1
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2695-2715. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
2
|
Piccirillo F, Lanciotti M, Nusca A, Frau L, Spanò A, Liporace P, Ussia GP, Grigioni F. Sodium-Glucose Transporter-2 Inhibitors (SGLT2i) and Myocardial Ischemia: Another Compelling Reason to Consider These Agents Regardless of Diabetes. Int J Mol Sci 2025; 26:2103. [PMID: 40076724 PMCID: PMC11899902 DOI: 10.3390/ijms26052103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the introduction of sodium-glucose transporter-2 inhibitors (SGLT2is) marked a significant advancement in the treatment of cardiovascular disease (CVD). Beyond their known effects on glycemic control and lipid profile, SGLT2is demonstrate notable benefits for cardiovascular morbidity and mortality, regardless of diabetic status. These agents are currently recommended as first-line therapies in patients with heart failure, both with reduced and preserved ejection fraction, as they improve symptoms and reduce the risk of hospitalization. While several studies have demonstrated that SGLT2is can reduce the incidence of major adverse cardiovascular events (MACEs), the true impact of these agents on atherosclerosis progression and myocardial ischemia remains to be fully understood. A global beneficial effect related to improved glycemic and lipid control could be hypothesized, even though substantial evidence shows a direct impact on molecular pathways that enhance endothelial function, exhibit anti-inflammatory properties, and provide myocardial protection. In this context, this narrative review summarizes the current knowledge regarding these novel anti-diabetic drugs in preventing and treating myocardial ischemia, aiming to define an additional area of application beyond glycemic control and heart failure.
Collapse
Affiliation(s)
- Francesco Piccirillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Matteo Lanciotti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Frau
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Agostino Spanò
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Paola Liporace
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (M.L.); (L.F.); (A.S.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
3
|
Li J, Li C, Feng X, Wei X. SGLT2 inhibition, blood lipids, and cardiovascular disease: A Mendelian randomization study. ESC Heart Fail 2024; 11:3960-3971. [PMID: 39054757 PMCID: PMC11631244 DOI: 10.1002/ehf2.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS We aim to investigate the causal effect of blood lipids mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in cardiovascular disease (CVD) using Mendelian randomization (MR). METHODS AND RESULTS A two-sample two-step MR study was conducted to evaluate the association of SGLT2 inhibition with CVDs and the mediation effects of blood lipids linking SGLT2 inhibition with CVDs. Genetic instruments for SGLT2 inhibition were identified as genetic variants, which were associated with the expression of the SLC5A2 gene and glycated haemoglobin level (HbA1c). SGLT2 inhibition was associated with reduced risk of heart failure (HF) (OR 0.44 [95% CI 0.32-0.61]; P = 6.0 × 10-7), atrial fibrillation (AF) (0.47 [0.37-0.61]; P = 1.81 × 10-8), coronary artery disease (CAD) (0.47 [0.30-0.73]; P = 7.46 × 10-4), myocardial infarction (MI) (0.30 [0.15-0.61]; P = 7.44 × 10-4), any stroke (AS) (0.28 [0.18-0.42]; P = 1.14 × 10-9), and ischaemic stroke (IS) (0.27 [0.17-0.44]; P = 1.97 × 10-7). Our results indicated that the proportion mediated of the mediating effect of total cholesterol was 1.7% (OR 0.99 [95% CI 0.98, 0.99], P = 0.004), 4.7% (0.96 [0.95, 0.98], P = 0.002), and 2.7% (0.97 [0.95, 0.98], P = 0.002) in the association between SGLT2 inhibition and the risk of HF, CAD, and MI, respectively. For low-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 2.2% for HF (OR 0.98 [95% CI 0.98, 0.99], P = 0.003), 8.6% for CAD (0.93 [0.91, 0.95], P = 5.74 × 10-4), and 5.0% for MI (0.95 [0.94, 0.96], P = 6.97 × 10-4). For non-high-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 3.4% for HF (OR 0.98 [95% CI 0.97, 0.98], P = 4.42 × 10-6), 11.8% for CAD (0.92 [0.90, 0.93], P = 7.23 × 10-8), 5.7% for MI (0.94 [0.92, 0.95], P = 8.17 × 10-7), 1.5% for AS (0.98 [0.98, 0.99], P = 0.001), and 1.4% for IS (0.98 [0.98, 0.99], P = 0.004). CONCLUSIONS Our study showed the association of SGLT2 inhibition with the reduced risk of CVDs and blood lipids might mediate this association.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanChina
- NHC Key Laboratory of Organ TransplantationMinistry of HealthWuhanChina
| | - Chenhe Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanChina
- NHC Key Laboratory of Organ TransplantationMinistry of HealthWuhanChina
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanChina
- NHC Key Laboratory of Organ TransplantationMinistry of HealthWuhanChina
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanChina
- NHC Key Laboratory of Organ TransplantationMinistry of HealthWuhanChina
| |
Collapse
|
4
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Mylonas N, Nikolaou PE, Karakasis P, Stachteas P, Fragakis N, Andreadou I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7274. [PMID: 39000380 PMCID: PMC11242615 DOI: 10.3390/ijms25137274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Panagiotis Stachteas
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (P.K.); (P.S.); (N.F.)
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.M.); (P.E.N.)
| |
Collapse
|
6
|
Cortés-Camacho F, Zambrano-Vásquez OR, Aréchaga-Ocampo E, Castañeda-Sánchez JI, Gonzaga-Sánchez JG, Sánchez-Gloria JL, Sánchez-Lozada LG, Osorio-Alonso H. Sodium-Glucose Cotransporter Inhibitors: Cellular Mechanisms Involved in the Lipid Metabolism and the Treatment of Chronic Kidney Disease Associated with Metabolic Syndrome. Antioxidants (Basel) 2024; 13:768. [PMID: 39061837 PMCID: PMC11274291 DOI: 10.3390/antiox13070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.
Collapse
Affiliation(s)
- Fernando Cortés-Camacho
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Oscar René Zambrano-Vásquez
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | | | - José Guillermo Gonzaga-Sánchez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - José Luis Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| |
Collapse
|
7
|
Yang Q, Deng L, Feng C, Wen J. Comparing the effects of empagliflozin and liraglutide on lipid metabolism and intestinal microflora in diabetic mice. PeerJ 2024; 12:e17055. [PMID: 38500527 PMCID: PMC10946396 DOI: 10.7717/peerj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Background and Objectives Recent studies have shown that the imbalance of intestinal flora is related to the occurrence and progression of diabetic nephropathy (DN) and can affect lipid metabolism. Sodium-dependent glucose transporters 2 (SGLT2) inhibitor and glucagon-like peptide-1 (GLP-1) receptor agonist are commonly used hypoglycemic drugs and have excellent renal safety. The purpose of this study was to compare the protective effects of empagliflozin and liraglutide on kidneys, lipid metabolism, and intestinal microbiota in diabetic mice. Methods We established a mouse model of type two diabetes by feeding rats a high-fat diet (HFD) followed by an intraperitoneal injection of STZ. The mice were randomly divided into groups: normal control (NC), diabetic model (DM), liraglutide treatment (LirT), empagliflozin treatment (EmpT), and liraglutide combined with empagliflozin treatment (Emp&LirT) groups. Blood glucose, lipids, creatinine, and uric acid, as well as urinary nitrogen and albumin levels were measured. The renal tissues were subjected to HE, PAS and Masson's staining. These parameters were used to evaluate renal function and histopathological changes in mice. Mice feces were also collected for 16sRNA sequencing to analyze the composition of the intestinal flora. Results All the indexes related to renal function were significantly improved after treatment with drugs. With respect to lipid metabolism, both drugs significantly decreased the serum triglyceride levels in diabetic mice, but the effect of liraglutide on reducing serum cholesterol was better than that of empagliflozin. However, empagliflozin had a better effect on the reduction of low-density lipoproteins (LDL). The two drugs had different effects on intestinal flora. At the phylum level, empagliflozin significantly reduced the ratio of Firmicutes to Bacteroidota, but no effect was seen with liraglutide. At the genus level, both of them decreased the number of Helicobacter and increased the number of Lactobacillus. Empagliflozin also significantly increased the abundance of Muribaculaceae, Muribaculum, Olsenella, and Odoribacter, while liraglutide significantly increased that of Ruminococcus. Conclusion Liraglutide and empagliflozin were both able to improve diabetes-related renal injury. However, the ability of empagliflozin to reduce LDL was better compared to liraglutide. In addition, their effects on the intestine bacterial flora were significantly different.
Collapse
Affiliation(s)
- Qiong Yang
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ling Deng
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Changmei Feng
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | | |
Collapse
|
8
|
Day EA, Townsend LK, Rehal S, Batchuluun B, Wang D, Morrow MR, Lu R, Lundenberg L, Lu JH, Desjardins EM, Smith TK, Raphenya AR, McArthur AG, Fullerton MD, Steinberg GR. Macrophage AMPK β1 activation by PF-06409577 reduces the inflammatory response, cholesterol synthesis, and atherosclerosis in mice. iScience 2023; 26:108269. [PMID: 38026185 PMCID: PMC10654588 DOI: 10.1016/j.isci.2023.108269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerotic cardiovascular disease is characterized by both chronic low-grade inflammation and dyslipidemia. The AMP-activated protein kinase (AMPK) inhibits cholesterol synthesis and dampens inflammation but whether pharmacological activation reduces atherosclerosis is equivocal. In the current study, we found that the orally bioavailable and highly selective activator of AMPKβ1 complexes, PF-06409577, reduced atherosclerosis in two mouse models in a myeloid-derived AMPKβ1 dependent manner, suggesting a critical role for macrophages. In bone marrow-derived macrophages (BMDMs), PF-06409577 dose dependently activated AMPK as indicated by increased phosphorylation of downstream substrates ULK1 and acetyl-CoA carboxylase (ACC), which are important for autophagy and fatty acid oxidation/de novo lipogenesis, respectively. Treatment of BMDMs with PF-06409577 suppressed fatty acid and cholesterol synthesis and transcripts related to the inflammatory response while increasing transcripts important for autophagy through AMPKβ1. These data indicate that pharmacologically targeting macrophage AMPKβ1 may be a promising strategy for reducing atherosclerosis.
Collapse
Affiliation(s)
- Emily A. Day
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Logan K. Townsend
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Sonia Rehal
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Marisa R. Morrow
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Rachel Lu
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Lucie Lundenberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Jessie H. Lu
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Eric M. Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Tyler K.T. Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Amogelang R. Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G. McArthur
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
11
|
Fender AC, Dobrev D. Evolving insights into the pleiotropic cardioprotective mechanisms of SGLT2 inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:589-592. [PMID: 36943455 PMCID: PMC10042952 DOI: 10.1007/s00210-023-02459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| |
Collapse
|
12
|
Nakahara T, Strauss HW, Narula J, Jinzaki M. Vulnerable Plaque Imaging. Semin Nucl Med 2023; 53:230-240. [PMID: 36333157 DOI: 10.1053/j.semnuclmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
Atherosclerotic plaques progress as a result of inflammation. Both invasive and noninvasive imaging techniques have been developed to identify and characterize plaque as vulnerable (more likely to rupture and cause a clinical event). Imaging techniques to identify vulnerable include identifying vessels with focal subendothelial collections of I) inflammatory cells; II) lipid/ fatty acid; III) local regions of hypoxia; IV) local expression of angiogenesis factors; V) local expression of protease; VI) intravascular foci of thrombus; hemorrhage (most often seen in the aftermath of a clinical event); VII) apoptosis and VIII) microcalcification. This review provides an overview of atherosclerotic plaque progression and tracers which can visualize specific molecules associated with vulnerability.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mahahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Zuo Q, Zhang G, He L, Ma S, Ma H, Zhai J, Wang Z, Zhang T, Wang Y, Guo Y. Canagliflozin Attenuates Hepatic Steatosis and Atherosclerosis Progression in Western Diet-Fed ApoE-Knockout Mice. Drug Des Devel Ther 2022; 16:4161-4177. [PMID: 36510490 PMCID: PMC9741490 DOI: 10.2147/dddt.s388823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effect of canagliflozin (20 mg/kg) on hepatic steatosis and atherosclerosis, and further to explore its possible mechanism. Methods Blood glucose, blood lipid, oxidative stress response and inflammatory cytokines were examined by intraperitoneal glucose tolerance test and ELISA assay. HE and Oil Red O staining were used to estimate the extent of hepatic steatosis and atherosclerosis. RNA-seq and qRT-PCR were used to further investigate the potential mechanism. The effects of canagliflozin on autophagy were detected using transmission electron microscopy and Western blotting. The endothelial function-related markers were determined by qRT-PCR. Results Canagliflozin notably alleviated the elevation in blood glucose and insulin resistance in western diet-fed ApoE-/- mice. In ApoE-/-+Cana group, ApoE-/- mice had lower levels of TG, TC, LDL-C, TNF-α, IL-6, IL-1β, and MCP-1. HE and Oil Red O staining presented that canagliflozin restrained the atherosclerotic plaque development and lipid accumulation. RNA-seq showed that 87 DEGs were relevant to improvement of hepatic steatosis and atherosclerosis by canagliflozin. Among them, CPS1, ASS1, ASL, ARG1, MATLA, GLS2, GOT1, SREBP1, Plin5, Retreg1, and C/EBPβ were verified. KEGG enrichment analysis indicated that DEGs were mainly involved in amino acid metabolism. Besides, we observed that canagliflozin reduced the contents of aspartic acid and citrulline in liver. Western blotting showed that ASS1 and p-AMPK/AMPK was remarkably elevated after administration of canagliflozin. Correspondingly, canagliflozin down-regulated SREBP1, FAS, ACC1, HMGCR, p-mTOR/m-TOR, p-ULK1/ULK1 and p62, but up-regulated CPT1, Beclin 1 and LC3 II/LC3I. TEM showed that canagliflozin reduced the number of lipid droplets and increased the autophagosomes. Moreover, we found that canagliflozin elevated the aortic endothelial function-associated markers including ASS1, ASL and eNOS. Conclusion Canagliflozin may attenuate hepatic steatosis by improving lipid metabolism, enhancing autophagy, and reducing inflammatory response through ASS1/AMPK pathway. Besides, canagliflozin further effectively improves the aortic endothelial function, thereby suppressing atherosclerosis development.
Collapse
Affiliation(s)
- Qingjuan Zuo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Guorui Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Cardiology, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China,Correspondence: Yifang Guo, Department of Geriatric Cardiology, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, Hebei, 050051, People’s Republic of China, Tel +86-15100189182, Email
| |
Collapse
|
14
|
Packer M. How can sodium-glucose cotransporter 2 inhibitors stimulate erythrocytosis in patients who are iron-deficient? Implications for understanding iron homeostasis in heart failure. Eur J Heart Fail 2022; 24:2287-2296. [PMID: 36377108 PMCID: PMC10100235 DOI: 10.1002/ejhf.2731] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Many patients with heart failure have an iron-deficient state, which can limit erythropoiesis in erythroid precursors and ATP production in cardiomyocytes. Yet, treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors produces consistent increases in haemoglobin and haematocrit, even in patients who are iron-deficient before treatment, and this effect remains unattenuated throughout treatment even though SGLT2 inhibitors further aggravate biomarkers of iron deficiency. Heart failure is often accompanied by systemic inflammation, which activates hepcidin, thus impairing the duodenal absorption of iron and the release of iron from macrophages and hepatocytes, leading to a decline in circulating iron. Inflammation and oxidative stress also promote the synthesis of ferritin and suppress ferritinophagy, thus impairing the release of intracellular iron stores and leading to the depletion of bioreactive cytosolic Fe2+ . By alleviating inflammation and oxidative stress, SGLT2 inhibitors down-regulate hepcidin, upregulate transferrin receptor protein 1 and reduce ferritin; the net result is to increase the levels of cytosolic Fe2+ available to mitochondria, thus enabling the synthesis of heme (in erythroid precursors) and ATP (in cardiomyocytes). The finding that SGLT2 inhibitors can induce erythrocytosis without iron supplementation suggests that the abnormalities in iron diagnostic tests in patients with mild-to-moderate heart failure are likely to be functional, rather than absolute, that is, they are related to inflammation-mediated trapping of iron by hepcidin and ferritin, which is reversed by treatment with SGLT2 inhibitors. An increase in bioreactive cytosolic Fe2+ is also likely to augment mitochondrial production of ATP in cardiomyocytes, thus retarding the progression of heart failure. These effects on iron metabolism are consistent with (i) proteomics analyses of placebo-controlled trials, which have shown that biomarkers of iron homeostasis represent the most consistent effect of SGLT2 inhibitors; and (ii) statistical mediation analyses, which have reported striking parallelism of the effect of SGLT2 inhibitors to promote erythrocytosis and reduce heart failure events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular InstituteDallasTXUSA
- Imperial CollegeLondonUK
| |
Collapse
|
15
|
Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic View on the Effects of SGLT2 Inhibitors on Lipid Metabolism in Diabetic Milieu. J Clin Med 2022; 11:6544. [PMID: 36362772 PMCID: PMC9653639 DOI: 10.3390/jcm11216544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic hyperglycemia induces pathophysiologic pathways with negative effects on the metabolism of most substrates as well as lipids and lipoproteins, and thereby induces dyslipidemia. Thus, the diabetic milieu is commonly accompanied by different levels of atherogenic dyslipidemia, which is per se a major risk factor for subsequent complications such as atherosclerosis, coronary heart disease, acute myocardial infarction, ischemic stroke, and nephropathy. Therefore, readjusting lipid metabolism in the diabetic milieu is a major goal for preventing dyslipidemia-induced complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a class of relatively newly introduced antidiabetes drugs (including empagliflozin, canagliflozin, dapagliflozin, etc.) with potent hypoglycemic effects and can reduce blood glucose by inducing glycosuria. However, recent evidence suggests that they could also provide extra-glycemic benefits in lipid metabolism. It seems that they can increase fat burning and lipolysis, normalizing the lipid metabolism and preventing or improving dyslipidemia. Nevertheless, the exact mechanisms involved in this process are not well-understood. In this review, we tried to explain how these drugs could regulate lipid homeostasis and we presented the possible involved cellular pathways supported by clinical evidence.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, 1000 Zagreb, Croatia
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Nasr M, Cavalu S, Saber S, Youssef ME, Abdelhamid AM, Elagamy HI, Kamal I, Gaafar AGA, El-Ahwany E, Amin NA, Girgis S, El-Sandarosy R, Mahmoud F, Rizk H, Mansour M, Hasaballah A, El-Rafi AA, El-Azez RA, Essam M, Mohamed D, Essam N, Mohammed OA. Canagliflozin-loaded chitosan-hyaluronic acid microspheres modulate AMPK/NF-κB/NLRP3 axis: A new paradigm in the rectal therapy of ulcerative colitis. Biomed Pharmacother 2022; 153:113409. [DOI: 10.1016/j.biopha.2022.113409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
|
18
|
Iwamoto M, Kubota T, Sakurai Y, Wada N, Shioda S, Yamauchi T, Kadowaki T, Kubota N. The sodium-glucose co-transporter 2 inhibitor tofogliflozin suppresses atherosclerosis through glucose lowering in ApoE-deficient mice with streptozotocin-induced diabetes. Pharmacol Res Perspect 2022; 10:e00971. [PMID: 35707828 PMCID: PMC9201373 DOI: 10.1002/prp2.971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
Epidemiological and animal studies have revealed that sodium-glucose cotransporter 2 (SGLT2) inhibitors suppress cardiovascular events in subjects with type 2 diabetes and atherosclerosis in animal models of diabetes. However, it still remains unclear if the anti-atherosclerotic effect of SGLT2 inhibitors is entirely dependent on their glucose-lowering effect. Tofogliflozin, a highly specific SGLT2 inhibitor, was administrated to apolipoprotein-E-deficient (ApoEKO) with streptozotocin (STZ)-induced diabetes and nondiabetic ApoEKO mice. After 6 weeks, samples were collected to investigate the histological changes and peritoneal macrophage inflammatory cytokine levels. Tofogliflozin suppressed atherosclerosis in the diabetic ApoEKO mice. The atherosclerosis lesion areas and accumulation of macrophages in these areas were reduced by tofogliflozin treatment. The expression levels of interleukin (IL)-1β and IL-6 in the peritoneal macrophages were significantly suppressed in the tofogliflozin-treated diabetic ApoEKO mice. Tofogliflozin treatment failed to inhibit atherosclerosis in the nondiabetic ApoEKO mice. No significant difference in the anti-atherosclerotic effects of insulin and tofogliflozin was observed between diabetic ApoEKO mice with equivalent degrees of glycemic control achieved with the two treatments. Insulin treatment significantly reduced the IL-1β and IL-6 expression levels in the peritoneal macrophages of the diabetic ApoEKO mice. Significant decrease of the LPS-stimulated IL-1β concentrations was also observed in the conditioned medium of the peritoneal macrophages collected from insulin- and tofogliflozin-treated diabetic ApoEKO mice. These results suggest that tofogliflozin suppresses atherosclerosis by improving glucose intolerance associated with inhibition of inflammation. Tofogliflozin suppresses atherosclerosis in ApoEKO mice with STZ-induced diabetes via its glucose-lowering effect.
Collapse
Affiliation(s)
- Masahiko Iwamoto
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Division of Diabetes and MetabolismThe Institute of Medical ScienceAsahi Life FoundationTokyoJapan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Division of Diabetes and MetabolismThe Institute of Medical ScienceAsahi Life FoundationTokyoJapan
- Department of Clinical NutritionNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)TokyoJapan
- Laboratory for Intestinal EcosystemRIKEN Center for Integrative Medical Sciences (IMS)KanagawaJapan
- Intestinal Microbiota ProjectKanagawa Institute of Industrial Science and Technology EbinaKanagawaJapan
- Division of Cardiovascular MedicineToho University Ohashi Medical CenterTokyoJapan
| | - Yoshitaka Sakurai
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuhiro Wada
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical NutritionNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)TokyoJapan
| | - Seiji Shioda
- Global Research Center for Innovative Life SciencePeptide Drug InnovationSchool of Pharmacy and Pharmaceutical SciencesHoshi UniversityTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Toranomon HospitalTokyoJapan
| | - Naoto Kubota
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of Clinical Nutrition TherapyThe University of TokyoTokyoJapan
| |
Collapse
|
19
|
Adam CA, Anghel R, Marcu DTM, Mitu O, Roca M, Mitu F. Impact of Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors on Arterial Stiffness and Vascular Aging-What Do We Know So Far? (A Narrative Review). Life (Basel) 2022; 12:803. [PMID: 35743834 PMCID: PMC9224553 DOI: 10.3390/life12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular aging, early vascular aging or supernormal vascular aging are concepts used for estimating the cardiovascular risk at a certain age. From the famous line of Thomas Sydenham that "a man is as old as his arteries" to the present day, clinical studies in the field of molecular biology of the vasculature have demonstrated the active role of vascular endothelium in the onset of cardiovascular diseases. Arterial stiffness is an important cardiovascular risk factor associated with the occurrence of cardiovascular events and a high risk of morbidity and mortality, especially in the presence of diabetes. Sodium-glucose cotransporter 2 inhibitors decrease arterial stiffness and vascular resistance by decreasing endothelial cell activation, stimulating direct vasorelaxation and ameliorating endothelial dysfunction or expression of pro-atherogenic cells and molecules.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
| | - Razvan Anghel
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Dragos Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
- Sf. Spiridon Clinical Emergency Hospital, Independence Boulevard nr. 1, 700111 Iasi, Romania
| | - Mihai Roca
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| | - Florin Mitu
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street nr. 14, 700661 Iaşi, Romania; (C.A.A.); (R.A.); (M.R.); (F.M.)
- Department of Internal Medicine, University of Medicine and Pharmacy, Grigore T. Popa, University Street nr. 16, 700115 Iaşi, Romania
| |
Collapse
|
20
|
Pahud de Mortanges A, Salvador D, Laimer M, Muka T, Wilhelm M, Bano A. The Role of SGLT2 Inhibitors in Atherosclerosis: A Narrative Mini-Review. Front Pharmacol 2021; 12:751214. [PMID: 34803693 PMCID: PMC8602558 DOI: 10.3389/fphar.2021.751214] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Sodium glucose cotransporter 2 inhibitors (SGLT2-is) are antidiabetic drugs that improve glycemic control by limiting urinary glucose reuptake in the proximal tubule. SGLT2-is might suppress atherosclerotic processes and ameliorate the prognosis of patients with diabetes mellitus diagnosed with or at high risk of atherosclerotic cardiovascular disease (ASCVD). In this mini review, we examine the role of SGLT2-is in the development and progression of atherosclerosis throughout its spectrum, from subclinical atherosclerosis to ASCVD. Data Sources—PubMed and Google Scholar were searched for publications related to SGLT2-is and atherosclerosis. All types of articles were considered, including clinical trials, animal studies, in vitro observations, and reviews and meta-analyses. Data were examined according to their impact and clinical relevance. Synopsis of Content—We first review the underlying mechanisms of SGLT2-is on the development and progression of atherosclerosis, including favorable effects on lipid metabolism, reduction of systemic inflammation, and improvement of endothelial function. We then discuss the putative impact of SGLT2-is on the formation, composition, and stability of atherosclerotic plaque. Furthermore, we evaluate the effects of SGLT2-is in subclinical atherosclerosis assessed by carotid intima media thickness and pulse wave velocity. Subsequently, we summarize the effects of SGLT2-is in ASCVD events, including ischemic stroke, angina pectoris, myocardial infarction, revascularization, and peripheral artery disease, as well as major adverse cardiovascular events, cardiovascular mortality, heart failure, and chronic kidney disease. Moreover, we examine factors that could modify the role of SGLT2-is in atherosclerosis, including sex, age, diabetes, glycemic control, ASCVD, and SGLT2-i compounds. Additionally, we propose future directions that can improve our understanding of SGLT2-is and atherosclerosis.
Collapse
Affiliation(s)
| | - Dante Salvador
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Laimer
- Department of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Matthias Wilhelm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Cherney DZ, Udell JA, Drucker DJ. Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. MED 2021; 2:1203-1230. [DOI: 10.1016/j.medj.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
|
22
|
Dixon DL, Billingsley HE, Canada JM, Trankle CR, Kadariya D, Cooke R, Hart L, Van Tassell B, Abbate A, Carbone S. Effect of Canagliflozin Compared With Sitagliptin on Serum Lipids in Patients with Type 2 Diabetes Mellitus and Heart Failure with Reduced Ejection Fraction: A Post-Hoc Analysis of the CANA-HF Study. J Cardiovasc Pharmacol 2021; 78:407-410. [PMID: 34132690 PMCID: PMC8711068 DOI: 10.1097/fjc.0000000000001083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The sodium glucose co-transporter 2 inhibitors have demonstrated favorable effects on cardiovascular and renal disease; however, they may also increase low-density lipoprotein cholesterol (LDL-C). There are limited data directly comparing the effects of sodium glucose co-transporter 2inhibitors on serum lipids to other antihyperglycemic therapies. In this post-hoc analysis of the CANA-HF trial, we sought to compare the effects of canagliflozin to sitagliptin in patients with type 2 diabetes mellitus (T2DM) and heart failure and reduced ejection fraction (HFrEF). The CANA-HF trial was a prospective, randomized controlled study that compared the effects of canagliflozin 100 mg daily to sitagliptin 100 mg daily on cardiorespiratory fitness in patients with HFrEF and T2DM. Of the 36 patients enrolled in CANA-HF, 35 patients had both baseline and 12-weeks serum lipids obtained via venipuncture. The change in LDL-C from baseline to 12 weeks was 5 (-12.5 to 19.5) mg/dL versus -8 (-19 to -1) mg/dL (P = 0.82) and triglyceride levels was -4 (-26 to 9) mg/dL and -10.5 (-50 to 29.3) mg/dL (P = 0.52) for canagliflozin and sitagliptin, respectively. No significant differences were found between canagliflozin and sitagliptin for total cholesterol, high-density lipoprotein cholesterol or non-HDL-C (P > 0.5 for all). These data suggest that compared with sitagliptin, canagliflozin may not increase LDL-C in patients with T2DM and HFrEF.
Collapse
Affiliation(s)
- Dave L. Dixon
- Virginia Commonwealth University School of Pharmacy, Richmond, VA
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Hayley E. Billingsley
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
- Department of Kinesiology and Health Sciences Virginia Commonwealth University College of Humanities and Science, Richmond, VA
| | - Justin M. Canada
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Cory R. Trankle
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Dinesh Kadariya
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Richard Cooke
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Linda Hart
- Bon Secours Heart and Vascular Institute, Richmond, VA
| | - Benjamin Van Tassell
- Virginia Commonwealth University School of Pharmacy, Richmond, VA
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Antonio Abbate
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
| | - Salvatore Carbone
- Virginia Commonwealth University Pauley Heart Center, Richmond, VA
- Bon Secours Heart and Vascular Institute, Richmond, VA
| |
Collapse
|
23
|
Day EA, Ford RJ, Smith BK, Houde VP, Stypa S, Rehal S, Lhotak S, Kemp BE, Trigatti BL, Werstuck GH, Austin RC, Fullerton MD, Steinberg GR. Salsalate reduces atherosclerosis through AMPKβ1 in mice. Mol Metab 2021; 53:101321. [PMID: 34425254 PMCID: PMC8429104 DOI: 10.1016/j.molmet.2021.101321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Salsalate is a prodrug of salicylate that lowers blood glucose in people with type 2 diabetes. AMP-activated protein kinase (AMPK) is an αβγ heterotrimer which inhibits macrophage inflammation and the synthesis of fatty acids and cholesterol in the liver through phosphorylation of acetyl-CoA carboxylase (ACC) and HMG-CoA reductase (HMGCR), respectively. Salicylate binds to and activates AMPKβ1-containing heterotrimers that are highly expressed in both macrophages and liver, but the potential importance of AMPK and ability of salsalate to reduce atherosclerosis have not been evaluated. Methods ApoE−/− and LDLr−/− mice with or without (−/−) germline or bone marrow AMPKβ1, respectively, were treated with salsalate, and atherosclerotic plaque size was evaluated in serial sections of the aortic root. Studies examining the effects of salicylate on markers of inflammation, fatty acid and cholesterol synthesis and proliferation were conducted in bone marrow–derived macrophages (BMDMs) from wild-type mice or mice lacking AMPKβ1 or the key AMPK-inhibitory phosphorylation sites on ACC (ACC knock-in (KI)-ACC KI) or HMGCR (HMGCR-KI). Results Salsalate reduced atherosclerotic plaques in the aortic roots of ApoE−/− mice, but not ApoE−/− AMPKβ1−/− mice. Similarly, salsalate reduced atherosclerosis in LDLr−/− mice receiving wild-type but not AMPKβ1−/− bone marrow. Reductions in atherosclerosis by salsalate were associated with reduced macrophage proliferation, reduced plaque lipid content and reduced serum cholesterol. In BMDMs, this suppression of proliferation by salicylate required phosphorylation of HMGCR and the suppression of cholesterol synthesis. Conclusions These data indicate that salsalate suppresses macrophage proliferation and atherosclerosis through an AMPKβ1-dependent pathway, which may involve HMGCR phosphorylation and cholesterol synthesis. Since rapidly-proliferating macrophages are a hallmark of atherosclerosis, these data indicate further evaluation of salsalate as a potential therapeutic agent for treating atherosclerotic cardiovascular disease. Salsalate (a dimer of salicylate) activates AMPK in macrophages and reduces atherosclerosis. Salicylate-induced reductions in atherosclerosis are associated with reduced macrophage proliferation and serum cholesterol. AMPK phosphorylation of HMG-CoA reductase is required for suppressing cholesterol synthesis and macrophage proliferation.
Collapse
Affiliation(s)
- Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Rebecca J Ford
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Vanessa P Houde
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Stephanie Stypa
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Sonia Rehal
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada
| | - Sarka Lhotak
- Department of Medicine, McMaster University, Canada; Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Canada
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| | - Bernardo L Trigatti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Geoff H Werstuck
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada
| | - Richard C Austin
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada; Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, Centre for Catalysis Research and Innovation, Faculty of Medicine, University of Ottawa, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Canada; Department of Medicine, McMaster University, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Canada.
| |
Collapse
|
24
|
Xiao L, Nie X, Cheng Y, Wang N. Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovasc Drugs Ther 2021; 35:1253-1267. [PMID: 34273091 DOI: 10.1007/s10557-021-07216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are new antidiabetic drugs that reduce hyperglycemia by inhibiting the glucose reabsorption in renal proximal tubules. Clinical studies have shown that SGLT2 inhibitors not only improve glycemic control but also reduce major adverse cardiovascular events (MACE, cardiovascular and total mortality, fatal or nonfatal myocardial infarction or stroke) and hospitalization for heart failure (HF), and improve outcome in chronic kidney disease. These cardiovascular and renal benefits have now been confirmed in both diabetes and non-diabetes patients. The precise mechanism(s) responsible for the protective effects are under intensive investigation. This review examines current evidence on the cardiovascular benefits of SGLT2 inhibitors, with a special emphasis on the vascular actions and their potential mechanisms.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin Nie
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Nanping Wang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
25
|
Zhao Y, Li Y, Liu Q, Tang Q, Zhang Z, Zhang J, Huang C, Huang H, Zhang G, Zhou J, Yan J, Xia Y, Zhang Z, He J. Canagliflozin Facilitates Reverse Cholesterol Transport Through Activation of AMPK/ABC Transporter Pathway. Drug Des Devel Ther 2021; 15:2117-2128. [PMID: 34040350 PMCID: PMC8140894 DOI: 10.2147/dddt.s306367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Cholesterol is an essential lipid and its homeostasis is a major factor for many diseases, such as hyperlipidemia, atherosclerosis, diabetes, and obesity. Sodium-glucose cotransporter 2 (SGLT2) inhibitor canagliflozin (Cana) is a new kind of hypoglycemic agent, which decreases urinary glucose reabsorption and reduces hyperglycemia. Cana has been shown to regulate serum lipid, decrease serum triglyceride and increase serum high-density lipoprotein-cholesterol (HDL-C), and improve cardiovascular outcomes. But evidence of how Cana impacted the cholesterol metabolism remains elusive. METHODS We treated Cana on mice with chow diet or western diet and then detected cholesterol metabolism in the liver and intestine. To explore the mechanism, we also treated hepG2 cells and Caco2 cells with different concentrations of Cana. RESULTS In this study, we showed that Cana facilitated hepatic and intestinal cholesterol efflux. Mechanically, Cana via activating adenosine monophosphate-activated protein kinase (AMPK) increased the expression of ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 in liver and intestine, increased biliary and fecal cholesterol excretion. CONCLUSION This research confirms that Cana regulates cholesterol efflux and improves blood and hepatic lipid; this may be a partial reason for improving cardiovascular disease.
Collapse
Affiliation(s)
- Yingnan Zhao
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qinhui Liu
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qin Tang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zijing Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jinhang Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Cuiyuan Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Hui Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Guorong Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jian Zhou
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiamin Yan
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yan Xia
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhiyong Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jinhan He
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
26
|
SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev 2021; 27:961-980. [PMID: 33713009 DOI: 10.1007/s10741-021-10096-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Heart failure (HF) often coexists with insulin resistance (IR), and the incidence of HF in type 2 diabetes mellitus (T2DM) patients is significantly higher. The reciprocal relationship between HF and IR has long been recognized, and the integration complicates the therapy of both. A number of mechanisms ascribe to the progression of cardiac IR, in which the main factors are the shift of myocardial substrate metabolism. Studies have found that SGLT2 inhibitors, an anti-diabetic drug, can improve the cardiac prognosis of patients with T2DM, which may be at least partially due to the relief of cardiac IR. Basic and clinical studies have revealed the important role of cardiac IR in the pathogenesis and progression of HF, and studies suggest that energy metabolism plays an important role in the pathogenesis of cardiac IR and HF. SGLT2 inhibitors mediated cardiovascular benefits through various mechanisms such as improving substrate utilization and improving myocardial energy. The regulation of SGLT2 inhibitors on cardiac energy status including carbohydrates, fatty acids (FA), amino acids and ketones, ATP transfer to the cytoplasm, and mitochondrial functional status have received extensive attention in HF, but its specific mechanism of action is still unclear. Therefore, this article reviews the relationship between IR and HF from the perspective of energy metabolism; subsequently, targeting energy metabolism discusses the pivotal role of SGLT2 inhibitors in improving cardiac IR and HF based on basic and clinical research evidences, and sought to clarify the molecular mechanism involved. (Fig. 1).
Collapse
|
27
|
Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, Kamato D, Sahebkar A, Wu W, Weng J, Xu S. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics 2021; 11:4502-4515. [PMID: 33754074 PMCID: PMC7977463 DOI: 10.7150/thno.54498] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new oral drugs for the therapy of patients with type 2 diabetes mellitus (T2DM). Research in the past decade has shown that drugs of the SGLT2i class, such as empagliflozin, canagliflozin, and dapagliflozin, have pleiotropic effects in preventing cardiovascular diseases beyond their favorable impact on hyperglycemia. Of clinical relevance, recent landmark cardiovascular outcome trials have demonstrated that SGLT2i reduce major adverse cardiovascular events, hospitalization for heart failure, and cardiovascular death in T2DM patients with/without cardiovascular diseases (including atherosclerotic cardiovascular diseases and various types of heart failure). The major pharmacological action of SGLT2i is through inhibiting glucose re-absorption in the kidney and thus promoting glucose excretion. Studies in experimental models of atherosclerosis have shown that SGLT2i ameliorate the progression of atherosclerosis by mechanisms including inhibition of vascular inflammation, reduction in oxidative stress, reversing endothelial dysfunction, reducing foam cell formation and preventing platelet activation. Here, we summarize the anti-atherosclerotic actions and mechanisms of action of SGLT2i, with an aim to emphasize the clinical utility of this class of agents in preventing the insidious cardiovascular complications accompanying diabetes.
Collapse
Affiliation(s)
- Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoxuan Ma
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Weiming Wu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|