1
|
The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat Commun 2021; 12:4308. [PMID: 34262028 PMCID: PMC8280233 DOI: 10.1038/s41467-021-24631-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer. Hypoxia plays a critical role in tumor progression including invasion and metastasis. Here, the authors screened several hypoxia inducible genes and identified the oncogenic role of MAFF in breast cancer metastasis and that it activates IL11/STAT3 pathway.
Collapse
|
2
|
Responsive Expression of MafF to β-Amyloid-Induced Oxidative Stress. DISEASE MARKERS 2020; 2020:8861358. [PMID: 33488846 PMCID: PMC7787795 DOI: 10.1155/2020/8861358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
The small musculoaponeurotic fibrosarcoma (sMaf) proteins MafF, MafG, and MafK are basic region leucine zipper- (bZIP-) type transcription factors and display tissue- or stimulus-specific expression patterns. As the oxidative stress reactive proteins, sMafs are implicated in various neurological disorders. In the present study, the expressions of sMafs were investigated across five databases gathering transcriptomic data from 74 Alzheimer's disease (AD) patients and 66 controls in the Gene Expression Omnibus (GEO) database. The expression of MafF was increased in the hippocampus of AD patients, which was negatively correlated with the expression of the glutamate cysteine ligase catalytic subunit (GCLC). Furthermore, MafF was significantly increased in patients with Braak stage V-VI, compared to those with Braak stage III-IV. β-Amyloid (Aβ), a strong inducer of oxidative stress, plays a crucial role in the pathogenesis of AD. The responsive expressions of sMafs to Aβ-induced oxidative stress were studied in the APP/PS1 mouse model of AD, Aβ intrahippocampal injection rats, and several human cell lines from different tissue origins. This study revealed that only the induction of MafF was accompanied with reduction of GCLC and glutathione (GSH). MafF knockdown suppressed the increase of GSH induced by Aβ. Among sMafs, MafF is the most responsive to Aβ-induced oxidative stress and might potentiate the inhibition of antioxidation. These results provide a better understanding of sMaf modulation in AD and highlight MafF as a potential therapeutic target in AD.
Collapse
|
3
|
Wu M, Deng X, Zhong Y, Hu L, Zhang X, Liang Y, Li X, Ye X. MafF Is Regulated via the circ-ITCH/miR-224-5p Axis and Acts as a Tumor Suppressor in Hepatocellular Carcinoma. Oncol Res 2020; 28:299-309. [PMID: 31969212 PMCID: PMC7851502 DOI: 10.3727/096504020x15796890809840] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MafF is a member of the basic leucine zipper (bZIP) transcription factor Maf family and is commonly downregulated in multiple cancers. But the expression and function of MafF in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the relationship between endogenous MafF expression and HCC progression and explored the regulatory mechanism of MafF expression in HCC. We found that MafF decreased in HCC tissues and cells. Lentivirus-mediated MafF overexpression inhibited HCC cell proliferation and induced cell apoptosis. Bioinformatics analysis and luciferase assay identified MafF as a direct target of miR-224-5p. RNA pull-down assay demonstrated that circular RNA circ-ITCH could sponge miR-224-5p specifically in HCC. The rescue experiments further elucidated that the expression and antitumor effects of MafF could be regulated via the circ-ITCH/miR-224-5p axis. This study verified that MafF acted as a tumor suppressor in HCC and revealed the upstream regulation mechanism of MafF, which provided a new perspective for potential therapeutic targets of HCC.
Collapse
Affiliation(s)
- Minhua Wu
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xubin Deng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Zhong
- Analysis Center, Guangdong Medical UniversityZhanjiangP.R. China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiujuan Zhang
- Department of Physiology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Yanqin Liang
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiaofang Li
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical UniversityZhanjiangP.R. China
| | - Xiaoxia Ye
- Department of Histology and Embryology, Guangdong Medical UniversityZhanjiangP.R. China
| |
Collapse
|
4
|
Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016; 586:197-205. [PMID: 27058431 DOI: 10.1016/j.gene.2016.03.058] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
The small Maf proteins (sMafs) are basic region leucine zipper (bZIP)-type transcription factors. The basic region of the Maf family is unique among the bZIP factors, and it contributes to the distinct DNA-binding mode of this class of proteins. MafF, MafG and MafK are the three vertebrate sMafs, and no functional differences have been observed among them in terms of their bZIP structures. sMafs form homodimers by themselves, and they form heterodimers with cap 'n' collar (CNC) proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3) and also with Bach proteins (Bach1 and Bach2). Because CNC and Bach proteins cannot bind to DNA as monomers, sMafs are indispensable partners that are required by CNC and Bach proteins to exert their functions. sMafs lack the transcriptional activation domain; hence, their homodimers act as transcriptional repressors. In contrast, sMafs participate in transcriptional activation or repression depending on their heterodimeric partner molecules and context. Mouse genetic analyses have revealed that various biological pathways are under the regulation of CNC-sMaf heterodimers. In this review, we summarize the history and current progress of sMaf studies in relation to their partners.
Collapse
|
5
|
Kim J, Kwon EY, Park S, Kim JR, Choi SW, Choi MS, Kim SJ. Integrative systems analysis of diet-induced obesity identified a critical transition in the transcriptomes of the murine liver and epididymal white adipose tissue. Int J Obes (Lond) 2015; 40:338-45. [PMID: 26268884 DOI: 10.1038/ijo.2015.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/24/2015] [Accepted: 07/26/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND It is well known that high-fat diet (HFD) can cause immune system-related pathological alterations after a significant body weight gain. The mechanisms of the delayed pathological alterations during the development of diet-induced obesity (DIO) are not fully understood. METHODS To elucidate the mechanisms underlying DIO development, we analyzed time-course microarray data obtained from a previous study. First, differentially expressed genes (DEGs) were identified at each time point by comparing the hepatic transcriptome of mice fed HFD with that of mice fed normal diet. Next, we clustered the union of DEGs and identified annotations related to each cluster. Finally, we constructed an 'integrated obesity-associated gene regulatory network (GRN) in murine liver'. We analyzed the epididymal white adipose tissue (eWAT) transcriptome usig the same procedure. RESULTS Based on time-course microarray data, we found that the genes associated with immune responses were upregulated with an oscillating expression pattern between weeks 2 and 8, relatively downregulated between weeks 12 and 16, and eventually upregulated after week 20 in the liver of the mice fed HFD. The genes associated with immune responses were also upregulated at late stage, in the eWAT of the mice fed HFD. These results suggested that a critical transition occurred in the immune system-related transcriptomes of the liver and eWAT around week 16 of the DIO development, and this may be associated with the delayed pathological alterations. The GRN analysis suggested that Maff may be a key transcription factor for the immune system-related critical transition thatoccurred at week 16. We found that transcription factors associated with immune responses were centrally located in the integrated obesity-associated GRN in the liver. CONCLUSIONS In this study, systems analysis identified regulatory network modules underlying the delayed immune system-related pathological changes during the development of DIO and could suggest possible therapeutic targets.
Collapse
Affiliation(s)
- J Kim
- CHA Cancer Institute, CHA University, Seongnam City, Kyunggi-do, Republic of Korea
| | - E-Y Kwon
- Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - S Park
- CHA Cancer Institute, CHA University, Seongnam City, Kyunggi-do, Republic of Korea
| | - J-R Kim
- Department of Mathematics, University of Seoul, Seoul, Republic of Korea
| | - S-W Choi
- CHA Cancer Institute, CHA University, Seongnam City, Kyunggi-do, Republic of Korea.,Chaum Life Center, CHA University, School of Medicine, Seoul, Republic of Korea
| | - M-S Choi
- Center for Food and Nutritional Genomics Research, Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - S-J Kim
- CHA Cancer Institute, CHA University, Seongnam City, Kyunggi-do, Republic of Korea.,Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam City, Kyunggi-do, Republic of Korea
| |
Collapse
|
6
|
Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015; 79:292-9. [PMID: 25458917 PMCID: PMC4339613 DOI: 10.1016/j.freeradbiomed.2014.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Abstract
The cap'n'collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression.
Collapse
Affiliation(s)
- Eui Jung Moon
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato Giaccia
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Satsu H, Chidachi E, Hiura Y, Ogiwara H, Gondo Y, Shimizu M. Induction of NAD(P)H:quinone oxidoreductase 1 expression by cysteine via Nrf2 activation in human intestinal epithelial LS180 cells. Amino Acids 2012; 43:1547-555. [DOI: 10.1007/s00726-012-1230-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/20/2012] [Indexed: 11/30/2022]
|
8
|
Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13:1713-48. [PMID: 20446772 DOI: 10.1089/ars.2010.3221] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to redox stress in cells. Such agents induce the expression of genes that posses an antioxidant response element (ARE) in their regulatory regions. Under normal homeostatic conditions, Nrf2 activity is restricted through a Keap1-dependent ubiquitylation by Cul3-Rbx1, which targets the CNC-bZIP transcription factor for proteasomal degradation. However, as the substrate adaptor function of Keap1 is redox-sensitive, Nrf2 protein evades ubiquitylation by Cul3-Rbx1 when cells are treated with chemopreventive agents. As a consequence, Nrf2 accumulates in the nucleus where it heterodimerizes with small Maf proteins and transactivates genes regulated through an ARE. In this review, we describe synthetic compounds and phytochemicals from edible plants that induce Nrf2-target genes. We also discuss evidence for the existence of different classes of ARE (a 16-bp 5'-TMAnnRTGABnnnGCR-3' versus an 11-bp 5'-RTGABnnnGCR-3', with or without the embedded activator protein 1-binding site 5'-TGASTCA-3'), species differences in the ARE-gene battery, and the identity of critical Cys residues in Keap1 required for de-repression of Nrf2 by chemopreventive agents.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital, University of Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
9
|
Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 2009; 30:1-12. [PMID: 18796312 PMCID: PMC2696075 DOI: 10.1016/j.mam.2008.08.006] [Citation(s) in RCA: 1605] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 02/06/2023]
Abstract
This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Science, University of California at Merced, P.O. Box 2039, Merced, CA 95344, USA.
| | | | | |
Collapse
|
10
|
Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 2008; 30:60-76. [PMID: 18760298 DOI: 10.1016/j.mam.2008.07.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/19/2008] [Accepted: 07/19/2008] [Indexed: 11/21/2022]
Abstract
Glutathione (gamma-glutamyl-cysteinyl-glycine, GSH) is the most abundant intracellular antioxidant thiol and is central to redox defense during oxidative stress. GSH metabolism is tightly regulated and has been implicated in redox signaling and also in protection against environmental oxidant-mediated injury. Changes in the ratio of the reduced and disulfide form (GSH/GSSG) can affect signaling pathways that participate in a broad array of physiological responses from cell proliferation, autophagy and apoptosis to gene expression that involve H(2)O(2) as a second messenger. Oxidative stress due to oxidant/antioxidant imbalance and also due to environmental oxidants is an important component during inflammation and respiratory diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and asthma. It is known to activate multiple stress kinase pathways and redox-sensitive transcription factors such as Nrf2, NF-kappaB and AP-1, which differentially regulate the genes for pro-inflammatory cytokines as well as the protective antioxidant genes. Understanding the regulatory mechanisms for the induction of antioxidants, such as GSH, versus pro-inflammatory mediators at sites of oxidant-directed injuries may allow for the development of novel therapies which will allow pharmacological manipulation of GSH synthesis during inflammation and oxidative injury. This article features the current knowledge about the role of GSH in redox signaling, GSH biosynthesis and particularly the regulation of transcription factor Nrf2 by GSH and downstream signaling during oxidative stress and inflammation in various pulmonary diseases. We also discussed the current therapeutic clinical trials using GSH and other thiol compounds, such as N-acetyl-l-cysteine, fudosteine, carbocysteine, erdosteine in environment-induced airways disease.
Collapse
|
11
|
Blank V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 2007; 376:913-25. [PMID: 18201722 DOI: 10.1016/j.jmb.2007.11.074] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/09/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022]
Abstract
The small Maf basic leucine zipper (bZIP) proteins MafF, MafG and MafK, while modest in size, have emerged as crucial regulators of mammalian gene expression. Intriguingly, small Mafs do not contain an obvious transcriptional activation domain. However, previously perceived as "mere" partner molecules conferring DNA binding specificity to complexes with larger bZIP proteins, such as the CNC family member Nrf2, it has become clear that small Maf proteins are essential and dynamically regulated transcription factors. Current data suggest stringent control of small Maf protein function through transcriptional and post-translational mechanisms. Initial gene targeting experiments revealed considerable functional redundancy among small Maf proteins in vivo. This was not unexpected, due to the high level of homology among the three small Mafs. Nevertheless, further studies showed that these transcription factors have critical roles in various cellular processes, including stress signaling, hematopoiesis, CNS function and oncogenesis. Recent data provide a possible link between small Maf-mediated transcription and the inflammatory response.
Collapse
Affiliation(s)
- Volker Blank
- Lady Davis Institute for Medical Research, 3755, Côte Sainte-Catherine, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. ACTA ACUST UNITED AC 2006; 46:113-40. [PMID: 16887173 DOI: 10.1016/j.advenzreg.2006.01.007] [Citation(s) in RCA: 670] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Makoto Kobayashi
- JST-ERATO Environmental Response Project, Center for Tsukuba Advanced Research Alliance, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | |
Collapse
|
13
|
Massrieh W, Derjuga A, Blank V. Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 2006; 8:53-9. [PMID: 16487037 DOI: 10.1089/ars.2006.8.53] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exposure to inorganic arsenic has been associated with various forms of cancer, nervous system pathogenesis, and vascular diseases, as well as reproductive and developmental toxicity. Here, the effect of inorganic arsenic on placental JAR choriocarcinoma cells was assessed. The nuclear protein levels of the CNC transcription factor Nrf2 were strongly induced in the presence of arsenic. Dosage response experiments showed that 0.5 microM of arsenic is sufficient to augment Nrf2 levels. The expression of the Nrf2 dimerization partners MafG and MafK appeared not to be modulated by arsenic, whereas MafF protein levels were slightly increased. Arsenic also induced the binding of endogenous Nrf2/small Maf DNA-binding complexes to a stress response element (StRE) recognition site. In addition, arsenic caused oxidative stress in the choriocarcinoma cell model as evidenced by an increase in intracellular H2O2 levels. Expression of the enzyme heme oxygenase-1 (HO-1), a known Nrf2 target gene, was upregulated by exposure of JAR cells to arsenic. These results suggest that Nrf2/small Maf heterodimers may play an important role in the response to arsenic-mediated stress in placental cells.
Collapse
Affiliation(s)
- Wael Massrieh
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
14
|
Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 2005; 25:8044-51. [PMID: 16135796 PMCID: PMC1234339 DOI: 10.1128/mcb.25.18.8044-8051.2005] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While small Maf proteins have been suggested to be essential for the Nrf2-mediated activation of antioxidant response element (ARE)-dependent genes, the extent of their requirement remains to be fully documented. To address this issue, we generated mafG::mafF double-mutant mice possessing MafK as the single available small Maf. Induction of the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene was significantly impaired in double-mutant mice treated with butylated hydroxyanisole, while other ARE-dependent genes were less affected. Similarly, in a keap1-null background, where many of the ARE-dependent genes are constitutively activated in an Nrf2-dependent manner, only a subset of ARE-dependent genes, including NQO1, were sensitive to a simultaneous deficiency in MafG and MafF. Examination of single and double small maf mutant cells revealed that MafK also contributes to the induction of ARE-dependent genes. To obtain decisive evidence, we established mafG::mafK::mafF triple-mutant fibroblasts that completely lack small Mafs and turned out to be highly susceptible to oxidative stress. We found that induction in response to diethyl maleate was abolished in a wider range of ARE-dependent genes in the triple-mutant cells. These data explicitly demonstrate that small Mafs play critical roles in the inducible expression of a significant portion of ARE-dependent genes.
Collapse
Affiliation(s)
- Fumiki Katsuoka
- Center for TARA, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Rahman I. Regulation of glutathione in inflammation and chronic lung diseases. Mutat Res 2005; 579:58-80. [PMID: 16054171 DOI: 10.1016/j.mrfmmm.2005.02.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 02/02/2005] [Indexed: 11/23/2022]
Abstract
Oxidant/antioxidant imbalance, a major cause of cell damage, is the hallmark for lung inflammation. Glutathione (GSH), a ubiquitous tripeptide thiol, is a vital intra- and extra-cellular protective antioxidant against oxidative stress, which plays a key role in the control of signaling and pro-inflammatory processes in the lungs. The rate-limiting enzyme in GSH synthesis is glutamylcysteine ligase (GCL). GSH is essential for development as GCL knock-out mouse died from apoptotic cell death. The promoter (5'-flanking) region of human GCL is regulated by activator protein-1 (AP-1) and antioxidant response element (ARE), and are modulated by oxidants, phenolic antioxidants, growth factors, inflammatory and anti-inflammatory agents in various cells. Recent evidences have indicated that Nrf2 protein, which binds to the erythroid transcription factor (NF-E2) binding sites, and its interaction with other oncoproteins such as c-Jun, Jun D, Fra1 and Maf play a key role in the regulation of GCL. Alterations in alveolar and lung GSH metabolism are widely recognized as a central feature of many chronic inflammatory lung diseases. Knowledge of the mechanisms of GSH regulation could lead to the pharmacological manipulation of the production and/or gene transfer of this important antioxidant in lung inflammation and injury. This article describes the role of AP-1 and ARE in the regulation of cellular GSH biosynthesis and assesses the potential protective and therapeutic role of glutathione in oxidant-induced lung injury and inflammation.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 2005; 7:385-94. [PMID: 15706085 DOI: 10.1089/ars.2005.7.385] [Citation(s) in RCA: 877] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several years have passed since NF-E2-related factor 2 (Nrf2) was demonstrated to regulate the induction of genes encoding antioxidant proteins and phase 2 detoxifying enzymes. Following a number of studies, it was realized that Nrf2 is a key factor for cytoprotection in various aspects, such as anticarcinogenicity, neuroprotection, antiinflammatory response, and so forth. These widespread functions of Nrf2 spring from the coordinated actions of various categories of target genes. The activation mechanism of Nrf2 has been studied extensively. Under normal conditions, Nrf2 localizes in the cytoplasm where it interacts with the actin binding protein, Kelch-like ECH associating protein 1 (Keap1), and is rapidly degraded by the ubiquitin-proteasome pathway. Signals from reactive oxygen species or electrophilic insults target the Nrf2-Keap1 complex, dissociating Nrf2 from Keap1. Stabilized Nrf2 then translocates to the nuclei and transactivates its target genes. Interestingly, Keap1 is now assumed to be a substrate-specific adaptor of Cul3-based E3 ubiquitin ligase. Direct participation of Keap1 in the ubiquitination and degradation of Nrf2 is plausible. The Nrf2-Keap1 system is present not only in mammals, but in fish, suggesting that its roles in cellular defense are conserved throughout evolution among vertebrates. This review article recounts recent knowledge of the Nrf2-Keap1 system, focusing especially on the molecular mechanism of Nrf2 regulation.
Collapse
Affiliation(s)
- Makoto Kobayashi
- ERATO-JST, Center for TARA and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | | |
Collapse
|
17
|
Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 2005; 7:42-59. [PMID: 15650395 DOI: 10.1089/ars.2005.7.42] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in the ratio of intracellular reduced and disulfide forms of glutathione (GSH/GSSG) can affect signaling pathways that participate in various physiological responses from cell proliferation to gene expression and apoptosis. It is also now known that many proteins have a highly conserved cysteine (sulfhydryl) sequence in their active/regulatory sites, which are primary targets of oxidative modifications and thus important components of redox signaling. However, the mechanism by which oxidants and GSH/protein-cysteine-thiols actually participate in redox signaling still remains to be elucidated. Initial studies involving the role of cysteine in various proteins have revealed that cysteine-SH may mediate redox signaling via reversible or irreversible oxidative modification to Cys-sulfenate or Cys-sulfinate and Cys-sulfonate species, respectively. Oxidative stress possibly via the modification of cysteine residues activates multiple stress kinase pathways and transcription factors nuclear factor-kappaB and activator protein-1, which differentially regulate the genes for proinflammatory cytokines as well as the protective antioxidant genes. Understanding the redox signaling mechanisms for differential gene regulation may allow for the development of novel pharmacological approaches that preferentially up-regulate key antioxidants genes, which, in turn, reduce or resolve inflammation and injury. This forum article features the current knowledge on the role of GSH in redox signaling, particularly the regulation of transcription factors and downstream signaling in lung inflammation.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
18
|
Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 2003; 43:233-60. [PMID: 12359864 DOI: 10.1146/annurev.pharmtox.43.100901.140229] [Citation(s) in RCA: 961] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The expression of genes encoding antioxidative and Phase II detoxification enzymes is induced in cells exposed to electrophilic compounds and phenolic antioxidants. Induction of these enzymes is regulated at the transcriptional level and is mediated by a specific enhancer, the antioxidant response element or ARE, found in the promoter of the enzyme's gene. The transcription factor Nrf2 has been implicated as the central protein that interacts with the ARE to activate gene transcription constitutively or in response to an oxidative stress signal. This review focuses on the molecular mechanisms whereby the transcriptional activation mediated by the interaction between the ARE and NF-E2-related factor 2 (Nrf2) is regulated. Recent studies suggest that the sequence context of the ARE, the nature of the chemical inducers, and the cell type are important for determining the activity of the enhancer in a particular gene.
Collapse
Affiliation(s)
- Truyen Nguyen
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | |
Collapse
|