Sportology Center, Tokyo, Japan
| |
Collapse
|
2
|
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 2020; 328:113276. [PMID: 32145250 DOI: 10.1016/j.expneurol.2020.113276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Seattle Children's Hospital Research Institute, Integrative Center for Brain Research, Seattle, Washington, USA
| | - Philippa Mary Warren
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH, USA.
| |
Collapse
|
3
|
Liang J, Shi J, Wang N, Zhao H, Sun J. Tuning the Protein Phosphorylation by Receptor Type Protein Tyrosine Phosphatase Epsilon (PTPRE) in Normal and Cancer Cells. J Cancer 2019; 10:105-111. [PMID: 30662530 PMCID: PMC6329871 DOI: 10.7150/jca.27633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine phosphorylation is an important post-translation modification of proteins that is controlled by tyrosine kinases and phosphatases. Disruption of the balance between the activity of tyrosine kinases and phosphatases may result in diseases. Receptor type protein tyrosine phosphatase epsilon (PTPRE) is closely related with receptor type protein tyrosine phosphatase alpha (PTPRA). PTPRE has been studied in osteoclast cells, nerve cells, hematopoietic cells, cancer cells and others, and it has different functions among various tissues. In this review, we summarized the current knowledge about the regulation of PTPRE on cellular signal transduction and its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Jinping Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China.,Ningxia Key laboratory of Clinical and Pathogenic Microbiology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun Shi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China
| | - Na Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China
| | - Hui Zhao
- School of Biomedical Science, Faculty of Medicine, the Chinese University of Hong Kong
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P.R.China.,Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Lountos GT, Raran-Kurussi S, Zhao BM, Dyas BK, Burke TR, Ulrich RG, Waugh DS. High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design. Acta Crystallogr D Struct Biol 2018; 74:1015-1026. [PMID: 30289412 PMCID: PMC6173050 DOI: 10.1107/s2059798318011919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022] Open
Abstract
Here, new crystal structures are presented of the isolated membrane-proximal D1 and distal D2 domains of protein tyrosine phosphatase epsilon (PTPℇ), a protein tyrosine phosphatase that has been shown to play a positive role in the survival of human breast cancer cells. A triple mutant of the PTPℇ D2 domain (A455N/V457Y/E597D) was also constructed to reconstitute the residues of the PTPℇ D1 catalytic domain that are important for phosphatase activity, resulting in only a slight increase in the phosphatase activity compared with the native D2 protein. The structures reported here are of sufficient resolution for structure-based drug design, and a microarray-based assay for high-throughput screening to identify small-molecule inhibitors of the PTPℇ D1 domain is also described.
Collapse
Affiliation(s)
- George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sreejith Raran-Kurussi
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bryan M. Zhao
- The Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Beverly K. Dyas
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Rosca AM, Mitroi DN, Cismasiu V, Badea R, Necula-Petrareanu G, Preda MB, Niculite C, Tutuianu R, Szedlacsek S, Burlacu A. Collagen regulates the ability of endothelial progenitor cells to protect hypoxic myocardium through a mechanism involving miR-377/VE-PTP axis. J Cell Mol Med 2018; 22:4700-4708. [PMID: 30044046 PMCID: PMC6156385 DOI: 10.1111/jcmm.13712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The possibility to employ stem/progenitor cells in the cardiovascular remodelling after myocardial infarction is one of the main queries of regenerative medicine. To investigate whether endothelial progenitor cells (EPCs) participate in the restoration of hypoxia-affected myocardium, we used a co-culture model that allowed the intimate interaction between EPCs and myocardial slices, mimicking stem cell transplantation into the ischaemic heart. On this model, we showed that EPCs engrafted to some extent and only transiently survived into the host tissue, yet produced visible protective effects, in terms of angiogenesis and protection against apoptosis and identified miR-377-VE-PTP axis as being involved in the protective effects of EPCs in hypoxic myocardium. We also showed that collagen, the main component of the myocardial scar, was important for these protective effects by preserving VE-PTP levels, which were otherwise diminished by miR-377. By this, a good face of the scar is revealed, which was so far perceived as having only detrimental impact on the exogenously delivered stem/progenitor cells by affecting not only the engraftment, but also the general protective effects of stem cells.
Collapse
Affiliation(s)
- Ana-Maria Rosca
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Daniel Nicolae Mitroi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | | | - Rodica Badea
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | | | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Stefan Szedlacsek
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
6
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
7
|
Finkelshtein E, Lotinun S, Levy-Apter E, Arman E, den Hertog J, Baron R, Elson A. Protein tyrosine phosphatases ε and α perform nonredundant roles in osteoclasts. Mol Biol Cell 2014; 25:1808-18. [PMID: 24694598 PMCID: PMC4038506 DOI: 10.1091/mbc.e14-03-0788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The closely related tyrosine phosphatases PTPa and PTPe fulfill distinct roles in osteoclasts. The various effects of each PTP on podosome organization in osteoclasts are caused by their distinct N-termini. The function of PTPe in these cells requires the presence of its 12 N-terminal residues, in particular serine 2. Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.
Collapse
Affiliation(s)
- Eynat Finkelshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Einat Levy-Apter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, 3584 CX Utrecht, NetherlandsInstitute of Biology Leiden, Leiden University, 2333 BE Leiden, Netherlands
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
9
|
Knobler H, Elson A. Metabolic regulation by protein tyrosine phosphatases. J Biomed Res 2014; 28:157-68. [PMID: 25013399 PMCID: PMC4085553 DOI: 10.7555/jbr.28.20140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023] Open
Abstract
Obesity and the metabolic syndrome and their associated morbidities are major public health issues, whose prevalence will continue to increase in the foreseeable future. Aberrant signaling by the receptors for leptin and insulin plays a pivotal role in development of the metabolic syndrome. More complete molecular-level understanding of how both of these key signaling pathways are regulated is essential for full characterization of obesity, the metabolic syndrome, and type II diabetes, and for developing novel treatments for these diseases. Phosphorylation of proteins on tyrosine residues plays a key role in mediating the effects of leptin and insulin on their target cells. Here, we discuss the molecular methods by which protein tyrosine phosphatases, which are key physiological regulators of protein phosphorylation in vivo, affect signaling by the leptin and insulin receptors in their major target tissues.
Collapse
Affiliation(s)
- Hilla Knobler
- Diabetes and Metabolic Disease Unit, Kaplan Medical Center, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 2013; 6:192. [PMID: 23308070 PMCID: PMC3538333 DOI: 10.3389/fnins.2012.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN), reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Mohebiany AN, Nikolaienko RM, Bouyain S, Harroch S. Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J 2012; 280:388-400. [PMID: 22682003 DOI: 10.1111/j.1742-4658.2012.08653.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reversible protein phosphorylation plays a pivotal role in intercellular communication. Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) are involved in the regulation of key cellular processes by controlling the phosphorylation levels of diverse effectors. Among PTPs, receptor-like protein tyrosine phosphatases (RPTPs) are involved in important developmental processes, particularly in the formation of the nervous system. Until recently, few ligands had been identified for RPTPs, making it difficult to grasp the effects these receptors have on cellular processes, as well as the mechanisms through which their functions are mediated. However, several potential RPTP ligands have now been identified to provide us with unparalleled insights into RPTP function. In this review, we focus on the nature and biological outcomes of these extracellular interactions between RPTPs and their associated ligands.
Collapse
Affiliation(s)
- Alma N Mohebiany
- Department of Neuroscience, Institut Pasteur de Paris, Paris, France
| | | | | | | |
Collapse
|
12
|
Rousso-Noori L, Knobler H, Levy-Apter E, Kuperman Y, Neufeld-Cohen A, Keshet Y, Akepati VR, Klinghoffer RA, Chen A, Elson A. Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab 2011; 13:562-72. [PMID: 21531338 DOI: 10.1016/j.cmet.2011.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/28/2010] [Accepted: 02/18/2011] [Indexed: 01/17/2023]
Abstract
Molecular-level understanding of body weight control is essential for combating obesity. We show that female mice lacking tyrosine phosphatase epsilon (RPTPe) are protected from weight gain induced by high-fat food, ovariectomy, or old age and exhibit increased whole-body energy expenditure and decreased adiposity. RPTPe-deficient mice, in particular males, exhibit improved glucose homeostasis. Female nonobese RPTPe-deficient mice are leptin hypersensitive and exhibit reduced circulating leptin concentrations, suggesting that RPTPe inhibits hypothalamic leptin signaling in vivo. Leptin hypersensitivity persists in aged, ovariectomized, and high-fat-fed RPTPe-deficient mice, indicating that RPTPe helps establish obesity-associated leptin resistance. RPTPe associates with and dephosphorylates JAK2, thereby downregulating leptin receptor signaling. Leptin stimulation induces phosphorylation of hypothalamic RPTPe at its C-terminal Y695, which drives RPTPe to downregulate JAK2. RPTPe is therefore an inhibitor of hypothalamic leptin signaling in vivo, and provides controlled negative-feedback regulation of this pathway following its activation.
Collapse
Affiliation(s)
- Liat Rousso-Noori
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Serine dephosphorylation of receptor protein tyrosine phosphatase alpha in mitosis induces Src binding and activation. Mol Cell Biol 2010; 30:2850-61. [PMID: 20385765 DOI: 10.1128/mcb.01202-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor protein tyrosine phosphatase alpha (RPTPalpha) is the mitotic activator of the protein tyrosine kinase Src. RPTPalpha serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPalpha Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPalpha pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPalpha, and intrinsic catalytic activity of RPTPalpha was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPalpha was induced in mitosis. GRB2 binding to RPTPalpha, which was proposed to compete with Src binding to RPTPalpha, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPalpha-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPalpha, illustrating that Src binding to RPTPalpha is not mediated by a pTyr-SH2 interaction. Mutation of RPTPalpha Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPalpha pSer204 facilitates Src binding, leading to RPTPalpha-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.
Collapse
|
14
|
Zambuzzi WF, Milani R, Teti A. Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie 2010; 92:327-32. [PMID: 20083150 DOI: 10.1016/j.biochi.2010.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
Abstract
The widespread nature of protein phosphorylation/dephosphorylation underscores its key role in cell signaling metabolism, growth and differentiation. Tyrosine phosphorylation of cytoplasmic proteins is a critical event in the regulation of intracellular signaling pathways activated by external stimuli. An adequate balance in protein phosphorylation is a major factor in the regulation of osteoclast and osteoblast activities involved in bone metabolism. However, although phosphorylation is widely recognized as an important regulatory pathway in skeletal development and maintenance, the mechanisms involved are not fully understood. Among the putative protein-tyrosine kinases (ptk) and protein-tyrosine phosphatases (ptp) involved in this phenomenon there is increasing evidence that Src and low molecular weight-ptps play a central role in a range of osteoblast activities, from adhesion to differentiation. A role for Src in bone metabolism was first demonstrated in Src-deficient mice and has since been confirmed using low molecular weight Src inhibitors in animal models of osteoporosis. Several studies have shown that Src is important for cellular proliferation, adhesion and motility. In contrast, few studies have assessed the importance of the ptk/ptp balance in driving osteoblast metabolism. In this review, we summarize our current knowledge of the functional importance of the ptk/ptp balance in osteoblast metabolism, and highlight directions for future research that should improve our understanding of these critical signaling molecules.
Collapse
Affiliation(s)
- Willian F Zambuzzi
- Department of Biochemistry, University of Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
15
|
Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab 2007; 21:621-40. [PMID: 18054739 DOI: 10.1016/j.beem.2007.08.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global epidemic of obesity and type-2 diabetes mellitus (T2DM) has highlighted the need for new therapeutic approaches. The association of insulin resistance with these disorders and the knowledge that insulin receptor signaling is mediated by tyrosine (Tyr) phosphorylation have generated great interest in the regulation of the balance between Tyr phosphorylation and dephosphorylation. Several protein Tyr phosphatases (PTPs) have been implicated in the regulation of insulin action, with the most convincing data for PTP1B. Murine models targeting PTP1B, PTP1B(-/-)mice, demonstrate enhanced insulin sensitivity without the weight gain seen with other insulin sensitizers such as peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, probably due to a second action of PTP1B as a negative regulator of leptin signaling. Despite intensive efforts and recent progress, a safe, selective and efficacious PTP1B inhibitor has yet to be identified.
Collapse
Affiliation(s)
- Shlomit Koren
- Department of Medicine and The Banting and Best Diabetes Centre, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Sines T, Granot-Attas S, Weisman-Welcher S, Elson A. Association of tyrosine phosphatase epsilon with microtubules inhibits phosphatase activity and is regulated by the epidermal growth factor receptor. Mol Cell Biol 2007; 27:7102-12. [PMID: 17709387 PMCID: PMC2168897 DOI: 10.1128/mcb.02096-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key mediators that link physiological cues with reversible changes in protein structure and function; nevertheless, significant details concerning their regulation in vivo remain unknown. We demonstrate that PTPepsilon associates with microtubules in vivo and is inhibited by them in a noncompetitive manner. Microtubule-associated proteins, which interact strongly with microtubules in vivo, significantly increase binding of PTPepsilon to tubulin in vitro and further reduce phosphatase activity. Conversely, disruption of microtubule structures in cells reduces their association with PTPepsilon, alters the subcellular localization of the phosphatase, and increases its specific activity. Activation of the epidermal growth factor receptor (EGFR) increases the PTPepsilon-microtubule association in a manner dependent upon EGFR-induced phosphorylation of PTPepsilon at Y638 and upon microtubule integrity. These events are transient and occur with rapid kinetics similar to EGFR autophosphorylation, suggesting that activation of the EGFR transiently down-regulates PTPepsilon activity near the receptor by promoting the PTPepsilon-microtubule association. Tubulin also inhibits the tyrosine phosphatase PTP1B but not receptor-type PTPmu or the unrelated alkaline phosphatase. The data suggest that reversible association with microtubules is a novel, physiologically regulated mechanism for regulation of tyrosine phosphatase activity in cells.
Collapse
Affiliation(s)
- Tal Sines
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
17
|
Tiran Z, Peretz A, Sines T, Shinder V, Sap J, Attali B, Elson A. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells. Mol Biol Cell 2006; 17:4330-42. [PMID: 16870705 PMCID: PMC1635364 DOI: 10.1091/mbc.e06-02-0151] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPepsilon and PTPalpha differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo.
Collapse
Affiliation(s)
| | - Asher Peretz
- Department of Physiology and Pharmacology, Tel Aviv University Medical School, Tel Aviv 69978, Israel; and
| | - Tal Sines
- Departments of *Molecular Genetics and
| | - Vera Shinder
- Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jan Sap
- Department of Pharmacology, New York University Medical School, New York, NY 10016
| | - Bernard Attali
- Department of Physiology and Pharmacology, Tel Aviv University Medical School, Tel Aviv 69978, Israel; and
| | - Ari Elson
- Departments of *Molecular Genetics and
| |
Collapse
|
18
|
Lacasa D, Boute N, Issad T. Interaction of the insulin receptor with the receptor-like protein tyrosine phosphatases PTPalpha and PTPepsilon in living cells. Mol Pharmacol 2005; 67:1206-13. [PMID: 15630078 DOI: 10.1124/mol.104.009514] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interactions between the insulin receptor and the two highly homologous receptor-like protein tyrosine phosphatases (PTPase) PTPalpha and PTPepsilon were studied in living cells by using bioluminescence resonance energy transfer. In human embryonic kidney 293 cells expressing the insulin receptor fused to luciferase and substrate-trapping mutants of PTPalpha or PTPepsilon fused to the fluorescent protein Topaz, insulin induces an increase in resonance energy transfer that could be followed in real time in living cells. Insulin effect could be detected at very early time points and was maximal less than 2 min after insulin addition. Bioluminescence resonance energy-transfer saturation experiments indicate that insulin does not stimulate the recruitment of protein tyrosine phosphatase molecules to the insulin receptor but rather induces conformational changes within preassociated insulin receptor/protein tyrosine phosphatase complexes. Physical preassociation of the insulin receptor with these protein tyrosine phosphatases at the plasma membrane, in the absence of insulin, was also demonstrated by chemical cross-linking with a non-cell-permeable agent. These data provide the first evidence that PTPalpha and PTPepsilon associate with the insulin receptor in the basal state and suggest that these protein tyrosine phosphatases may constitute important negative regulators of the insulin receptor tyrosine kinase activity by acting rapidly at the plasma membrane level.
Collapse
Affiliation(s)
- Danièle Lacasa
- Department of Cell Biology, Institut Cochin, CNRS/UMR 8104, INSERM U567, Université Paris V, 22 Rue Méchain, 75014 Paris, France
| | | | | |
Collapse
|
19
|
Nakagawa Y, Aoki N, Aoyama K, Shimizu H, Shimano H, Yamada N, Miyazaki H. Receptor-Type Protein Tyrosine Phosphatase ε (PTPεM) is a Negative Regulator of Insulin Signaling in Primary Hepatocytes and Liver. Zoolog Sci 2005; 22:169-75. [PMID: 15738637 DOI: 10.2108/zsj.22.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Impaired insulin receptor (IR) signaling leads to insulin resistance and type 2 diabetes mellitus. Several inhibitors of the IR tyrosine kinase activity have recently been described and associated with human insulin resistance. Among these negative regulators, protein tyrosine phosphatases (PTPs) are likely to play a pivotal role in IR signaling. Transgenic studies revealed that PTP1B and TCPTP are primary candidates but IR of these animals can be finally dephosphorylated, suggesting that other PTPs are also involved in the dephosphorylation of IR. In this study, we showed that receptor-type PTPepsilon (PTP epsilonM) dephosphorylated IR in rat primary hepatocytes and tyrosines 972, 1158, 1162 and 1163 were primary targets of PTP epsilonM. Wild type as well as substrate-trapping DA forms of PTPepsilonM suppressed phosphorylation of IR downstream enzymes such as Akt, extracellular regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3). It was also demonstrated that PTPepsilonM suppressed insulin-induced glycogen synthesis and inhibited insulin-induced suppression of phosphoenol pyruvate carboxykinase (PEPCK) expression in primary hepatocytes. Furthermore, adenovirally introduced PTPepsilonM also exhibited inhibitory activity against suppression of PEPCK expression in mouse liver. These results suggest that PTPepsilonM is a negative regulator of IR signaling and involved in insulin-induced glucose metabolism mainly through direct dephosphorylation and inactivation of IR in hepatocytes and liver.
Collapse
|
20
|
Nakagawa Y, Yamada N, Shimizu H, Shiota M, Tamura M, Kim-Mitsuyama S, Miyazaki H. Tyrosine phosphatase epsilonM stimulates migration and survival of porcine aortic endothelial cells by activating c-Src. Biochem Biophys Res Commun 2005; 325:314-9. [PMID: 15522235 DOI: 10.1016/j.bbrc.2004.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Indexed: 02/02/2023]
Abstract
The cell growth, survival, and migration of vascular endothelial cells (ECs) are positively regulated by several protein tyrosine kinase receptors. Therefore, protein tyrosine phosphatases (PTPs) must also be important for these processes. The present study found that transmembranal PTPepsilonM, but not cytoplasmic PTPepsilonC, is expressed in porcine ECs and in rat smooth muscle cells, both of which were prepared from the aorta. The overexpression of wild-type PTPepsilonM promoted cell survival and migration in porcine aortic ECs even in medium without and with 1% serum, respectively. A catalytically inactive, substrate-trapping mutant of PTPepsilonM, respectively, did not affect and conversely suppressed cell survival and migration. Interestingly, the forced expression of wild-type PTPepsilonC reduced cell viability in contrast to PTPepsilonM in ECs lacking endogenous PTPepsilonC, indicating the biological significance of selective expression of PTPepsilon isoforms in the vasculature. PTPepsilonM activated c-Src kinase probably by directly dephosphorylating phospho-Tyr527, a negative regulatory site of c-Src. The increases in cell survival and migration induced by overexpressed PTPepsilonM were suppressed by the c-Src inhibitor SU6656. Considering the behaviors of vascular ECs in the pathogenesis of atherosclerosis, these data suggest that PTPepsilonM negatively regulates the development of this disease by activating c-Src.
Collapse
Affiliation(s)
- Yoshimi Nakagawa
- Gene Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Chiusaroli R, Knobler H, Luxenburg C, Sanjay A, Granot-Attas S, Tiran Z, Miyazaki T, Harmelin A, Baron R, Elson A. Tyrosine phosphatase epsilon is a positive regulator of osteoclast function in vitro and in vivo. Mol Biol Cell 2003; 15:234-44. [PMID: 14528021 PMCID: PMC307543 DOI: 10.1091/mbc.e03-04-0207] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPepsilon-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPepsilon adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPepsilon-deficient osteoclasts, indicating that loss of PTPepsilon does not cause widespread disruption of these signaling pathways. These results establish PTPepsilon as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.
Collapse
Affiliation(s)
- Riccardo Chiusaroli
- Departments of Cell Biology and Orthopedics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toledano-Katchalski H, Tiran Z, Sines T, Shani G, Granot-Attas S, den Hertog J, Elson A. Dimerization in vivo and inhibition of the nonreceptor form of protein tyrosine phosphatase epsilon. Mol Cell Biol 2003; 23:5460-71. [PMID: 12861030 PMCID: PMC165729 DOI: 10.1128/mcb.23.15.5460-5471.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.
Collapse
|
23
|
Calvert-Evers JL, Hammond KD. Temporal variations in protein tyrosine kinase activity in leukaemic cells: response to all-trans retinoic acid. Mol Cell Biochem 2003; 245:23-30. [PMID: 12708741 DOI: 10.1023/a:1022806129035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein tyrosine kinases (PTKs) play a critical role in the modulation of a wide variety of cellular events such as cell division, differentiation and metabolism. Regulation of PTK activity must be tightly controlled as over-stimulation is known to impair normal cell growth, resulting in oncogenic transformation. Since evidence suggests that dynamic oscillatory behaviour occurs in metabolic control processes, we investigated the patterns of oscillatory behaviour in the total protein content and enzyme activity of PTK exhibited by proliferating and differentiating human acute promyelocytic cells. Distinct rhythmic patterns of oscillatory behaviour were observed in both the amount of extractable protein and PTK enzyme activity. Rhythmic characteristics such as period and amplitude were significantly modulated following treatment with all-trans retinoic acid, an inducing agent. These results support the view that dynamic oscillatory control processes may play an important role in regulating cellular behaviour.
Collapse
Affiliation(s)
- J L Calvert-Evers
- Department of Molecular Medicine and Haematology, Medical School, University of the Witwatersrand, Parktown, Johannesburg, South Africa.
| | | |
Collapse
|
24
|
Wabakken T, Hauge H, Funderud S, Aasheim HC. Characterization, expression and functional aspects of a novel protein tyrosine phosphatase epsilon isoform. Scand J Immunol 2002; 56:276-85. [PMID: 12193229 DOI: 10.1046/j.1365-3083.2002.01127.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This report describes the identification and characterization of a novel cytoplasmic isoform of human protein tyrosine phosphatase epsilon (PTPepsilon). The novel isoform, denoted cyt-PTPepsilonPD1, displays only the N-terminal catalytic, active phosphatase domain 1 (PD1) which is common in all known PTPepsilon isoforms. In addition, it contains a unique 132-residue long C-terminal end with no known motifs or homology to other characterized proteins. RNAse protection assay on isolated leucocyte subpopulations and selected cell lines demonstrated highest expression of cyt-PTPepsilonPD1 in monocytes. The mRNA-encoding cyt-PTPepsilonPD1 is detected as distinct transcript(s) by Northern blot analysis and is a result of alternative splicing. cyt-PTPepsilonPD1 shows similar cellular localization in transfected cells, both in the cytoplasm and nucleus, as has been previously described for cytoplasmic PTPepsilon isoform. Our previous data suggest that the expression of cytoplasmic PTPepsilon inhibits the mitogen-activated protein kinase cascade through the extracellular signal-regulated kinase 1 and 2 pathway. A similar functional role is also presented here for cyt-PTPepsilonPD1, supporting our previous data suggesting that the catalytic first PD of PTPepsilon is responsible for this inhibition.
Collapse
Affiliation(s)
- T Wabakken
- Department of Immunology, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
25
|
Wabakken T, Hauge H, Finne EF, Wiedlocha A, Aasheim H. Expression of human protein tyrosine phosphatase epsilon in leucocytes: a potential ERK pathway-regulating phosphatase. Scand J Immunol 2002; 56:195-203. [PMID: 12121439 DOI: 10.1046/j.1365-3083.2002.01126.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The expression of protein tyrosine phosphatase epsilon (PTPepsilon) was studied in human tissues and blood cells. High mRNA expression was observed in peripheral blood leucocytes, particularly in monocytes and granulocytes which revealed at least four distinct transcripts. In lymphocytes, PTPepsilon expression was induced after 12-O-tetradecanoylphorbol-13-acetate (TPA) or antigen-receptor stimulation, indicating that PTPepsilon plays a role in the events taking place after antigen engagement. Previously, PTPepsilon has been shown to be involved in regulating voltage-gated potassium channel activity, insulin-receptor signalling and Janus kinase-signal transducers and activators of transcription (STAT) signalling. Transfection of cells with different PTPepsilon constructs and activator protein-1 reporter gene indicates that the catalytic activity of PTPepsilon is involved in the regulation of the mitogen-activated protein kinase cascade. In particular, the extracellular signal-regulated kinases (ERK1/2) were shown to be inhibited in both phosphorylation status and enzymatic activity after overexpression of PTPepsilon. Thus, PTPepsilon emerges as a phosphatase with a potential to regulate the ERK1/2 pathway either directly or indirectly through its catalytic activity.
Collapse
Affiliation(s)
- T Wabakken
- Department of Immunology, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
26
|
Cheng A, Dubé N, Gu F, Tremblay ML. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1050-9. [PMID: 11856336 DOI: 10.1046/j.0014-2956.2002.02756.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin is the principal regulatory hormone involved in the tight regulation of fuel metabolism. In response to blood glucose levels, it is secreted by the beta cells of the pancreas and exerts its effects by binding to cell surface receptors that are present on virtually all cell types and tissues. In humans, perturbations in insulin function and/or secretion lead to diabetes mellitus, a severe disorder primarily characterized by an inability to maintain blood glucose homeostasis. Furthermore, it is estimated that 90-95% of diabetic patients exhibit resistance to insulin action. Thus an understanding of insulin signal transduction and insulin resistance at the molecular level is crucial to the understanding of the pathogenesis of this disease. The insulin receptor (IR) is a transmembrane tyrosine kinase that becomes activated upon ligand binding. Consequently, the receptor and its downstream substrates become tyrosine phosphorylated. This activates a series of intracellular signaling cascades which coordinately initiate the appropriate biological response. One important mechanism by which insulin signaling is regulated involves the protein tyrosine phosphatases (PTPs), which may either act on the IR itself and/or its substrates. Two well characterized examples include leuckocyte antigen related (LAR) and protein tyrosine phosphatase-1B (PTP-1B). The present review will discuss the current knowledge of these two and other potential PTPs involved in the insulin signaling pathway.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Møller NP. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 2001; 21:7117-36. [PMID: 11585896 PMCID: PMC99888 DOI: 10.1128/mcb.21.21.7117-7136.2001] [Citation(s) in RCA: 546] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J N Andersen
- Signal Transduction, Novo Nordisk, Måløv, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|