1
|
Tian Y, Zhu Z, Qiao J, Liu B, Xiao Y. Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage. Diabetes Metab J 2025; 49:210-224. [PMID: 39501569 PMCID: PMC11960197 DOI: 10.4093/dmj.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/17/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGRUOUND Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD. METHODS Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot. RESULTS Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression. CONCLUSION Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Zhiqiang Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, School of Nursing, Guizhou Medical University, Guiyang, China
| | - Bei Liu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yuehai Xiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Duan CY, Li Y, Zhi HY, Tian Y, Huang ZY, Chen SP, Zhang Y, Liu Q, Zhou L, Jiang XG, Ullah K, Guo Q, Liu ZH, Xu Y, Han JH, Hou J, O'Connor DP, Xu G. E3 ubiquitin ligase UBR5 modulates circadian rhythm by facilitating the ubiquitination and degradation of the key clock transcription factor BMAL1. Acta Pharmacol Sin 2024; 45:1793-1808. [PMID: 38740904 PMCID: PMC11336169 DOI: 10.1038/s41401-024-01290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.
Collapse
Affiliation(s)
- Chun-Yan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Hao-Yu Zhi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Zheng-Yun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Su-Ping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Xiao-Gang Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Zhao-Hui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou, 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, 215123, China
| | - Jun-Hai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing, 210096, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Darran P O'Connor
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, D02 YN77, Dublin, Ireland
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
4
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Lu J, Li D, Jiang H, Li Y, Lu C, Chen T, Wang Y, Wang X, Sun W, Pu Z, Qiao C, Ma J, Xu G. The aryl sulfonamide indisulam inhibits gastric cancer cell migration by promoting the ubiquitination and degradation of the transcription factor ZEB1. J Biol Chem 2023; 299:103025. [PMID: 36805336 PMCID: PMC10040736 DOI: 10.1016/j.jbc.2023.103025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023] Open
Abstract
Gastric cancer is one of the cancers with high morbidity and mortality worldwide. The aryl sulfonamide indisulam inhibits the proliferation of several types of cancer cells through its function as a molecular glue to promote the ubiquitination and degradation of RNA-binding motif protein 39 (RBM39). However, it is unknown whether and how indisulam regulates the migration of cancer cells. In this work, using label-free quantitative proteomics, we discover that indisulam significantly attenuates N-cadherin, a marker for epithelial to mesenchymal transition and migration of cancer cells. Our bioinformatics analysis and biochemical experiments reveal that indisulam promotes the interaction between the zinc finger E-box-binding homeobox 1 (ZEB1), a transcription factor of N-cadherin, and DCAF15, a substrate receptor of CRL4 E3 ubiquitin ligase, and enhances ZEB1 ubiquitination and proteasomal degradation. In addition, our cell line-based experiments demonstrate that indisulam inhibits the migration of gastric cancer cells in a ZEB1-dependent manner. Analyses of patient samples and datasets in public databases reveal that tumor tissues from patients with gastric cancer express high ZEB1 mRNA and this high expression reduces patient survival rate. Finally, we show that treatment of gastric tumor samples with indisulam significantly reduces ZEB1 protein levels. Therefore, this work discloses a new mechanism by which indisulam inhibits the migration of gastric cancer cells, indicating that indisulam exhibits different biological functions through distinct signaling molecules.
Collapse
Affiliation(s)
- Jiaqi Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Wenzhao Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Zhuang H, Ren Y, Mao C, Zhong Y, Zhang Z, Cao B, Zhang Y, Huang J, Xu G, Huang Z, Xu Y, Mao X. Induction of zinc finger protein RNF6 auto-ubiquitination for the treatment of myeloma and chronic myeloid leukemia. J Biol Chem 2022; 298:102314. [PMID: 35926709 PMCID: PMC9436814 DOI: 10.1016/j.jbc.2022.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
The zinc finger ubiquitin ligase RNF6 has been proposed as a potential therapeutic target in several cancers, but understanding its molecular mechanism of degradation has been elusive. In the present study, we find that RNF6 is degraded via auto-ubiquitination in a manner dependent on its Really Interesting New Gene (RING) domain. We determine that when the RING domain is deleted (ΔRING) or the core cysteine residues in the zinc finger are mutated (C632S/C635S), the WT protein, but not the ΔRING or mutant RNF6 protein, undergoes polyubiquitination. We also identify USP7 as a deubiquitinase of RNF6 by tandem mass spectrometry. We show that USP7 interacts with RNF6 and abolishes its K48-linked polyubiquitination, thereby preventing its degradation. In contrast, we found a USP7-specific inhibitor promotes RNF6 polyubiquitination, degradation, and cell death. Furthermore, we demonstrate the anti-leukemic drug Nilotinib and anti-myeloma drug Panobinostat (LBH589) induce RNF6 K48-linked polyubiquitination and degradation in both multiple myeloma (MM) and leukemia cells. In agreement with our hypothesis on the mode of RNF6 degradation, we show these drugs promote RNF6 auto-ubiquitination in an in vitro ubiquitination system without other E3 ligases. Consistently, reexpression of RNF6 ablates drug-induced MM and leukemia cell apoptosis. Therefore, our results reveal that RNF6 is a RING E3 ligase that undergoes auto-ubiquitination, which could be abolished by USP7 and induced by anti-cancer drugs. We propose that chemical induction of RNF6 auto-ubiquitination and degradation could be a novel strategy for the treatment of hematological malignancies including MM and leukemia.
Collapse
Affiliation(s)
- Haixia Zhuang
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chenyu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yueya Zhong
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuming Zhang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jinqi Huang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guoqiang Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhenqian Huang
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| | - Yujia Xu
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| | - Xinliang Mao
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| |
Collapse
|
8
|
Clancy A, Heride C, Pinto-Fernández A, Elcocks H, Kallinos A, Kayser-Bricker KJ, Wang W, Smith V, Davis S, Fessler S, McKinnon C, Katz M, Hammonds T, Jones NP, O'Connell J, Follows B, Mischke S, Caravella JA, Ioannidis S, Dinsmore C, Kim S, Behrens A, Komander D, Kessler BM, Urbé S, Clague MJ. The deubiquitylase USP9X controls ribosomal stalling. J Cell Biol 2021; 220:211735. [PMID: 33507233 PMCID: PMC7849821 DOI: 10.1083/jcb.202004211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
When a ribosome stalls during translation, it runs the risk of collision with a trailing ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which needs to be resolved by a dedicated machinery. The initial stalling and the subsequent resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 ligases, respectively, through ubiquitylation of the eS10 and uS10 subunits of the ribosome. We have developed a specific small-molecule inhibitor of the deubiquitylase USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, confirms previous reports linking USP9X with centrosome-associated protein stability but also reveals a loss of Makorin 2 and ZNF598. We show that USP9X interacts with both these ubiquitin E3 ligases, regulating their abundance through the control of protein stability. In the absence of USP9X or following chemical inhibition of its catalytic activity, levels of Makorins and ZNF598 are diminished, and the ribosomal quality control pathway is impaired.
Collapse
Affiliation(s)
- Anne Clancy
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Claire Heride
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, London, UK
| | - Adán Pinto-Fernández
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah Elcocks
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andreas Kallinos
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Victoria Smith
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Tim Hammonds
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, London, UK
| | - Neil P Jones
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, London, UK
| | | | | | | | | | | | | | | | - Axel Behrens
- Adult Stem Cell Laboratory, Francis Crick Institute, London, UK
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sylvie Urbé
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael J Clague
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
10
|
Phosphorylation of GAPVD1 Is Regulated by the PER Complex and Linked to GAPVD1 Degradation. Int J Mol Sci 2021; 22:ijms22073787. [PMID: 33917494 PMCID: PMC8038846 DOI: 10.3390/ijms22073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.
Collapse
|
11
|
Weygant N, Chang K, Jackson CS, Vega KJ. Sex-Associated Gene Expression Alterations Correlate With Esophageal Cancer Survival. Clin Transl Gastroenterol 2020; 12:e00281. [PMID: 33464731 PMCID: PMC7752676 DOI: 10.14309/ctg.0000000000000281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Esophageal cancer (EC) is a significant cause of cancer death with 5-year survival of 10%-15% and males more frequently affected. Genetic evaluation for loci highlighting risk has been performed, but survival data are limited. The Cancer Genome Atlas (TCGA) data sets allow for potential prognostic marker assessment in large patient cohorts. The study aimed to use the TCGA EC data set to assess whether survival varies by sex and explore genetic alterations that may explain variation observed. METHODS TCGA clinical/RNA-seq data sets (n = 185, 158 males/27 females) were downloaded from the cancer genome browser. Data analysis/figure preparation was performed in R and GraphPad Prism 7. Survival analysis was performed using the survival package. Text mining of PubMed was performed using the tm, RISmed, and wordcloud packages. Pathway analysis was performed using the Reactome database. RESULTS In EC, male sex/high tumor grade reduced overall survival (hazard ratio = 2.27 [0.99-5.24] for M vs F and 2.49 [0.89-6.92] for low vs high grade, respectively) and recurrence-free survival (hazard ratio = 4.09 [0.98-17.03] for M vs F and 3.36 [0.81-14.01] for low vs high grade, respectively). To investigate the genetic basis for sex-based survival differences in EC, corresponding gene expression data were analyzed. Sixty-nine genes were dysregulated at the P < 0.01 level by the Wilcox test, 33% were X-chromosome genes, and 7% were Y-chromosome genes. DISCUSSION Female sex potentially confers an EC survival advantage. Importantly, we demonstrate a genetic/epigenetic basis for these survival differences that are independent of lifestyle-associated risk factors overrepresented in males. Further research may lead to novel concepts in treating/measuring EC aggressiveness by sex.
Collapse
Affiliation(s)
- Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Karen Chang
- Department of Medicine, University of California, Riverside, Riverside, California, USA
| | - Christian S. Jackson
- Gastroenterology Section, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Kenneth J. Vega
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, Georgia, USA
| |
Collapse
|
12
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Srikanta SB, Cermakian N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J Neurochem 2020; 157:11-30. [PMID: 32717140 DOI: 10.1111/jnc.15132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Circadian clocks are internal timing systems that enable organisms to adjust their behavioral and physiological rhythms to the daily changes of their environment. These clocks generate self-sustained oscillations at the cellular, tissue, and behavioral level. The rhythm-generating mechanism is based on a gene expression network with a delayed negative feedback loop that causes the transcripts to oscillate with a period of approximately 24 hr. This oscillatory nature of the proteins involved in this network necessitates that they are intrinsically unstable, with a short half-life. Hence, post-translational modifications (PTMs) are important to precisely time the presence, absence, and interactions of these proteins at appropriate times of the day. Ubiquitination and deubiquitination are counter-balancing PTMs which play a key role in this regulatory process. In this review, we take a comprehensive look at the roles played by the processes of ubiquitination and deubiquitination in the clock machinery of the most commonly studied eukaryotic models of the circadian clock: plants, fungi, fruit flies, and mammals. We present the effects exerted by ubiquitinating and deubiquitinating enzymes on the stability, but also the activity, localization, and interactions of clock proteins. Overall, these PTMs have key roles in regulating not only the pace of the circadian clocks but also their response to external cues and their control of cellular functions.
Collapse
Affiliation(s)
- Shashank Bangalore Srikanta
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada
| | - Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Guo D, Zhu Y, Wang H, Wang G, Wang C, Ren H. E3 ubiquitin ligase HRD1 modulates the circadian clock through regulation of BMAL1 stability. Exp Ther Med 2020; 20:2639-2648. [PMID: 32765757 PMCID: PMC7401958 DOI: 10.3892/etm.2020.8988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythm serves an essential role in numerous physiological functions. Circadian oscillations are organized by circadian clock components at the molecular level. The precision of the circadian clock is controlled by transcriptional-translational negative feedback loops, as well as post-translational modifications of clock proteins, including ubiquitination; however, the influence of E3 ligases on clock protein ubiquitination requires further investigation. The results of co-immunoprecipitation and immunofluorescent localization, indicated that the endoplasmic reticulum transmembrane E3 ubiquitin ligase HRD1, encoded by the synoviolin 1 gene, interacted with brain and muscle ARNT-like 1 (BMAL1) and enhanced BMAL1 protein ubiquitination. In addition, the results of western blotting and reverse transcription-quantitative PCR suggested that HRD1 promoted K48-associated polyubiquitination of BMAL1 and thus mediated its degradation via the ubiquitin-proteasome system. Furthermore, gene knockdown and gene overexpression assays revealed that HRD1-dependent degradation of BMAL1 protein regulated the expression of BMAL1 target genes and the amplitude of circadian oscillations in mammalian cells. The findings of the current study indicate that HRD1 may influence the regulation of circadian rhythm via modulation of BMAL1 stability.
Collapse
Affiliation(s)
- Dongkai Guo
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Yao Zhu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Cheng Wang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Haigang Ren
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China.,Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
15
|
Ullah K, Chen S, Lu J, Wang X, Liu Q, Zhang Y, Long Y, Hu Z, Xu G. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J Biol Chem 2020; 295:4696-4708. [PMID: 32041778 PMCID: PMC7135990 DOI: 10.1074/jbc.ra119.011280] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/06/2020] [Indexed: 01/10/2023] Open
Abstract
Cell senescence is one of the most important processes determining cell fate and is involved in many pathophysiological conditions, including cancer, neurodegenerative diseases, and other aging-associated diseases. It has recently been discovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1 or CHIP) is up-regulated during the senescence of human fibroblasts and modulates cell senescence. However, the molecular mechanism underlying STUB1-controlled senescence is not clear. Here, using affinity purification and MS-based analysis, we discovered that STUB1 binds to brain and muscle ARNT-like 1 (BMAL1, also called aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL)). Through biochemical experiments, we confirmed the STUB1-BMAL1 interaction, identified their interaction domains, and revealed that STUB1 overexpression down-regulates BMAL1 protein levels through STUB1's enzymatic activity and that STUB1 knockdown increases BMAL1 levels. Further experiments disclosed that STUB1 enhances BMAL1 degradation, which is abolished upon proteasome inhibition. Moreover, we found that STUB1 promotes the formation of Lys-48-linked polyubiquitin chains on BMAL1, facilitating its proteasomal degradation. Interestingly, we also discovered that oxidative stress promotes STUB1 nuclear translocation and enhances its co-localization with BMAL1. STUB1 expression attenuates hydrogen peroxide-induced cell senescence, indicated by a reduced signal in senescence-associated β-gal staining and decreased protein levels of two cell senescence markers, p53 and p21. BMAL1 knockdown diminishes this effect, and BMAL1 overexpression abolishes STUB1's effect on cell senescence. In summary, the results of our work reveal that the E3 ubiquitin ligase STUB1 ubiquitinates and degrades its substrate BMAL1 and thereby alleviates hydrogen peroxide-induced cell senescence.
Collapse
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiaqi Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yaqiu Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhanhong Hu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
16
|
Yuan Y, Miao Y, Qian L, Zhang Y, Liu C, Liu J, Zuo Y, Feng Q, Guo T, Zhang L, Chen X, Jin L, Huang F, Zhang H, Zhang W, Li W, Xu G, Zheng H. Targeting UBE4A Revives Viperin Protein in Epithelium to Enhance Host Antiviral Defense. Mol Cell 2020; 77:734-747.e7. [DOI: 10.1016/j.molcel.2019.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 01/26/2023]
|
17
|
Chen S, Yang J, Zhang Y, Duan C, Liu Q, Huang Z, Xu Y, Zhou L, Xu G. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J Biol Chem 2018; 293:11296-11309. [PMID: 29871923 DOI: 10.1074/jbc.ra117.001432] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent E2 ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression/knockdown diminished/increased, respectively, BMAL1-mediated transcriptional activity but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution experiment identified the critical Cys residue in the CR2 domain responsible for BMAL1 ubiquitination. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions.
Collapse
Affiliation(s)
- Suping Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Chunyan Duan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qing Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
18
|
Yang J, Huang M, Zhou L, He X, Jiang X, Zhang Y, Xu G. Cereblon suppresses the lipopolysaccharide-induced inflammatory response by promoting the ubiquitination and degradation of c-Jun. J Biol Chem 2018; 293:10141-10157. [PMID: 29748389 DOI: 10.1074/jbc.ra118.002246] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Chronic inflammation is associated with multiple human disorders, such as rheumatoid arthritis, metabolic diseases, and neurodegenerative diseases. Therefore, alleviation of inflammation induced by environmental stimuli is important for disease prevention or treatment. Cereblon (CRBN) functions as a substrate receptor of the cullin-4 RING E3 ligase to mediate protein ubiquitination and degradation. Although it has been reported that CRBN reduces the inflammatory response through its nonenzymatic function, its role as a substrate receptor of the E3 ligase is not explored in mediating this process. Here we used a quantitative proteomics approach to find that the major component of the activator protein 1 (AP-1) complex, c-Jun, is significantly down-regulated upon CRBN expression. Biochemical approaches further discover that CRBN interacts and partially colocalizes with c-Jun and promotes the formation of Lys48-linked polyubiquitin chains on c-Jun, enhancing c-Jun degradation. We further reveal that CRBN attenuates the transcriptional activity of the AP-1 complex and reduces the mRNA expression and protein level of several pro-inflammatory cytokines. Moreover, flow cytometry analyses show that CRBN attenuates lipopolysaccharide-induced apoptosis in differentiated THP-1 cells. Through genetic manipulation and pharmacological inhibition, we uncover a new molecular mechanism by which CRBN regulates the inflammatory response and apoptosis induced by lipopolysaccharide. Our work and previous studies demonstrate that CRBN suppresses the inflammatory response by promoting or inhibiting the ubiquitination of two key molecules at different levels of the inflammatory cascade through its enzymatic function as a substrate receptor and its nonenzymatic function as a protein binding partner.
Collapse
Affiliation(s)
- Jing Yang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Min Huang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Liang Zhou
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xian He
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xiaogang Jiang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yang Zhang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|