1
|
Tomkova A, Cizmar E, Jancura D, Fabian M. High stability of the radical at the catalytic center of cytochrome c oxidase. Arch Biochem Biophys 2025; 764:110271. [PMID: 39689752 DOI: 10.1016/j.abb.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
In aerobic organisms, cellular respiration is associated with electron transfer through a respiratory system of membrane-bound complexes. This electron flow is terminated by the reduction of dioxygen to water by respiratory oxidases. Cytochrome c oxidase (CcO) is a widely distributed heme-copper-oxygen reductase (HCO) found in all mitochondria and some bacteria. However, the sequential reduction of O2 to water in CcO generates a protein-based radical at the catalytic heme a3-CuB site. To avoid the potential damage from the radical, CcO has apparently developed protective mechanisms. Protection by transfer of the highly oxidizing equivalent over considerable distances away from the catalytic site by redox-active Tyr/Trp chains has been previously demonstrated in bovine CcO. However, the rate of the radical migration from the catalytic center has not yet been determined for any HCO. In this work, we show that the radical escapes from the catalytic center of the ferryl PM intermediate of bovine CcO within minutes, which is much longer than the time of its functional reduction during cellular respiration. Apparently, this high stability has evolved to avoid the dissipation of energy released during the oxygen reduction with substrate electrons.
Collapse
Affiliation(s)
- Adriana Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, 7 040 01, Kosice, Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| |
Collapse
|
2
|
Sztachova T, Tomkova A, Cizmar E, Jancura D, Fabian M. Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome c Oxidase. Int J Mol Sci 2022; 23:ijms232012580. [PMID: 36293434 PMCID: PMC9604133 DOI: 10.3390/ijms232012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The reduction of O2 in respiratory cytochrome c oxidases (CcO) is associated with the generation of the transmembrane proton gradient by two mechanisms. In one of them, the proton pumping, two different types of the ferryl intermediates of the catalytic heme a3-CuB center P and F forms, participate. Equivalent ferryl states can be also formed by the reaction of the oxidized CcO (O) with H2O2. Interestingly, in acidic solutions a single molecule of H2O2 can generate from the O an additional F-type ferryl form (F•) that should contain, in contrast to the catalytic F intermediate, a free radical at the heme a3-CuB center. In this work, the formation and the endogenous decay of both the ferryl iron of heme a3 and the radical in F• intermediate were examined by the combination of four experimental approaches, isothermal titration calorimetry, electron paramagnetic resonance, and electronic absorption spectroscopy together with the reduction of this form by the defined number of electrons. The results are consistent with the generation of radicals in F• form. However, the radical at the catalytic center is more rapidly quenched than the accompanying ferryl state of heme a3, very likely by the intrinsic oxidation of the enzyme itself.
Collapse
Affiliation(s)
- Tereza Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Adriana Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, 040 01 Kosice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence: (D.J.); (M.F.)
| |
Collapse
|
3
|
Chen CL, Kang PT, Zhang L, Xiao K, Zweier JL, Chilian WM, Chen YR. Reperfusion mediates heme impairment with increased protein cysteine sulfonation of mitochondrial complex III in the post-ischemic heart. J Mol Cell Cardiol 2021; 161:23-38. [PMID: 34331972 PMCID: PMC8629835 DOI: 10.1016/j.yjmcc.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
A serious consequence of myocardial ischemia-reperfusion injury (I/R) is oxidative damage, which causes mitochondrial dysfunction. The cascading ROS can propagate and potentially induce heme bleaching and protein cysteine sulfonation (PrSO3H) of the mitochondrial electron transport chain. Herein we studied the mechanism of I/R-mediated irreversible oxidative injury of complex III in mitochondria from rat hearts subjected to 30-min of ischemia and 24-h of reperfusion in vivo. In the I/R region, the catalytic activity of complex III was significantly impaired. Spectroscopic analysis indicated that I/R mediated the destruction of hemes b and c + c1 in the mitochondria, supporting I/R-mediated complex III impairment. However, no significant impairment of complex III activity and heme damage were observed in mitochondria from the risk region of rat hearts subjected only to 30-min ischemia, despite a decreased state 3 respiration. In the I/R mitochondria, carbamidomethylated C122/C125 of cytochrome c1 via alkylating complex III with a down regulation of HCCS was exclusively detected, supporting I/R-mediated thioether defect of heme c1. LC-MS/MS analysis showed that I/R mitochondria had intensely increased complex III PrSO3H levels at the C236 ligand of the [2Fe2S] cluster of the Rieske iron‑sulfur protein (uqcrfs1), thus impairing the electron transport activity. MS analysis also indicated increased PrSO3H of the hinge protein at C65 and of cytochrome c1 at C140 and C220, which are confined in the intermembrane space. MS analysis also showed that I/R extensively enhanced the PrSO3H of the core 1 (uqcrc1) and core 2 (uqcrc2) subunits in the matrix compartment, thus supporting the conclusion that complex III releases ROS to both sides of the inner membrane during reperfusion. Analysis of ischemic mitochondria indicated a modest reduction from the basal level of complex III PrSO3H detected in the mitochondria of sham control hearts, suggesting that the physiologic hyperoxygenation and ROS overproduction during reperfusion mediated the enhancement of complex III PrSO3H. In conclusion, reperfusion-mediated heme damage with increased PrSO3H controls oxidative injury to complex III and aggravates mitochondrial dysfunction in the post-ischemic heart.
Collapse
Affiliation(s)
- Chwen-Lih Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Patrick T Kang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Liwen Zhang
- Campus Chemical Instrument Center, Proteomics and Mass Spectrometry Facility, The Ohio State University, Columbus, OH 43210, United States of America
| | - Kunhong Xiao
- Department of Pharmacology and Chemical Biology and Biomedical Mass Spectrometry Center, University of Pittsburgh, PA 15261, United States of America
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States of America.
| |
Collapse
|
4
|
Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 2016; 109:21-30. [DOI: 10.1016/j.ymeth.2016.05.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
|
5
|
Ashe D, Alleyne T, Wilson M, Svistunenko D, Nicholls P. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism. Arch Biochem Biophys 2014; 554:36-43. [PMID: 24811894 DOI: 10.1016/j.abb.2014.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/25/2014] [Indexed: 11/17/2022]
Abstract
Kinetic studies using UV/visible and EPR spectroscopy were carried out to follow the distribution of electrons within beef heart cytochrome c oxidase (CcO), both active and cyanide-inhibited, following addition of reduced cytochrome c as electron donor. In the initial one-electron reduced state the electron is shared between three redox centers, heme a, CuA and a third site, probably CuB. Using a rapid freeze system and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) a protein radical was also detected. The EPR spectrum of the DMPO adduct of this radical was consistent with tyrosyl radical capture. This may be a feature of a charge relay mechanism involved in some part of the CcO electron transfer system from bound cytochrome c via CuA and heme a to the a3CuB binuclear center.
Collapse
Affiliation(s)
- Damian Ashe
- Biochemistry Unit, Department of Pre-Clinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Trevor Alleyne
- Biochemistry Unit, Department of Pre-Clinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Michael Wilson
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Dimitri Svistunenko
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Peter Nicholls
- Molecular Biophysics Research Group, School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
6
|
Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta Gen Subj 2014; 1840:708-21. [DOI: 10.1016/j.bbagen.2013.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
|
7
|
Boatright WL, Jahan MS. Effect of sequestering intrinsic iron on the electron paramagnetic resonance signals in powdered soy proteins. J Food Sci 2013; 78:C660-6. [PMID: 23551223 DOI: 10.1111/1750-3841.12114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
Abstract
This investigation examined iron in powdered soy protein products using electron paramagnetic resonance (EPR) spectroscopy, and the effect that selectively binding free iron in isolated soy protein (ISP) had on the occurrence of metastable radicals in powdered soy proteins. EPR analyses of soybean defatted flour, commercial ISP and laboratory ISP samples revealed a peak at g = 4.3 characteristic of high-spin ferric iron in a rhombic-coordinated environment. Commercial ISP samples examined contained higher levels of the rhombic ferric iron than laboratory-prepared ISP samples. During the first 6 wk of storage the primary singlet EPR signal at g = 2.0049 in the commercial ISP samples approximately doubled, and the laboratory prepared samples increased by about 9-fold. The EPR signal was initially about 4-times higher in the freshly prepared commercial samples compared to the corresponding laboratory ISP. Laboratory ISP samples prepared with added deferoxamine to sequester endogenous iron exhibited a large increase in the high-spin ferric iron EPR signal at g = 4.3. ISP treated with deferoxamine also exhibited a multiple-line EPR signal at about g = 2.007, instead of the typical singlet signal at g = 2.0049. The power at which the signal amplitude was half-saturated also changed from about 1 mW in the control ISP to about 20 mW in the deferoxamine treated ISP. The multiple-line EPR spectrum from the ISP treated with deferoxamine increased during storage over a 6-wk period by about 6-fold. The observed changes in EPR line-shape, g-value, and power saturation with the deferoxamine treatment indicate that the primary free-radical signal in powdered ISP samples may be from stabilized tyrosine radicals with spin densities distributed over the aromatic ring.
Collapse
Affiliation(s)
- William L Boatright
- Dept. of Animal and Food Sciences, Univ. of Kentucky, Lexington, KY 40546-0215, USA.
| | | |
Collapse
|
8
|
Kapralov AA, Yanamala N, Tyurina YY, Castro L, Arias AS, Vladimirov YA, Maeda A, Weitz AA, Peterson J, Mylnikov D, Demicheli V, Tortora V, Klein-Seetharaman J, Radi R, Kagan VE. Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:2147-2155. [PMID: 21550335 PMCID: PMC3321730 DOI: 10.1016/j.bbamem.2011.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/13/2011] [Accepted: 04/21/2011] [Indexed: 01/30/2023]
Abstract
Formation of cytochrome c (cyt c)/cardiolipin (CL) peroxidase complex selective toward peroxidation of polyunsaturated CLs is a pre-requisite for mitochondrial membrane permeabilization. Tyrosine residues - via the generation of tyrosyl radicals (Tyr) - are likely reactive intermediates of the peroxidase cycle leading to CL peroxidation. We used mutants of horse heart cyt c in which each of the four Tyr residues was substituted for Phe and assessed their contribution to the peroxidase catalysis. Tyr67Phe mutation was associated with a partial loss of the oxygenase function of the cyt c/CL complex and the lowest concentration of H(2)O(2)-induced Tyr radicals in electron paramagnetic resonance (EPR) spectra. Our MS experiments directly demonstrated decreased production of CL-hydroperoxides (CL-OOH) by Tyr67Phe mutant. Similarly, oxidation of a phenolic substrate, Amplex Red, was affected to a greater extent in Tyr67Phe than in three other mutants. Tyr67Phe mutant exerted high resistance to H(2)O(2)-induced oligomerization. Measurements of Tyr fluorescence, hetero-nuclear magnetic resonance (NMR) and computer simulations position Tyr67 in close proximity to the porphyrin ring heme iron and one of the two axial heme-iron ligand residues, Met80. Thus, the highly conserved Tyr67 is a likely electron-donor (radical acceptor) in the oxygenase half-reaction of the cyt c/CL peroxidase complex.
Collapse
Affiliation(s)
- Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naveena Yanamala
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura Castro
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alejandro Samhan Arias
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri A. Vladimirov
- Department of Physico-Chemical Medicine, Moscow State University, Moscow, Russia
| | - Akihiro Maeda
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew A. Weitz
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jim Peterson
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Danila Mylnikov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Verónica Demicheli
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Tortora
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Rafael Radi
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Krishnan S, Abeykoon A, Schenkman JB, Rusling JF. Control of electrochemical and ferryloxy formation kinetics of cyt P450s in polyion films by heme iron spin state and secondary structure. J Am Chem Soc 2009; 131:16215-24. [PMID: 19886700 PMCID: PMC3576030 DOI: 10.1021/ja9065317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltammetry of cytochrome P450 (cyt P450) enzymes in ultrathin films with polyions was related for the first time to electronic and secondary structure. Heterogeneous electron transfer (hET) rate constants for reduction of the cyt P450s depended on heme iron spin state, with low spin cyt P450cam giving a value 40-fold larger than high spin human cyt P450 1A2, with mixed spin human P450 cyt 2E1 at an intermediate value. Asymmetric reduction-oxidation peak separations with increasing scan rates were explained by simulations featuring faster oxidation than reduction. Results are consistent with a square scheme in which oxidized and reduced forms of cyt P450s each participate in rapid conformational equilibria. Rate constants for oxidation of ferric cyt P450s in films by t-butyl hydroperoxide to active ferryloxy cyt P450s from rotating disk voltammetry suggested a weaker dependence on spin state, but in the reverse order of the observed hET reduction rates. Oxidation and reduction rates of cyt P450s in the films are also likely to depend on protein secondary structure around the heme iron.
Collapse
Affiliation(s)
| | | | - John B Schenkman
- Department of Cell Biology, University of Connecticut Health Center
| | - James F Rusling
- Department of Chemistry, University of Connecticut
- Department of Cell Biology, University of Connecticut Health Center
- School of Chemistry, National University of Ireland at Galway
| |
Collapse
|
10
|
Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinones. Proc Natl Acad Sci U S A 2007; 104:17575-8. [PMID: 17968010 DOI: 10.1073/pnas.0704030104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that hydroxyl radicals (HO*) can be produced by H2O2 and halogenated quinones, independent of transition metal ions; however, the underlying molecular mechanism is still unclear. In the present study, using the electron spin resonance secondary radical spin-trapping method, we found that tetrachloro-1,4-benzoquinone (TCBQ), but not its corresponding semiquinone anion radical, the tetrachlorosemiquinone anion radical (TCSQ*-), is essential for HO* production. The major reaction product between TCBQ and H2O2 was identified by electrospray ionization quadrupole time-of-flight mass spectrometry to be the ionic form of trichlorohydroxy-1,4-benzoquinone (TrCBQ-OH), and H2O2 was found to be the source and origin of the oxygen atom inserted into the reaction product TrCBQ-OH. On the basis of these data, we propose that HO* production by H2O2 and TCBQ is not through a semiquinone-dependent organic Fenton reaction but rather through the following mechanism: a nucleophilic attack of H2O2 to TCBQ, forming a trichlorohydroperoxyl-1,4-benzoquinone (TrCBQ-OOH) intermediate, which decomposes homolytically to produce HO*. This represents a mechanism of HO* production that does not require redox-active transition metal ions.
Collapse
|
11
|
Zhu BZ, Zhao HT, Kalyanaraman B, Liu J, Shan GQ, Du YG, Frei B. Mechanism of metal-independent decomposition of organic hydroperoxides and formation of alkoxyl radicals by halogenated quinones. Proc Natl Acad Sci U S A 2007; 104:3698-702. [PMID: 17360415 PMCID: PMC1820646 DOI: 10.1073/pnas.0605527104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metal-independent decomposition of organic hydroperoxides and the formation of organic alkoxyl radicals in the absence or presence of halogenated quinones were studied with electron spin resonance (ESR) and the spin-trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). We found that 2,5-dichloro-1,4-benzoquinone (DCBQ) markedly enhanced the decomposition of tert-butylhydroperoxide (t-BuOOH), leading to the formation of the DMPO adducts with t-butoxyl radicals (t-BuO* and methyl radicals *CH(3)). The formation of DMPO/t-BuO* and DMPO/*CH(3) was dose-dependent with respect to both DCBQ and t-BuOOH and was not affected by iron- or copper-specific metal chelators. Comparison of the data obtained with DCBQ and t-BuOOH with those obtained in a parallel study with ferrous iron and t-BuOOH strongly suggested that t-BuO* was produced by DCBQ and t-BuOOH through a metal-independent mechanism. Other halogenated quinones were also found to enhance the decomposition of t-BuOOH and other organic hydroperoxides such as cumene hydroperoxide, leading to the formation of the respective organic alkoxyl radicals in a metal-independent manner. Based on these data, we propose a mechanism for DCBQ-mediated t-BuOOH decomposition and formation of t-BuO*: a nucleophilic attack of t-BuOOH on DCBQ, forming a chloro-t-butylperoxyl-1,4-benzoquinone intermediate, which decomposes homolytically to produce t-BuO*. This represents a mechanism of organic alkoxyl radical formation not requiring the involvement of redox-active transition metal ions.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Basova LV, Kurnikov IV, Wang L, Ritov VB, Belikova NA, Vlasova II, Pacheco AA, Winnica DE, Peterson J, Bayir H, Waldeck DH, Kagan VE. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 2007; 46:3423-34. [PMID: 17319652 PMCID: PMC3356783 DOI: 10.1021/bi061854k] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Upon interaction with anionic phospholipids, particularly mitochondria-specific cardiolipin (CL), cytochrome c (cyt c) loses its tertiary structure and its peroxidase activity dramatically increases. CL-induced peroxidase activity of cyt c has been found to be important for selective CL oxidation in cells undergoing programmed death. During apoptosis, the peroxidase activity and the fraction of CL-bound cyt c markedly increase, suggesting that CL may act as a switch to regulate cyt c's mitochondrial functions. Using cyclic voltammetry and equilibrium redox titrations, we show that the redox potential of cyt c shifts negatively by 350-400 mV upon binding to CL-containing membranes. Consequently, functions of cyt c as an electron transporter and cyt c reduction by Complex III are strongly inhibited. Further, CL/cyt c complexes are not effective in scavenging superoxide anions and are not effectively reduced by ascorbate. Thus, both redox properties and functions of cyt c change upon interaction with CL in the mitochondrial membrane, diminishing cyt c's electron donor/acceptor role and stimulating its peroxidase activity.
Collapse
Affiliation(s)
- Liana V. Basova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Igor V. Kurnikov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lei Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Vladimir B. Ritov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Irina I. Vlasova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Andy A. Pacheco
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Daniel E. Winnica
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jim Peterson
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - David H. Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
- Corresponding author: ; Tel. (412) 624-9479; Fax (412) 624-9361
| |
Collapse
|
13
|
Lee CH, Mou CY, Ke SC, Lin TS. Effect of spin configuration on the reactivity of cytochromecimmobilized in mesoporous silica. Mol Phys 2006. [DOI: 10.1080/00268970500501045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Chang C, Ren J, Fung PCW, Hung YS, Shen JG, Chan FHY. Novel sparse component analysis approach to free radical EPR spectra decomposition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 175:242-55. [PMID: 15922638 DOI: 10.1016/j.jmr.2005.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/11/2005] [Accepted: 04/22/2005] [Indexed: 05/02/2023]
Abstract
Free radicals play important roles in many physiological and pathological pathways in biological systems. These free radicals can be detected and quantified by their EPR spectra. The measured EPR spectra are often mixtures of pure spectra of several different free radicals and other chemicals. Blind source separation can be applied to estimate the pure spectra of interested free radicals. However, since the pure EPR spectra are often not independent of each other, the approach based on independent component analysis (ICA) cannot accurately extract the required spectra. In this paper, a novel sparse component analysis method for blind source separation, which exploits the sparsity of the EPR spectra, is presented to reliably extract the pure source spectra from their mixtures with high accuracy. This method has been applied to the analysis of EPR spectra of superoxide, hydroxyl, and nitric oxide free radicals, for both simulated data and real world ex vivo experiment. Compared to the traditional self-modeling method and our previous ICA-based blind source separation method, the proposed sparse component analysis approach gives much better results and can give perfect separation for mixtures of superoxide spectrum and hydroxyl spectrum in the ideal noise-free case. This method can also be used in other similar applications of quantitative spectroscopy analysis.
Collapse
Affiliation(s)
- Chunqi Chang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | | | | | | | | | |
Collapse
|
15
|
Chen YR, Chen CL, Liu X, He G, Zweier JL. Involvement of phospholipid, biomembrane integrity, and NO peroxidase activity in the NO catabolism by cytochrome c oxidase. Arch Biochem Biophys 2005; 439:200-10. [PMID: 15963451 DOI: 10.1016/j.abb.2005.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/26/2022]
Abstract
The physiological regulation of mitochondrial respiration by NO has been reported to result from the reversible binding of NO to the two-electron reduced binuclear center (Fe(2+)(a3)-Cu(1+)(B)) of cytochrome c oxidase (CcO). Although the role of CcO and its derived catalytic intermediates in the catabolism of NO has been documented, little has been established for the enzyme in its fully oxidized state (Fe(3+)(a3)-Cu(2+)(B)). We report: (1) CcO, in its fully oxidized state, represents the major component of the mitochondrial electron transport chain for NO consumption as controlled by the binding of NO to its binuclear center. Phospholipid enhances NO consumption by fully oxidized CcO, whereas the consumption of NO is slowed down by membrane structure and membrane potential when CcO is embedded in the phospholipid bilayer. (2) In the presence of H(2)O(2), CcO was shown to serve as a mitochondria-derived NO peroxidase. A CcO-derived protein radical intermediate was induced and involved in the modulation of NO catabolism.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, College of Medicine, Columbus, 43210, USA.
| | | | | | | | | |
Collapse
|
16
|
Shi H, Timmins G, Monske M, Burdick A, Kalyanaraman B, Liu Y, Clément JL, Burchiel S, Liu KJ. Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Arch Biochem Biophys 2005; 437:59-68. [PMID: 15820217 DOI: 10.1016/j.abb.2005.02.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Electron paramagnetic resonance with spin trapping is a useful technique to detect reactive oxygen species, such as superoxide radical anion (O2*-), a key species in many biological processes. We evaluated the abilities of four spin traps in trapping cell-generated O2*-: 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO), 2-diethoxyphosphoryl-2-phenethyl-3,4-dihydro-2H-pyrrole N-oxide (DEPPEPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Optimal experimental conditions for obtaining maximal signal intensity of O2*- adduct in a cellular system were first studied. The maximal intensities of BMPO, DEPMPO, and DMPO adducts were similar while DEPPEPO did not trap cell-generated O2*- induced by 1,6-benzo[a]pyrene quinone in a human mammary epithelial cell line (MCF-10A). BMPO and DEPMPO adducts were more stable, considering the stability of their maximal signal, than DMPO adduct in the tested cellular systems. In addition, we observed that O2*- spin adducts were reduced to their corresponding hydroxyl adducts in the cellular system. The selection of optimal spin trap in trapping cell-generated O2*- is discussed.
Collapse
Affiliation(s)
- Honglian Shi
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee CH, Lang J, Yen CW, Shih PC, Lin TS, Mou CY. Enhancing Stability and Oxidation Activity of Cytochrome c by Immobilization in the Nanochannels of Mesoporous Aluminosilicates. J Phys Chem B 2005; 109:12277-86. [PMID: 16852515 DOI: 10.1021/jp050535k] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific activity than NaY-cyt c and MAS-9-cyt c. The result indicated that cyt c embedded in the channels of MCM-41-S and MCM-48-S was protected against unfolding and loss of activity. By increasing the concentration of the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in ESR experiments, we showed that cyt c catalyzes a homolytic cleavage of the O-O bond of hydroperoxide and generates a protein cation radical (g = 2.00). Possible mechanisms for MPS-cyt c catalytic oxidation of hydroperoxides and PAHs are proposed based on the spectroscopic characterizations of the systems.
Collapse
Affiliation(s)
- Chia-Hung Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Svistunenko DA. Reaction of haem containing proteins and enzymes with hydroperoxides: The radical view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:127-55. [PMID: 15721611 DOI: 10.1016/j.bbabio.2005.01.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/24/2022]
Abstract
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the pi-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; alphaTyr42, alphaTrp14, betaTrp15, betaCys93, (alphaTyr24-alphaHis20), all in the alpha- and beta-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| |
Collapse
|
19
|
Svistunenko DA, Wilson MT, Cooper CE. Tryptophan or tyrosine? On the nature of the amino acid radical formed following hydrogen peroxide treatment of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:372-80. [PMID: 15100053 DOI: 10.1016/j.bbabio.2003.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 06/24/2003] [Indexed: 10/26/2022]
Abstract
It has been reported that different amino acid radicals are formed following the addition of hydrogen peroxide to cytochrome c oxidase (CcO) from bovine heart or from Paracoccus denitrificans. A broad unresolved signal in the electron paramagnetic resonance (EPR) spectra of bovine CcO has been assigned to a tryptophan radical, probably Trp126 [Rigby et al. Biochemistry 2000, 39, 5921-5928]. In the P. denitrificans enzyme, a similarly broad signal but with a well-resolved hyperfine structure was shown to originate from a tyrosyl radical and was tentatively assigned to the active site Tyr280 [MacMillan et al. Biochemistry 1999, 38, 9179-9184]. We confirm that the EPR signal from P. denitrificans CcO can be simulated using spectral parameters typical for known Tyr radicals in other systems. However, the rotational conformation of the phenolic ring of Tyr280 is inconsistent with our simulation. Instead, the simulation parameters we used correspond to the rotational conformation of ring that matches very accurately the conformation found in Tyr167, a residue that is close enough ( approximately 10 A) to the binuclear centre to readily donate an electron. The broad unresolved EPR signal in the bovine oxidase has been thought previously to be inconsistent with a tyrosyl radical. However, we have simulated a hypothetical EPR spectrum arising from a Tyr129 radical (the equivalent of Tyr167 in P. denitrificans CcO) and showed that it is similar to the observed broad signal. The possibility exists, therefore, that the homological tyrosine amino acid (Tyr167/Tyr129) is responsible for the EPR spectrum in both the Paraccoccus and the bovine enzyme. This correspondence between the two enzymes at least allows the possibility that this radical may have functional importance.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | | | | |
Collapse
|
20
|
Davies MJ, Hawkins CL. EPR spin trapping of protein radicals. Free Radic Biol Med 2004; 36:1072-86. [PMID: 15082061 DOI: 10.1016/j.freeradbiomed.2003.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 12/08/2003] [Accepted: 12/19/2003] [Indexed: 11/23/2022]
Abstract
Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress and via enzymatic reactions. Over the last 15 years this technique has also found increasing use in detecting and identifying radicals formed on biological macromolecules as a result of either radical reactions or enzymatic processes. Though the EPR signals that result from the trapping of large, slowly tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected examples of radical formation on proteins.
Collapse
|