1
|
Lu JB, Ren PP, Tian Y, Yang YY, Feng QK, Zhang XY, He F, Huang HJ, Chen JP, Li JM, Zhang CX. Structural characterization and proteomic profiling of oviposition secretions across three rice planthopper species. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104220. [PMID: 39581556 DOI: 10.1016/j.ibmb.2024.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Insect oviposition secretions play crucial roles during the reproductive process, yet systematic studies on their structural characterization and protein compositions remain limited. This study investigated the oviposition secretions of three major rice pests: the brown planthopper (Nilaparvata lugens, BPH), small brown planthopper (Laodelphax striatella, SBPH), and white-backed planthopper (Sogatella furcifera, WBPH). Ultrastructural observation revealed differences in the oviposition secretions of them. The eggs of BPH and SBPH were adhered to rice tissue by abundant secretions, while WBPH eggs were embedded deeper within the leaf sheath with less secretions. Proteomic analysis identified 111, 98, and 66 oviposition secretion proteins (OSPs) in BPH, SBPH, and WBPH, respectively. 4 common protein subgroups were shared among them, along with varying numbers of shared subgroups between species pairs. Notably, the majority of OSPs were exclusively found in one species, indicating the existence of both similar and specialized functions unique to each planthopper species. The functions of 4 uncharacterized OSPs (Nl.chr07.0363, Nl.chr12.078, Nl.chr11.716, Nl.scaffold.0714) that were uniquely identified in the BPH were studied by maternal RNAi. Downregulation of each of these 4 protein-coding genes led to a significant decrease in egg production and hatchability. Moreover, knockdown of Nl.chr12.078 or Nl.chr07.0363 also disrupt the secretory function of the lateral oviduct. In conclusion, this study provides insights into the structural characteristics and protein components of the oviposition secretions of BPH, SBPH, and WBPH, which could serve as potential targets for RNAi-based pest control and lay a foundation for future studies on insect-plant interactions mediated by oviposition secretions.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ying Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan-Yan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qing-Kai Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Subaraja M, Vanisree AJ. Rotenone causing dysfunctional mitochondria and lysosomes in cerebral ganglions of Lumbricus terrestris degenerate giant fibers and neuromuscular junctions. CHEMOSPHERE 2016; 152:468-480. [PMID: 27003369 DOI: 10.1016/j.chemosphere.2016.02.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Rotenone is well-documented to cause neurodegenerative condition such as Parkinson's, in the exposed systems. However, its detrimental effect on particular sites of neuronal pathway is still under investigation. We aimed at elucidating the impact of rotenone on cerebral ganglions (CG) of Lumbricus terrestris which control movement and behaviour of the worms. Worms were exposed to 0-0.4 ppm/mL of rotenone. Mitochondrial and lysosomal integrities were found to be affected beyond 0.2 ppm/mL of rotenone. Activities of cholinergic enzymes and the expression of tyrosine hydroxylase showed an impaired neuronal transmission in CGs at the dose of 0.2 ppm/mL of rotenone. Histopathological and immunoflourescent analyses showed neuronal apoptosis, reduced nucleic acid content and inhibited of neurosecretion at 0.3 ppm/mL. Electron microscopy showed that the neurons and neuromuscular junctions were affected at 0.2 ppm/mL. Dose-dependent changes were also observed in the motor function such as burrowing behaviours and locomotion. Conduction velocity (CV) and locomotion assessment showed that the CV of lateral giant fiber (LGF) was reduced while that of MGF remains unaffected at 0.2 ppm, the dose at which the burrowing behaviour was also not affected. LGF, cholinergic enzymes and tyrosine hydroxylase are primarily targeted by rotenone affecting locomotion at 0.2 ppm/mL while MGF, neuropile and the burrowing behaviour were affected at 0.3 ppm/mL. We demonstrate, in addition to dose-dependent effects, that the bioaccumulation factors range 0.28-0.32 ppm/μg of rotenone cause degenerative impact on giant fibers affecting neuronal behaviors/locomotion of worms. We also propose worms for studying mechanisms of neuronal pathology caused by chemicals prevailing in earth's atmosphere.
Collapse
Affiliation(s)
- Mamangam Subaraja
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | |
Collapse
|
3
|
Denton RM. Regulation of mitochondrial dehydrogenases by calcium ions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1309-16. [PMID: 19413950 DOI: 10.1016/j.bbabio.2009.01.005] [Citation(s) in RCA: 625] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/24/2022]
Abstract
Studies in Bristol in the 1960s and 1970s, led to the recognition that four mitochondrial dehydrogenases are activated by calcium ions. These are FAD-glycerol phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol phosphate dehydrogenase is located on the outer surface of the inner mitochondrial membrane and is influenced by changes in cytoplasmic calcium ion concentration. The other three enzymes are located within mitochondria and are regulated by changes in mitochondrial matrix calcium ion concentration. These and subsequent studies on purified enzymes, mitochondria and intact cell preparations have led to the widely accepted view that the activation of these enzymes is important in the stimulation of the respiratory chain and hence ATP supply under conditions of increased ATP demand in many stimulated mammalian cells. The effects of calcium ions on FAD-isocitrate dehydrogenase involve binding to an EF-hand binding motif within this enzyme but the binding sites involved in the effects of calcium ions on the three intramitochondrial dehydrogenases remain to be fully established. It is also emphasised in this article that these three dehydrogenases appear only to be regulated by calcium ions in vertebrates and that this raises some interesting and potentially important developmental issues.
Collapse
Affiliation(s)
- Richard M Denton
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 ITD, UK.
| |
Collapse
|
4
|
Qi F, Chen X, Beard DA. Detailed kinetics and regulation of mammalian NAD-linked isocitrate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1641-51. [PMID: 18672100 DOI: 10.1016/j.bbapap.2008.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 11/24/2022]
Abstract
A mathematical model is presented to describe the catalytic mechanism of mammalian NAD-linked isocitrate dehydrogenase (NAD-IDH), a highly regulated enzyme in the tricarboxylic acid cycle, a crucial pathway in energy metabolism and biosynthesis. The mechanism accounts for allosteric regulation by magnesium-bound isocitrate and EGTA and calcium-bound ATP and ADP. The developed model is used to analyze kinetic data for the cardiac enzyme and to estimate kinetic parameter values. Since the kinetic mechanism is expressed in terms of chemical species (rather than biochemical reactants), the model explicitly accounts for the effects of biochemical state (ionic strength, pH, temperature, and metal cation concentration) on the kinetics. Because the substrate isocitrate competes with allosteric activators (ATP and ADP) and an inhibitor (EGTA) for metal ion cofactors (Ca(2+) and Mg(2+)), the observed kinetic relationships between reactants, activator and inhibitor concentrations, and catalytic flux are complex. Our analysis reveals that under physiological conditions, the ADP/ATP ratio plays a more significant role than Ca(2+) concentration in regulating the enzyme's activity. In addition, the enzyme is highly sensitive to Mg(2+) concentration in the physiological range, pointing to a potential regulatory role of [Mg(2+)] in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Feng Qi
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, USA
| | | | | |
Collapse
|
5
|
Rubi B, del Arco A, Bartley C, Satrustegui J, Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J Biol Chem 2004; 279:55659-66. [PMID: 15494407 DOI: 10.1074/jbc.m409303200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADH shuttle system, which transports reducing equivalents from the cytosol to the mitochondria, is essential for the coupling of glucose metabolism to insulin secretion in pancreatic beta cells. Aralar1 and citrin are two isoforms of the mitochondrial aspartate/glutamate carrier, one key constituent of the malate-aspartate NADH shuttle. Here, the effects of Aralar1 overexpression in INS-1E beta cells and isolated rat islets were investigated for the first time. We prepared a recombinant adenovirus encoding for human Aralar1 (AdCA-Aralar1), tagged with the small FLAG epitope. Transduction of INS-1E cells and isolated rat islets with AdCA-Aralar1 increased aralar1 protein levels and immunostaining revealed mitochondrial localization. Compared with control INS-1E cells, overexpression of Aralar1 potentiated metabolism secretion coupling stimulated by 15 mm glucose. In particular, there was an increase of NAD(P)H generation, of mitochondrial membrane hyperpolarization, ATP levels, glucose oxidation, and insulin secretion (+45%, p < 0.01). Remarkably, this was accompanied by reduced lactate production. Rat islets overexpressing Aralar1 secreted more insulin at 16.7 mm glucose (+65%, p < 0.05) compared with controls. These results show that aspartate-glutamate carrier capacity limits glucose-stimulated insulin secretion and that Aralar1 overexpression enhances mitochondrial metabolism.
Collapse
Affiliation(s)
- Blanca Rubi
- Department of Cell Physiology and Metabolism, University Medical Centre, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Yadav RN. Isocitrate dehydrogenase activity and its regulation by estradiol in tissues of rats of various ages. Cell Biochem Funct 1988; 6:197-202. [PMID: 3409480 DOI: 10.1002/cbf.290060308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC.1.1.1.41 and EC.1.1.1.42, respectively) in the brain, liver and kidney cortex of female rats of various ages was investigated. The activity of NAD-ICDH of brain was greater than extramitochondrial (-c) or intramitochondrial (-m) NADP-ICDH. In contrast, liver c-NADP-ICDH was much higher than NAD- or m-NADP-ICDH, whereas in kidney cortex the activity of m-NADP-ICDH is dominant over both NAD- and c-NADP-ICDH in all the age group of rats studied. The activity of the NAD-ICDH of brain and all the enzymes of liver and kidney cortex increases until adulthood (33-weeks) and decreases thereafter in old rats (85-weeks). In brain c-NADP-ICDH was much higher in immature (6-weeks) rats and decreases with increasing age of the animal, whereas m-NADP-ICDH showed no significant change with the age of the rats. Bilateral ovariectomy decreases the level of all the three forms of enzyme in all the tissues of 6-, 13- and 33-week rats but failed to show any significant effect in 85-week old rats. Exogenous administration of estradiol induces all the three forms of enzyme in all the tissues of ovariectomized rats. The degree of response is tissue- and age-specific.
Collapse
Affiliation(s)
- R N Yadav
- Department of Life Sciences, Dibrugarh University, Assam, India
| |
Collapse
|
7
|
Storey KB, Fields JH. NAD(+)-linked isocitrate dehydrogenase in fish tissues. FISH PHYSIOLOGY AND BIOCHEMISTRY 1988; 5:1-8. [PMID: 24226466 DOI: 10.1007/bf01874723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
NAD(+)-linked isocitrate dehydrogenase was found in the brain, heart, gills, kidney, liver and muscle of trout, and in the liver and muscle of eel. A complex homogenization buffer containing 1 mM ADP, 5 mM MgSO4, 5 mM citrate and 40% glycerol is required for retrieval of significant amounts of stable enzyme. The highest activities were found in brain of trout and the lowest in white muscle of trout and eel. The enzyme was partially purified from frozen trout heart to a final activity of 0.04 μM/min/mg protein, and the kinetic properties of this partially purified enzyme were studied. The enzyme requires either Mn(2+) or Mg(2+) for activity, higher activities being observed with Mn(2+). Saturation kinetics for DL-isocitrate were sigmoidal, apparent S0·5=8.2±0.6 mM and nH=1.8±0.2, in the absence of ADP, changing to hyperbolic, apparent S0·5=1.4±0.3 mM and nH=1.0, with 1 mM ADP added. Citrate and Ca(2+) were found to activate the enzyme to a small extent. NADH strongly inhibited the enzyme, I50=3.7±0.5 μM. ATP was also found to be an inhibitor, I50=7.2±1.4 mM. These properties are consistent with the role of the enzyme as a major control site of the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- K B Storey
- Institute of Biochemistry, Carleton University, K1S 5B6, Ottawa, Ontario, Canada
| | | |
Collapse
|
8
|
Abstract
Intensive training for and competition in endurance events like the marathon are accompanied by injury to fibres in the active skeletal muscles. Evidence for the injury comes from the increases in intramuscular enzymes and myoglobin found in the blood following the exercise, from the subjective sensation of soreness in the muscles in the post-exercise period, and from direct histological examination of samples of the damaged muscles. Histological studies demonstrate that some muscle fibres undergo degenerative changes following the exercise; the necrosis is accomplished by macrophages and other phagocytic cells that invade the injured cells and the adjacent interstitium. Following the degeneration the fibers appear to be regenerated so that there is not a net loss of fibres. Precisely what initiates the cellular damage is not known, but hypotheses suggested include, 'metabolic overload' and 'mechanical strain'. Eccentric contractions are known to cause the greater amount of damage in muscles, which suggests that high local tensions in fibres may be more important than metabolic considerations in the aetiology of the injury. Training reduces the magnitude of the damage that occurs in response to a given exercise task, although competitors in endurance events may demonstrate chronic muscle injury because of increasing training intensities. Other than training, there is no compelling evidence that any drug treatment or preventative measures will lessen this form of injury.
Collapse
|
9
|
Pitt D, Mosley MJ. Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidiation of Penicillium notatum. Antonie Van Leeuwenhoek 1986; 52:467-82. [PMID: 3813521 DOI: 10.1007/bf00423408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The TCA cycle was examined during Ca2+-induced conidiation in Penicillium notatum over the 12-h period after addition of Ca2+ to vegetative cultures. Conidiation was independent of Ca2+ when certain intermediates and derivatives of the TCA cycle served as sole carbon sources. Arsenite and malonate augmented the effect of Ca2+ on conidiation but did not substitute for it. Mitochondria from vegetative cells had low rates of oxidation of TCA cycle intermediates and, with the exception of pyruvate, aconitate and glutamate, these were poorly linked to phosphorylation processes. Calcium ions affected mitochondrial function causing reduced oxidation of oxoglutarate, elimination of pyruvate oxidation and a decline in respiratory control of these substrates with increased oxidation of NADH and NADPH. Radiorespirometric studies and enzyme searches revealed a complete but weakly oxidative TCA cycle in vegetative cells. In Ca2+-induced cells oxoglutarate dehydrogenase activity was deleted within 6.5 h of Ca2+ addition and this was accompanied by establishment of an 'incomplete Krebs cycle'. Calcium-induced conidiation was associated with increased capacity for acetate and glutamate metabolism involving an activated glyoxylate shunt which may be related to enhanced biosynthetic demand. The metabolic basis of the Ca2+ effect on conidiation is discussed in connection with previous findings.
Collapse
|
10
|
|
11
|
Kulinskii VI, Kolpakova TV. Regulation of purified pig heart NAD-isocitrate dehydrogenase by calcium ions and cAMP-dependent protein kinase. Bull Exp Biol Med 1984. [DOI: 10.1007/bf01262467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Bulos BA, Thomas BJ, Sacktor B. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90955-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Wernette M, Ochs R, Lardy H. Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(18)42961-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
McCormack JG, Denton RM. A comparative study of the regulation of Ca2+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources. Biochem J 1981; 196:619-24. [PMID: 7032511 PMCID: PMC1163036 DOI: 10.1042/bj1960619] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ca2+ was shown to activate oxoglutarate dehydrogenase and NAD+-isocitrate dehydrogenase from heart and other rat tissues by markedly decreasing the Km values of the enzymes for their respective substrates [see Denton & McCormack (1980) FEBS Lett. 119, 1-8]. Similar effects of Ca2+ were observed in the present study with both enzymes from other vertebrate sources (pigeon, trout, frog and human heart), but not with the enzymes from blowfly or locust flight muscle, or potato or Escherichia coli. In contrast, the Km values of the oxoglutarate dehydrogenases were affected by ADP, ATP and H+ to a similar extent in every case, except for the enzyme from E. coli, which was not sensitive to regulation by these agents.
Collapse
|
15
|
Perdue J, Lubenskyi W, Kivity E, Sonder S, Fenton J. Protease mitogenic response of chick embryo fibroblasts and receptor binding/processing of human alpha-thrombin. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69681-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Ehrlich R, Colman R. Binding of ligands to half of subunits of NAD-dependent isocitrate dehydrogenase from pig heart. Binding of manganous ion, isocitrate, ADP and NAD. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69960-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Aogaichi T, Evans J, Gabriel J, Plaut GW. The effects of calcium and lanthanide ions on the activity of bovine heart nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase. Arch Biochem Biophys 1980; 204:350-6. [PMID: 6775600 DOI: 10.1016/0003-9861(80)90043-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Denton RM, McCormack JG. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 1980; 119:1-8. [PMID: 7000543 DOI: 10.1016/0014-5793(80)80986-0] [Citation(s) in RCA: 302] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
|
20
|
Bulos BA, Sacktor B. Determination of the concentration of free Ca2+ in the presence of magnesium (or manganese) and chelating effectors of the NAD+-linked isocitrate dehydrogenase. Anal Biochem 1979; 95:62-72. [PMID: 227289 DOI: 10.1016/0003-2697(79)90185-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 1978; 176:899-906. [PMID: 218557 PMCID: PMC1186314 DOI: 10.1042/bj1760899] [Citation(s) in RCA: 292] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of Ca2+ on the activity of isocitrate dehydrogenase (NAD+) in extracts of rat heart mitochondria were explored in the presence of MgCl2 by using EGTA buffers. In the absence of ADP, Ca2+ (about 30 micrometer) resulted in a slight increase in apparent Km for threo-Ds-isocitrate; in the presence of ADP, Ca2+ (about 25 micrometer) greatly lowered the apparent Km for threo-Ds-isocitrate from 227 micrometer to 53 micrometer without changing the maximum velocity. At 100 micrometer-threo-Ds-isocitrate and 1 mM-ADP, there was an 8-fold activation by Ca2+, with a Km for Ca2+ of 1.2 micrometer. This activation was also observed with Sr2+ (Km 3.1 micrometer), but not with Mn2+ (at concentrations below 2.5 micrometer). Similar effects of Ca2+ were also observed on isocitrate dehydrogenase (NAD+) activity in extracts of mitochondria from liver, kidney, brown adipose tissue and white adipose tissue of the rat. The possible regulatory role of changes in the intramitochondrial concentration of Ca2+ is discussed.
Collapse
|
22
|
Tate CA, Bonner HW, Leslie SW. Calcium uptake in skeletal muscle mitochondria. II. The effects of long-term chronic and acute exercise. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1978; 39:117-22. [PMID: 689007 DOI: 10.1007/bf00421716] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to ascertain the effects of long-term exercise training and long-term exhaustive exercise on mitochondrial 45Ca2+ uptake and related variables in rat skeletal muscle, female rats were randomly divided into three groups: sedentary-rested (SR), trained-rested (TR), and trained-exhausted (TE). The trained groups were exercised five times per week on a treadmill for 22 weeks. At the conclusion of the training period, the TE group was exercised to exhaustion following their daily 1 h run. The 45Ca2+ uptake and endogenous mitochodrial Ca2+ content of skeletal muscle followed stepwise increases of approximately 25% and 50%, respectively, across the groups, suggesting that long-term exercise induces the mitochondria to play an important role as a Ca2+ uptake buffer. A 75--83% reduction in 45Ca2+ binding in the TE group suggests a selective loss and partial saturation of membrane phospholipids with exhaustive exercise. The TE group had a two-fold greater content of mitochondrial Mg2+ than did the rested groups. It is speculated that the mitochondria accumulate Mg2+ during acute exercise to maintain the functional integrity of the membrane, thus offsetting the deleterious effects of excessive Ca2+ uptake
Collapse
|
23
|
|
24
|
|
25
|
Carafoli E, Crompton M. The Regulation of Intracellular Calcium. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1978. [DOI: 10.1016/s0070-2161(08)60835-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
|
27
|
Azzone GF, Pozzan T, Massari S, Bragadin M, Dell'Antone P. H+/site ratio and steady state distribution of divalent cations in mitochondria. FEBS Lett 1977; 78:21-4. [PMID: 872936 DOI: 10.1016/0014-5793(77)80264-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Zammit VA, Newsholme EA. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates. Biochem J 1976; 160:447-62. [PMID: 13783 PMCID: PMC1164260 DOI: 10.1042/bj1600447] [Citation(s) in RCA: 137] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is suggested that, under anaerobic conditions, muscles of marine invertebrates form lactate and/or octopine or succinate (or similar end product) according to the activities of the enzymes present in the muscles (see above). The muscles investigated possess low activities of cytosolic glycerol 3-phosphate dehydrogenase, which indicates that glycerol phosphate formation is quantitatively unimportant under anaerobic conditions, and low activities of mitochondrial glycerol phosphate dehydrogenase, which indicates that the glycerol phosphate cycle is unimportant in the re-oxidation of glycolytically produced NADH in these muscles under aerobic conditions. Conversely, high activities of glutamate-oxaloacetate transaminase are present in some muscles, which indicates that the malate-aspartate cycle may be important in oxidation of glycolytically produced NADH under aerobic conditions. 3. High activities of nucleoside diphosphate kinase were found in muscles that function for prolonged periods under anaerobic conditions (e.g...
Collapse
|
29
|
Alp PR, Newsholme EA, Zammit VA. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 1976; 154:689-700. [PMID: 8036 PMCID: PMC1172771 DOI: 10.1042/bj1540689] [Citation(s) in RCA: 292] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenase were measured in muscles from a large number of animals, in order to provide some indication of the importance of the citric acid cycle in these muscles. According to the differences in enzyme activities, the muscles can be divided into three classes. First, in a number of both vertebrate and invertebrate muscles, the activities of all three enzymes are very low. It is suggested that either the muscles use energy at a very low rate or they rely largely on anaerobic glycolysis for higher rates of energy formation. Second, most insect flight muscles contain high activities of citrate synthase and NAD+-linked isocitrate dehydrogenase, but the activities of the NADP+-linked enzyme are very low. The high activities indicate the dependence of insect flight on energy generated via the citric acid cycle. The flight muscles of the beetles investigated contain high activities of both isocitrate dehydrogenases. Third, other muscles of both vertebrates and invertebrates contain high activities of citrate synthase and NADP+-liniked isocitrate dehydrogenase. Many, if not all, of these muscles are capable of sustained periods of mechanical activity (e.g. heart muscle, pectoral muscles of some birds). Consequently, to support this activity fuel must be supplied continually to the muscle via the circulatory system which, in most animals, also transports oxygen so that energy can be generated by complete oxidation of the fuel. It is suggested that the low activities of NAD+-linked isocitrate dehydrogenase in these muscles may be involved in oxidation of isocitrate in the cycle when the muscles are at rest. 2. A comparison of the maximal activities of the enzymes with the maximal flux through the cycle suggests that, in insect flight muscle, NAD+-linked isocitrate dehydrogenase catalyses a non-equilibrium reaction and citrate synthease catalyses a near-equilibrium reaction. In other muscles, the enzyme-activity data suggest that both citrate synthase and the isocitrate dehydrogenase reactions are near-equilibrium.
Collapse
|