1
|
Li S, Zhu Y, Zhang T, Hang Y, Chen Q, Jin Y. Cai's Neiyi Prescription promotes apoptosis and inhibits inflammation in endometrial stromal cells with endometriosis through inhibiting USP10. Biotechnol Appl Biochem 2018; 66:231-239. [PMID: 30468519 DOI: 10.1002/bab.1715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/21/2018] [Indexed: 11/12/2022]
Abstract
To observe the effect of Cai's Neiyi Prescription (CNYP) on the apoptosis and inflammation in endometrial stromal cells with endometriosis (EM) both in vivo and in vitro, EM model rats and endometrial stromal cells were treated with CNYP and the level of USP10, p-ERK1/2, ERK1/2, and apoptosis-related protein as well as the levels of proinflammatory factors were measured by Western blotting and ELISA, respectively. Rats with surgically induced EM showed increased USP10 expression and ERK/2 activation. Intragastric administration of CNYP granule significantly inhibited EM-induced ERK1/2 activation and expression of USP10 and Bcl-2, but increased the expression of Bax and Caspase-7 in EM-induced rats. CNYP granule administration also inhibited EM-induced inflammation in rats. Moreover, the ectopic endometrial stromal cells isolated from EM patients demonstrated decreased ERK1/2 activation and expression of USP10 and Bcl-2 and increased expression of Bax and Caspase-7 after cultured in DMEM containing CNYP-medicated rat serum, which were reversed by USP10 overexpression and were enhanced by USP10 siRNA. USP10 overexpression also inhibited while USP10 siRNA enhanced the CNYP-induced inhibition of inflammation in ectopic endometrial stromal cells. Taken together, our results suggest that CNYP granule promotes apoptosis and inhibits inflammation in endometrial stromal cells with EM through inhibiting USP10.
Collapse
Affiliation(s)
- Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yaping Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tingting Zhang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanyuan Hang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiong Chen
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuli Jin
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Arora R. DRDO Herbal Technologies: Military and Civil Applications. NEW AGE HERBALS 2018. [PMCID: PMC7121845 DOI: 10.1007/978-981-10-8291-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The novel herbal technologies developed by India’s Defence Research and Development Organization are discussed with a view to improving the lives of soldiers and civilians. The life sciences laboratories of DRDO are engaged in R&D with the aim to develop processes, products and technologies and effective strategies to protect and enhance the operational efficiency of the Indian Armed Forces. Over the last five decades, the endeavours have resulted in creating specialized human capital through selection and training; enhancing efficiency through customized nutrition; optimizing human efficiency through traditional systems; optimizing performance through human engineering approach; protecting against health hazards like CBRN and vectors; reducing combat stress by counselling, training and resilience building; reinforcing adaptation through acclimatization processes and saving lives through life support systems. Several technologies with holistic and pragmatic applications for defence and civil sector from a herbal perspective are presented.
Collapse
|
3
|
Adhikari M, Arora R. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity. ENVIRONMENTAL TOXICOLOGY 2016; 31:641-654. [PMID: 25411116 DOI: 10.1002/tox.22076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The main focus of this study is evaluation of radioprotective efficacy of silymarin, a flavonolignan, against γ-radiation-induced damage to hematological, vital organs (liver and intestine), and immune system. Survival studies revealed that silymarin (administered orally for 3 days) provided maximum protection (67%) at 70 mg/kg body weight (b.wt.) against lethal 9 Gy γ-irradiation (dose reduction factor = 1.27). The study revealed significant (p < 0.05) changes in levels of catalase (12.57 ± 2.58 to 30.24 ± 4.89 units), glutathione peroxidase (6.23 ± 2.95 to 13.26 ± 1.36 µg of reduced glutathione consumed/min/mg protein), glutathione reductase (0.25 ± 5.6 to 11.65 ± 2.83 pM NADPH consumed/min/mg protein), and superoxide dismutase (11.74 ± 0.2 to 16.09 ± 3.47 SOD U/mg of protein) activity at 30th day. Silymarin pretreated irradiated group exhibited increased proliferation in erythrocyte count (1.76 ± 0.41 × 10(6) to 9.25 ± 0.24 × 10(6) ), hemoglobin (2.15 ± 0.48g/dL to 14.77 ± 0.25g/dL), hematocrit (4.55 ± 0.24% to 37.22 ± 0.21%), and total leucocyte count (1.4 ± 0.15 × 10(6) to 8.31 ± 0.47 × 10(6) ) as compared with radiation control group on 15th day. An increase in CD4:CD8 ratio was witnessed (0.2-1%) at 30th day time interval using flow cytometry. Silymarin also countered radiation-induced decrease (p < 0.05) in regulatory T-cells (Tregs ) (11.23% in radiation group at 7th day versus 0.1% in pretreated silymarin irradiated group at 15th day). The results of this study indicate that flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity and might prove useful in management of nuclear and radiological emergencies. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 641-654, 2016.
Collapse
Affiliation(s)
- Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Rajesh Arora
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi, 110054, India
- Office of the Distinguished Scientist and Director General-Life Sciences, DRDO Head Quarters, DRDO Bhawan, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
4
|
Patel DD, Bansal DD, Mishra S, Arora R, Sharma RK, Jain SK, Kumar R. A semiquinone glucoside derivative provides protection to male reproductive system of the mice against gamma radiation toxicity. ENVIRONMENTAL TOXICOLOGY 2014; 29:558-567. [PMID: 22730153 DOI: 10.1002/tox.21781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 06/01/2023]
Abstract
Present investigation was carried out to evaluate the radioprotective efficacy of a novel Semiquinone glucoside derivative (SQGD), isolated from Bacillus sp. INM-1, in the male reproductive system of BALB/c mice. Animals were administered 50 mg/kg b.wt. (i.p.) SQGD 2 h before whole body γ-irradiation (10 Gy). Radiation-induced cellular toxicity and its modulation by SQGD pretreatment was evaluated in the mice testes by quantitative histological and protein expression analysis. SQGD pretreatment protects irradiated mice from radiation-induced testicular atrophy and germ cells degeneration, which may lead to emptiness of seminiferous tubules. Significant decrease in P53 and P21((Cip/WAF-1)) expression was observed in the irradiated mice pretreated (2 h) by SQGD at 6 h compared with only irradiated mice. However, contrary to P53, expressions of P21 at latter time, that is, 24-72 h was found to be increased significantly in the irradiated mice pretreated by SQGD. Significant increase in the intact PARP-1 protein expression were observed in the testes of the mice pretreated by SQGD 2 h before irradiation at 24-72 h compared with the only irradiated mice, whereas significant increase in PARP-1 cleaved fragment was noticed at 24 h. Similarly, significant increase in NF-kB and BCL-2/BAX expressions ratio was noticed in SQGD-treated mice (± irradiation) compared with irradiated mice, suggested a role of SQGD in the activation of prosurvival signaling in the testicular germinal cells population of the irradiated mice and thus contributed to protection against lethal γ-irradiation.
Collapse
Affiliation(s)
- Dev Dutt Patel
- Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India, >
| | | | | | | | | | | | | |
Collapse
|
5
|
Radioprotection to small intestine of the mice against ionizing radiation by semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1. Mol Cell Biochem 2012; 370:115-25. [DOI: 10.1007/s11010-012-1403-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022]
|
6
|
Ortenzi V, Meschini R, Berni A, Mancinelli P, Palitti F. Study on X-ray-induced apoptosis and chromosomal damage in G2 human lymphocytes in the presence of pifithrin-α, an inhibitor of p53. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 726:29-35. [DOI: 10.1016/j.mrgentox.2011.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 07/07/2011] [Accepted: 07/30/2011] [Indexed: 11/16/2022]
|
7
|
Singh PK, Kumar R, Sharma A, Arora R, Chawla R, Jain SK, Tripathi RP, Sharma RK. Role of Apoptotic Proteins in REC-2006 Mediated Radiation Protection in Hepatoma Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:758326. [PMID: 21799693 PMCID: PMC3137560 DOI: 10.1093/ecam/neq059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 04/09/2010] [Indexed: 11/12/2022]
Abstract
The present study was carried out to evaluate the role of apoptotic proteins in REC-2006-mediated radiation protection in hepatoma cell lines. REC-2006 treatment 2 h before irradiation strongly inhibited the cleavage of ATM and PARP-1 in HepG2 cells. The expression of nuclear apoptosis inducing factor (AIF) was found to be more inhibited (~17%) in HepG2 cells in REC-2006 + radiation-treated group. More inhibition (~33%) of cytochrome c was observed in HepG2 cells upon REC-2006 treatment 2 h prior irradiation. Similarly, significantly more (P<.05) inhibition of Apaf-1, caspase-9 and caspase-3 was observed in REC-2006 + radition-treated group in HepG2 cells. REC-2006 treatment restored the expression of ICAD in HepG2 cells; however, no restoration was observed in Hep3B cells. Lower nuclear to cytoplasmic CAD ratio was observed in HepG2 cells (~0.6) as compared with Hep3B cells (~1.2) in REC-2006 + radiation-treated group. In conclusion, REC-2006 rendered higher protection in HepG2 cells by inhibiting the expression and translocation of AIF, inhibiting the cleavage of ATM and PARP-1, restoring the expression of ICAD, inhibiting the release of cytochrome c and thus modulating the expression of Apaf-1 caspase-9 and activity of caspase-3.
Collapse
|
8
|
Singh PK, Kumar R, Sharma A, Arora R, Chawla R, Jain SK, Sharma RK. Podophyllum hexandrum Fraction (REC-2006) Shows Higher Radioprotective Efficacy in the p53-Carrying Hepatoma Cell Line: A Role of Cell Cycle Regulatory Proteins. Integr Cancer Ther 2009; 8:261-72. [DOI: 10.1177/1534735409343589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was carried out to evaluate the radioprotective efficacy of Podophyllum hexandrum fraction (REC-2006) in hepatoma cell lines having different p53 statuses. Higher radioresistance was observed in the HepG2 (p53++) cell line in comparison to the Hep3B (p53--) cell line, indicating a plausible role of p53 in radioresistance. REC-2006 exhibited nearly twice the survival in p53-expressing HepG2 cells compared with p53-negative Hep3B cells. REC-2006 treatment alone induced p53 expression as compared with untreated controls. However, REC-2006 reduced p53 expression when treated 2 hours before irradiation as compared with the irradiated HepG2 controls, indicating that REC-2006 modulates the expression of p53 to mitigate its apoptotic effect. Induction of p21 in the REC-2006 + radiation treatment group downregulated the expression of cyclin E and CDK2, leading to a delay in the G1 phase of HepG2 cells, which provided time for DNA repair or related processes. However, no significant difference in CDC2 expression in both cell lines suggested that G2 phase arrest might not be the only responsible factor for REC-2006-mediated radioprotection. Significant induction of PCNA and GADD45 expression in HepG2 cells suggested that REC-2006 increased the percentage survival of HepG2 cells by increasing the span of time as well as efficacy for repair processes. In conclusion, REC-2006 modulated the expression of p53 and thereby promoted cell cycle arrest in the G1 phase, encouraging cell proliferation and DNA repair and thus providing significantly higher protection against acute γ-radiation in the HepG2 cell line.
Collapse
Affiliation(s)
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ashok Sharma
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Rajesh Arora
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raman Chawla
- Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | |
Collapse
|