1
|
Mao S, Zhang J. The emerging role of hepatocyte growth factor in renal diseases. J Recept Signal Transduct Res 2015; 36:303-9. [DOI: 10.3109/10799893.2015.1080275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Russo A, Okur MN, Bosland M, O'Bryan JP. Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2β) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett 2015; 359:262-8. [PMID: 25622909 DOI: 10.1016/j.canlet.2015.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) play important roles in human tumorigenesis. Activation of the PI3K target AKT is frequent in neuroblastoma (NB) and correlates with poor prognosis. PI3K pan-inhibitors reduce NB tumor formation but present severe toxicity, which limits their therapeutic potential. Therefore, defining the importance of specific PI3K isoforms may aid in developing more effective therapeutic strategies. We previously demonstrated that PI3K Class IIβ (PI3KC2β) and its regulator intersectin 1 (ITSN1) are highly expressed in primary NB tumors and cell lines. Silencing ITSN1 dramatically reduced the tumorigenic potential of NB cells. Interestingly, overexpression of PI3KC2β rescued the anchorage-independent growth of ITSN1-silenced cells suggesting that PI3KC2β mediates ITSN1's function in NB cells. To address the importance of PI3KC2β in NBs, we generated PI3KC2β-silenced lines and examined their biologic activity. Herein, we demonstrate that PI3KC2β-silencing inhibits early stages of NB tumorigenic growth. We also show that loss of endogenous PI3KC2β or ITSN1 reduces AKT activation but does not impact ERK-MAPK activation. These data reveal a novel role for PI3KC2β in human NB tumorigenesis.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Mustafa Nazir Okur
- Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60612
| | - Maarten Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612; Jesse Brown VA Medical Center, Chicago, IL 60612.
| |
Collapse
|
3
|
Braccini L, Ciraolo E, Martini M, Pirali T, Germena G, Rolfo K, Hirsch E. PI3K keeps the balance between metabolism and cancer. Adv Biol Regul 2012; 52:389-405. [PMID: 22884032 DOI: 10.1016/j.jbior.2012.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 06/01/2023]
Abstract
Epidemiological studies have established a positive correlation between cancer and metabolic disorders, suggesting that aberrant cell metabolism is a common feature of nearly all tumors. To meet their demand of building block molecules, cancer cells switch to a heavily glucose-dependent metabolism. As insulin triggers glucose uptake, most tumors are or become insulin-dependent. However, the effects of insulin and of other similar growth factors are not only limited to metabolic control but also favor tumor growth by stimulating proliferation and survival. A key signaling event mediating these metabolic and proliferative responses is the activation of the phosphatidylinositol-3 kinases (PI3K) pathway. In this review, we will thus discuss the current concepts of tumor metabolism and the opportunity of PI3K-targeted therapies to exploit the "sweet tooth" of cancer cells.
Collapse
Affiliation(s)
- L Braccini
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Banfic H, Visnjic D, Mise N, Balakrishnan S, Deplano S, Korchev YE, Domin J. Epidermal growth factor stimulates translocation of the class II phosphoinositide 3-kinase PI3K-C2beta to the nucleus. Biochem J 2009; 422:53-60. [PMID: 19496756 DOI: 10.1042/bj20090654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the class II phosphoinositide 3-kinase enzymes PI3K-C2alpha and PI3K-C2beta act acutely downstream of cell surface receptors they have also been localized to nuclei in mammalian cells. As with the class I PI3K enzymes, the relationship between the pools of enzyme present in cytoplasm and nuclei remains poorly understood. In this study we test the hypothesis that PI3K-C2beta translocates to nuclei in response to growth factor stimulation. Fractionating homogenates of quiescent cells revealed that less than 5% of total PI3K-C2beta resides in nuclei. Stimulation with epidermal growth factor sequentially increased levels of this enzyme, firstly in the cytosol and secondly in the nuclei. Using detergent-treated nuclei, we showed that PI3K-C2beta co-localized with lamin A/C in the nuclear matrix. This was confirmed biochemically, and a phosphoinositide kinase assay showed a statistically significant increase in nuclear PI3K-C2beta levels and lipid kinase activity following epidermal growth factor stimulation. C-terminal deletion and point mutations of PI3K-C2beta demonstrated that epidermal growth factor-driven translocation to the nucleus is dependent on a sequence of basic amino acid residues (KxKxK) that form a nuclear localization motif within the C-terminal C2 domain. Furthermore, when this sequence was expressed as an EGFP (enhanced green fluorescent protein) fusion protein, it translocated fluorescence into nuclei with an efficiency dependent upon copy number. These data demonstrate that epidermal growth factor stimulates the appearance of PI3K-C2beta in nuclei. Further, this effect is dependent on a nuclear localization signal present within the C-terminal C2 domain, indicating its bimodal function regulating phospholipid binding and shuttling PI3K-C2beta into the nucleus.
Collapse
Affiliation(s)
- Hrvoje Banfic
- Renal Section, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Liu KX, Kato Y, Matsumoto K, Nakamura T, Kaku T, Sugiyama Y. Characterization of the Enhancing Effect of Protamine on the Proliferative Activity of Hepatocyte Growth Factor in Rat Hepatocytes. Pharm Res 2009; 26:1012-21. [DOI: 10.1007/s11095-008-9810-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
6
|
Phosphoinositide 3-kinase inhibitors protect mouse kidney cells from cyclosporine-induced cell death. Kidney Int 2008; 73:77-85. [DOI: 10.1038/sj.ki.5002638] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Sindić A, Crljen V, Matković K, Lukinović-Skudar V, Visnjić D, Banfić H. Activation of phosphoinositide 3-kinase C2 beta in the nuclear matrix during compensatory liver growth. ACTA ACUST UNITED AC 2006; 46:280-7. [PMID: 16857245 DOI: 10.1016/j.advenzreg.2006.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the nuclear matrix harvested 20 h after partial hepatectomy, an increase in immunoprecipitable PI3K-C2beta activity is observed, which is sensitive to wortmannin (10 Mm) and shows strong preference for PtdIns over PtdIns(4)P as a substrate. On western blots PI3K-C2beta revealed a single immunoreactive band of 180 kD, whereas 20 h after partial hepatectomy gel shift of 18kDa was noticed in the nuclear matrix, suggesting that observed activation of enzyme is achieved by proteolysis. As it is know that PI3K-C2alpha is associated with nuclear speckles [Didichenko SA, Thelen M. Phosphatidylinositol 3-kinase C2alpha contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 2001;276:48135-42.], the data presented in this report show that in the nuclear matrix PI3K-C2beta is activated during the compensatory liver growth, which clearly demonstrates that different class II PI3K enzymes have different subnuclear localization and therefore might have different intranuclear functions.
Collapse
Affiliation(s)
- Aleksandra Sindić
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, P.O. Box 978, Salata 3, 10 001 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
8
|
Harada K, Truong AB, Cai T, Khavari PA. The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 2006; 25:11122-30. [PMID: 16314532 PMCID: PMC1316983 DOI: 10.1128/mcb.25.24.11122-11130.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate an array of cellular processes and are comprised of three classes. Class I PI3Ks include the well-studied agonist-sensitive p110 isoforms; however, the functions of class II and III PI3Ks are less well characterized. Of the three class II PI3Ks, C2alpha and C2beta are widely expressed in many tissues, including the epidermis, while C2gamma is confined to the liver. In contrast to the class I PI3K p110alpha, which is expressed throughout the epidermis, C2beta was found to be localized in suprabasal cells, suggesting a potential role for C2beta in epidermal differentiation. Overexpressing C2beta in epidermal cells in vitro induced differentiation markers. To study a role for C2beta in tissue, we generated transgenic mice overexpressing C2beta in both suprabasal and basal epidermal layers. These mice lacked epidermal abnormalities. Mice deficient in C2beta were then generated by targeted gene deletion. C2beta knockout mice were viable and fertile and displayed normal epidermal growth, differentiation, barrier function, and wound healing. To exclude compensation by C2alpha, RNA interference was then used to knock down both C2alpha and C2beta in epidermal cells simultaneously. Induction of differentiation markers was unaffected in the absence of C2alpha and C2beta. These findings indicate that class II PI3Ks are not essential for epidermal differentiation.
Collapse
|
9
|
Domin J, Harper L, Aubyn D, Wheeler M, Florey O, Haskard D, Yuan M, Zicha D. The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol 2006; 205:452-62. [PMID: 16113997 DOI: 10.1002/jcp.20478] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biological and pathophysiological significance of class II phosphoinositide 3-kinase enzyme expression currently remains unclear. Using an in vitro scrape wound assay and time-lapse video microscopy, we demonstrate that cell motility is increased in cultures expressing recombinant PI3K-C2beta enzyme. In addition, overexpression of PI3K-C2beta transiently decreased cell adhesion, stimulated the formation of cytoplasmic processes, and decreased the rate of cell proliferation. Consistent with these observations, expression of PI3K-C2beta also decreased expression of alpha4 beta1 integrin subunits. Using asynchronous cultures, we show that endogenous PI3K-C2beta is present in lamellipodia of motile cells. When cells expressing recombinant PI3K-C2beta were plated onto fibronectin, cortical actin staining increased markedly and actin rich lamellipodia and filopodia became evident. Overexpression of a 2xFYVE(Hrs) domain fusion protein abolished this response demonstrating that the effect of PI3K-C2beta on the reorganization of actin filaments is dependent upon PtdIns3P. Finally, overexpression of PI3K-C2beta increased GTP loading of Cdc42. Our data demonstrates for the first time, that PI3K-C2beta plays a regulatory role in cell motility and that the mechanism by which it reorganizes the actin cytoskeleton is dependent upon PtdIns3P production.
Collapse
Affiliation(s)
- Jan Domin
- Division of Medicine, Imperial College, London.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog 2004; 41:150-63. [PMID: 15390081 DOI: 10.1002/mc.20051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three unique variants of the CWR22 human prostate cancer xenograft model (CWR22LD1, LD2, and LD3) with a decrease in dependence on androgens were selected under noncastrate conditions, i.e., by outgrowth after transplantation into male NCR (AT) nu mice without testosterone supplementation. These variants were unable to grow in castrated male mice. For comparison, a second set of variants with even less dependence on androgens (castrate-resistant) were derived following outgrowth from CWR22 (CWR22Rv1 and RC) or CWRLD1 (CWR22RS) after transplantion in castrated male mice. The androgen receptor (AR) gene in the CWR22LD variants was transcriptionally active and was neither mutated nor significantly overexpressed compared to CWR22. Oligonucleotide microarray analysis showed distinctly different profiles of dysregulated gene expression among the CWR22LD variants. Groups of only 26-41 genes were dysregulated greater than threefold with a different proportion of up versus downregulated genes in each variant. Only one of the castrate-resistant variants (CWR22Rv1) had a highly overexpressed AR gene but AR in this variant and the two other castrate-resistant variants, CWR22 RS and RC, was not mutated beyond that seen in CWR22. In contrast to the CWR22LD variants, a total of 342, 295, and 222 genes were dysregulated at least threefold in CWR22Rv1, CWR22RS, and CWR22RC, respectively, differing as well in the proportion of up versus downregulated genes. Many of the genes dysregulated in CWR22LD1, LD2, and LD3 were further dysregulated in CWR22Rv1, RC, or RS. The most downregulated gene was microseminoprotein beta (MSPB). Along with cyclin D1, the most upregulated gene by an order of magnitude compared to other upregulated genes was hepatocyte growth factor (HGF) (scatter factor). These results suggest that the onset in the loss of androgen dependence in CWR22 proceeds through multiple pathways and does not require any direct change in the status of AR. However, upregulation of other survival pathways like that involving HGF in these studies could co-activate AR signaling. The endogenous overexpression of genes regulating sterol biosynthesis also observed in castrate-resistant CWR22 variants delineated a clinically relevant, compensatory mechanism for overcoming androgen deprivation reaffirming a central role for AR signaling in this process.
Collapse
Affiliation(s)
- F M Sirotnak
- Department of Medicine, Program of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
11
|
Trkulja V, Crljen-Manestar V, Banfic H, Lackovic Z. Involvement of the peripheral cholinergic muscarinic system in the compensatory ovarian hypertrophy in the rat. Exp Biol Med (Maywood) 2004; 229:793-805. [PMID: 15337834 DOI: 10.1177/153537020422900812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present experiments, unilateral ovariectomy (ULO) induced compensatory hypertrophy (COH) of the remaining rat ovary (60%-85% increase in ovarian weight, total proteins, and total RNA and DNA). An increased thymidine uptake preceded the organ enlargement. COH was inhibited by i.p.-administered muscarinic antagonist propantheline (dose-dependently) or botulinum toxin delivered locally to the ovary. The effects were reversed by bethanecol i.p. (a muscarinic agonist). In sham ULO animals, [3H]-scopolamine binding to ovarian membranes indicated the existence of muscarinic receptors (Kd 2.5 nM, Bmax 12 fmol/mg proteins, Hill 1.0). The ovarian 1,2-diacylglycerol (DAG) was 120-150 pmol/mg tissue and did not react to carbachol in vitro (50 microM). At 15 minutes after ULO, the [3H]-scopolamine binding was unchanged (Kd 2.6 nM, Bmax 12.6 fmol/mg tissue, Hill 1.0), but the ovarian DAG was increased (280-350 pmol/mg tissue) and increased further in response to carbachol (460-550 pmol/mg tissue). After ULO, ovarian DAG remained continuously responsive to carbachol. The ULO-induced DAG increase and enhanced susceptibility to carbachol were inhibited by the botulinum toxin or atropine pretreatments. Abdominal vagotomy done immediately before ULO also inhibited the ULO-induced DAG increase and DAG responsiveness to carbachol. However, when the vagotomy was performed 10 mins after ULO, the ovarian DAG remained responsive to carbachol in vitro. The data suggest that the peripheral cholinergic system, including the ovarian muscarinic receptors, stimulates COH. This is apparently associated with the ULO-induced coupling of the ovarian muscarinic receptors to phosphoinositide (PI) breakdown. Vagus plays a role in the occurrence of the changed muscarinic receptor-PI breakdown relationship in the remaining ovary.
Collapse
Affiliation(s)
- Vladimir Trkulja
- Department of Pharmacology, Croatian Brain Research Institute, Zagreb University School of Medicine, Zagreb, Croatia.
| | | | | | | |
Collapse
|