1
|
Liu L, Liu W, He Y, Liu Y, Wu H, Zhang Y, Zhang Q. Transcriptional Regulation of hmsB, A Temperature-Dependent Small RNA, by RovM in Yersinia pestis Biovar Microtus. Curr Microbiol 2023; 80:182. [PMID: 37046126 DOI: 10.1007/s00284-023-03293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 04/14/2023]
Abstract
HmsB, a temperature-dependent sRNA, promotes biofilm formation by Yersinia pestis, but whether its own expression is regulated by other regulators is still poorly understood. RovM is a global regulator that activates biofilm formation but represses the virulence of Y. pestis. In this work, the results of primer extension, quantitative real-time PCR (qRT-PCR), and LacZ fusion demonstrated that RovM was able to activate hmsB expression. However, the results of electrophoretic mobility shift assay (EMSA) showed that His-RovM did not bind to the upstream DNA region of hmsB. Thus, RovM may exert its regulatory action on hmsB expression in an indirect manner. The data presented here enriched the content of the regulatory circuits that control gene expression in Y. pestis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Wanbing Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Yingyu He
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Yan Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Yiquan Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China.
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Qinwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China.
| |
Collapse
|
2
|
Jaishankar J, Keshav A, Jayaram B, Chavan S, Srivastava P. Characterization of divergent promoters PmaiA and Phyd from Gordonia: Co-expression and regulation by CRP. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194843. [PMID: 35840055 DOI: 10.1016/j.bbagrm.2022.194843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Divergent promoters are often responsible for controlling gene expression of related genes of the same pathway or for coordinating regulation at different time points. There are relatively few reports on characterization of divergent promoters in bacteria. In the present study, microarray profiling was carried out to analyze gene expression during growth of Gordonia sp. IITR100, which led to the identification of 35 % of adjacent gene candidates that are divergently transcribed. We focus here on the in-depth characterization of one such pair of genes. Two divergent promoters, PmaiA and Phyd, drive the expression of genes encoding maleate cis-trans isomerase (maiA) and hydantoinase (hyd), respectively. Our findings reveal asymmetric promoter activity with higher activity in the reverse orientation (Phyd) as compared to the forward orientation (PmaiA). Minimal promoter region for each orientation was identified by deletion mapping. Deletion of a 5'-untranslated region of each gene resulted in an increase in promoter activity. A putative binding site for CRP (Catabolite Repressor Protein) transcription regulator was also identified in the 80 bp common regulatory region between the -35 hexamers of the two promoters. The results of this study suggest that CRP-mediated repression of PmaiA occurs only in the cells grown in glucose. Phyd, on the other hand, is not repressed by CRP. However, deletion of the CRP binding site located between -95 to -110 upstream to the transcription start site of the maiA gene resulted in increased activity of PmaiA and decreased activity of Phyd. A single CRP binding site, therefore, affects the two promoters differently.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Aditi Keshav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Bijjiga Jayaram
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Sourabh Chavan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
3
|
Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Microb Pathog 2022; 169:105659. [PMID: 35760284 DOI: 10.1016/j.micpath.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Collapse
|
4
|
Global Regulator of Rubber Degradation in Gordonia polyisoprenivorans VH2: Identification and Involvement in the Regulation Network. Appl Environ Microbiol 2020; 86:AEM.00774-20. [PMID: 32444473 DOI: 10.1128/aem.00774-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
A cAMP receptor protein (CRPVH2) was detected as a global regulator in Gordonia polyisoprenivorans VH2 and was proposed to participate in the network regulating poly(cis-1,4-isoprene) degradation as a novel key regulator. CRPVH2 shares a sequence identity of 79% with GlxR, a well-studied global regulator of Corynebacterium glutamicum Furthermore, CRPVH2 and GlxR have a common oligomerization state and similar binding motifs, and thus most likely have similar functions as global regulators. Size exclusion chromatography of purified CRPVH2 confirmed the existence as a homodimer with a native molecular weight of 44.1 kDa in the presence of cAMP. CRPVH2 bound to the TGTGAN6TCACT motif within the 131-bp intergenic region of divergently oriented lcp1 VH2 and lcpR VH2, encoding a latex clearing protein and its putative repressor, respectively. DNase I footprinting assays revealed the exact operator size of CRPVH2 in the intergenic region (25 bp), which partly overlapped with the proposed promoters of lcpR VH2 and lcp1 VH2 Our findings indicate that CRPVH2 represses the expression of lcpR VH2 while simultaneously directly or indirectly activating the expression of lcp1 VH2 by binding the competing promoter regions. Furthermore, binding of CRPVH2 to upstream regions of additional putative enzymes of poly(cis-1,4-isoprene) degradation was verified in vitro. In silico analyses predicted 206 CRPVH2 binding sites comprising 244 genes associated with several functional categories, including carbon and peptide metabolism, stress response, etc. The gene expression regulation of several subordinated regulators substantiated the function of CRPVH2 as a global regulator. Moreover, we anticipate that the novel lcpR regulation mechanism by CRPs is widespread in other rubber-degrading actinomycetes.IMPORTANCE In order to develop efficient microbial recycling strategies for rubber waste materials, it is required that we understand the degradation pathway of the polymer and how it is regulated. However, only little is known about the transcriptional regulation of the rubber degradation pathway, which seems to be upregulated in the presence of the polymer. We identified a novel key regulator of rubber degradation (CRPVH2) that regulates several parts of the pathway in the potent rubber-degrader G. polyisoprenivorans VH2. Furthermore, we provide evidence for a widespread involvement of CRP regulators in the degradation of rubber in various other rubber-degrading actinomycetes. Thus, these novel insights into the regulation of rubber degradation are essential for developing efficient microbial degradation strategies for rubber waste materials by this group of actinomycetes.
Collapse
|
5
|
Transcriptional Regulation Between the Two Global Regulators RovA and CRP in Yersinia pestis biovar Microtus. Curr Microbiol 2018; 75:1634-1641. [PMID: 30291406 DOI: 10.1007/s00284-018-1571-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Abstract
Yersinia pestis is a dangerous bacterial pathogen that can cause plague. Both RovA and cyclic AMP receptor protein (cAMP-CRP) are required for regulating biofilm- and virulence-related genes in Y. pestis. In this study, the transcriptional regulation between RovA and cAMP-CRP were analyzed by using primer extension, quantitative RT-PCR, LacZ fusion, and electrophoretic mobility shift assay. The results indicated that RovA repressed crp transcription in an indirect manner, while that RovA had no regulatory action on cyaA at the transcriptional level. In addition, cAMP-CRP did not regulate the transcription of rovA. Taken together with our previous results, complex regulatory interactions of RovA, cAMP-CRP, and PhoP/PhoQ in Y. pestis were revealed, which would promote us gain deeper understanding about coordinative modulation of biofilm- and virulence-related regulator genes.
Collapse
|
6
|
Fang H, Liu L, Zhang Y, Yang H, Yan Y, Ding X, Han Y, Zhou D, Yang R. BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Yersinia pestis Biovar Microtus. Front Cell Infect Microbiol 2018; 8:347. [PMID: 30333962 PMCID: PMC6176095 DOI: 10.3389/fcimb.2018.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation is critical for blocking flea foregut and hence for transmission of Y. pestis by flea biting. In this study, we identified the regulatory role of the AraC-family transcriptional regulator BfvR (YPO1737 in strain CO92) in biofilm formation and virulence of Yersinia pestis biovar Microtus. Crystal violet staining, Caenorhabditis elegans biofilm assay, colony morphology assay, intracellular c-di-GMP concentration determination, and BALB/c mice challenge were employed to reveal that BfvR enhanced Y. pestis biofilm formation while repressed its virulence in mice. Further molecular biological assays demonstrated that BfvR directly stimulated the expression of hmsHFRS, waaAE-coaD, and hmsCDE, which, in turn, affected the production of exopolysaccharide, LPS, and c-di-GMP, respectively. In addition, BfvR directly and indirectly repressed psaABC and psaEF transcription, respectively. We concluded that the modulation of biofilm- and virulence-related genes by BfvR led to increased biofilm formation and reduced virulence of Y. pestis biovar Microtus.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Division of Biology, Beijing Academy, Beijing, China
| | - Lei Liu
- Department of Blood Transfusion, Wuhan General Hospital of PLA, Wuhan, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojuan Ding
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
7
|
Smith LJ, Bochkareva A, Rolfe MD, Hunt DM, Kahramanoglou C, Braun Y, Rodgers A, Blockley A, Coade S, Lougheed KEA, Hafneh NA, Glenn SM, Crack JC, Le Brun NE, Saldanha JW, Makarov V, Nobeli I, Arnvig K, Mukamolova GV, Buxton RS, Green J. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Res 2017; 45:6600-6612. [PMID: 28482027 PMCID: PMC5499769 DOI: 10.1093/nar/gkx406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/28/2017] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.
Collapse
Affiliation(s)
- Laura J Smith
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.,School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | - Matthew D Rolfe
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Debbie M Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Christina Kahramanoglou
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Yvonne Braun
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Angela Rodgers
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Alix Blockley
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Stephen Coade
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Kathryn E A Lougheed
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nor Azian Hafneh
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Sarah M Glenn
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - José W Saldanha
- Division of Mathematical Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Vadim Makarov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kristine Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Godfrey RE, Lee DJ, Busby SJW, Browning DF. Regulation of nrf operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Mol Microbiol 2017; 104:580-594. [PMID: 28211111 PMCID: PMC5434802 DOI: 10.1111/mmi.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
The Escherichia coli K‐12 nrf operon encodes a periplasmic nitrite reductase, the expression of which is driven from a single promoter, pnrf. Expression from pnrf is activated by the FNR transcription factor in response to anaerobiosis and further increased in response to nitrite by the response regulator proteins, NarL and NarP. FNR‐dependent transcription is suppressed by the binding of two nucleoid associated proteins, IHF and Fis. As Fis levels increase in cells grown in rich medium, the positioning of its binding site, overlapping the promoter −10 element, ensures that pnrf is sharply repressed. Here, we investigate the expression of the nrf operon promoter from various pathogenic enteric bacteria. We show that pnrf from enterohaemorrhagic E. coli is more active than its K‐12 counterpart, exhibits substantial FNR‐independent activity and is insensitive to nutrient quality, due to an improved −10 element. We also demonstrate that the Salmonella enterica serovar Typhimurium core promoter is more active than previously thought, due to differences around the transcription start site, and that its expression is repressed by downstream sequences. We identify the CsrA RNA binding protein as being responsible for this, and show that CsrA differentially regulates the E. coli K‐12 and Salmonella nrf operons.
Collapse
Affiliation(s)
- Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David J Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol 2016; 6:rsob.150198. [PMID: 26984293 PMCID: PMC4821237 DOI: 10.1098/rsob.150198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in mice. RovM directly stimulates the transcription of hmsT, hmsCDE and rovM, while indirectly enhancing hmsHFRS transcription. It also indirectly represses hmsP transcription. By contrast, RovA directly represses hmsT transcription and indirectly inhibits waaAE-coaD transcription, while RovM inhibits psaABC and psaEF transcription by directly repressing rovA transcription. rovM expression is significantly upregulated at 26°C (the temperature of the flea gut) relative to 37°C (the warm-blooded host temperature). We speculate that upregulation of rovM together with downregulation of rovA in the flea gut would promote Y. pestis biofilm formation while inhibiting virulence gene expression, leading to a more transmissible infection of this pathogen in fleas. Once the bacterium shifts to a lifestyle in the warm-blooded hosts, inhibited RovM production accompanied by recovered RovA synthesis would encourage virulence factor production and inhibit biofilm gene expression.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
10
|
Koroleva ON, Dubrovin EV, Yaminsky IV, Drutsa VL. Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta Gen Subj 2016; 1860:2086-96. [DOI: 10.1016/j.bbagen.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023]
|
11
|
Gerganova V, Maurer S, Stoliar L, Japaridze A, Dietler G, Nasser W, Kutateladze T, Travers A, Muskhelishvili G. Upstream binding of idling RNA polymerase modulates transcription initiation from a nearby promoter. J Biol Chem 2015; 290:8095-109. [PMID: 25648898 DOI: 10.1074/jbc.m114.628131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adjusting the chromosomal DNA topology to changing cellular physiology. Here we show that simultaneous binding of the polymerase at the canonical fis promoter and an upstream transcriptionally inactive site stabilizes a RNAP oligomeric complex in vitro. We further show that modulation of the upstream binding of RNA polymerase affects the fis promoter activity both in vivo and in vitro. The effect of the upstream RNA polymerase binding on the fis promoter activity depends on the spatial arrangement of polymerase binding sites and DNA supercoiling. Our data suggest that a specific DNA geometry of the nucleoprotein complex stabilized on concomitant binding of RNA polymerase molecules at the fis promoter and the upstream region acts as a topological device regulating the fis transcription. We propose that transcriptionally inactive RNA polymerase molecules can act as accessory factors regulating the transcription initiation from a nearby promoter.
Collapse
Affiliation(s)
- Veneta Gerganova
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Sebastian Maurer
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Liubov Stoliar
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Aleksandre Japaridze
- the Laboratory of the Physics of Living Matter, EPFL, CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- the Laboratory of the Physics of Living Matter, EPFL, CH-1015 Lausanne, Switzerland
| | - William Nasser
- the UMR5240 CNRS/INSA/UCB, Université de Lyon, F-69003, INSA-Lyon, Villeurbanne, F-69621, France
| | - Tamara Kutateladze
- the Ivane Beritashvili Centre of Experimental Biomedicine, Gotua str.14, Tbilisi, Georgia, and
| | - Andrew Travers
- the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 QH, United Kingdom
| | - Georgi Muskhelishvili
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany,
| |
Collapse
|
12
|
Koroleva ON, Dubrovin EV, Khodak YA, Kuzmina NV, Yaminsky IV, Drutsa VL. The model of amyloid aggregation of Escherichia coli RNA polymerase σ70 subunit based on AFM data and in vitro assays. Cell Biochem Biophys 2013; 66:623-36. [PMID: 23306967 DOI: 10.1007/s12013-012-9507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To propose a model for recently described amyloid aggregation of E.coli RNA polymerase σ(70) subunit, we have investigated the role of its N-terminal region. For this purpose, three mutant variants of protein with deletions Δ1-73, Δ1-100 and Δ74-100 were constructed and studied in a series of in vitro assays and using atomic force microscopy (AFM). Specifically, all RNA polymerase holoenzymes, reconstituted with the use of mutant σ subunits, have shown reduced affinity for promoter-containing DNA and reduced activity in run-off transcription experiments (compared to that of WT species), thus substantiating the modern concept on the modulatory role of N-terminus in formation of open complex and transcription initiation. The ability of mutant proteins to form amyloid-like structures has been investigated using AFM, which revealed the increased propensity of mutant proteins to form rodlike aggregates with the effect being more pronounced for the mutant with the deletion Δ1-73 (10 fold increase). σ(70) subunit aggregation ability has shown complex dependence on the ionic surrounding, which we explain by Debye screening effect and the change of the internal state of the protein. Basing on the obtained data, we propose the model of amyloid fibril formation by σ(70) subunit, implying the involvement of N-terminal region according to the domain swapping mechanism.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
13
|
Sun F, Gao H, Zhang Y, Wang L, Fang N, Tan Y, Guo Z, Xia P, Zhou D, Yang R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One 2012; 7:e52392. [PMID: 23285021 PMCID: PMC3528687 DOI: 10.1371/journal.pone.0052392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix), which is activated by the signaling molecule 3′, 5′-cyclic diguanylic acid (c-di-GMP) synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448). Methodology/Principal Findings The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. Conclusions/Significance Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Fengjun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
- * E-mail: (PX); (DZ); (RY)
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| |
Collapse
|
14
|
Zhang Y, Gao H, Wang L, Xiao X, Tan Y, Guo Z, Zhou D, Yang R. Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis. PLoS One 2011; 6:e25484. [PMID: 21966533 PMCID: PMC3180457 DOI: 10.1371/journal.pone.0025484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yersinia pestis is the causative agent of plague. The two transcriptional regulators, PhoP and RovA, are required for the virulence of Y. pestis through the regulation of various virulence-associated loci. They are the global regulators controlling two distinct large complexes of cellular pathways. METHODOLOGY/PRINCIPAL FINDINGS Based on the LacZ fusion, primer extension, gel mobility shift, and DNase I footprinting assays, RovA is shown to recognize both of the two promoters of its gene in Y. pestis. The autoregulation of RovA appears to be a conserved mechanism shared by Y. pestis and its closely related progenitor, Y. pseudotuberculosis. In Y. pestis, the PhoP regulator responds to low magnesium signals and then negatively controls only one of the two promoters of rovA through PhoP-promoter DNA association. CONCLUSIONS/SIGNIFICANCE RovA is a direct transcriptional activator for its own gene in Y. pestis, while PhoP recognizes the promoter region of rovA to repress its transcription. The direct regulatory association between PhoP and RovA bridges the PhoP and RovA regulons in Y. pestis.
Collapse
Affiliation(s)
- Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| |
Collapse
|
15
|
Reynolds J, Wigneshweraraj S. Molecular insights into the control of transcription initiation at the Staphylococcus aureus agr operon. J Mol Biol 2011; 412:862-81. [PMID: 21741390 DOI: 10.1016/j.jmb.2011.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022]
Abstract
The accessory gene regulatory (agr) operon of the opportunistic human pathogen Staphylococcus aureus is a prime pathogenesis factor in this bacterium. The agr operon consists of two transcription units, RNAII and RNAIII, which are transcribed from divergent promoters, P2 and P3, respectively. RNAII encodes a quorum-sensing system, including AgrA, the master transcription activator of the agr operon. RNAIII is the effector RNA molecule that regulates the expression of many virulence genes. Owing to the atypical spacer lengths of P2 and P3, it is widely considered that transcription from P2 and P3 only occurs in a strictly AgrA-dependent manner. Here, using a fully native S. aureus in vitro transcription system, we provide the first molecular and mechanistic characterisation of the regulation of transcription initiation at the agr operon. Surprisingly, the results demonstrate that RNA polymerase (RNAp) can interact with P2 and P3 equally well in the absence of AgrA. However, formation of a transcription-competent open promoter complex (RPo) occurs more readily at P2 than at P3 when AgrA is absent. Reducing the atypical P3 spacer region length to the optimal length of 17 nucleotides significantly improves promoter activity by facilitating the isomerisation of the initial RNAp-P3 complexes to RPo, and the extended -10-like element of P3 is required for optimal promoter activity. AgrA increases the occupancy of both promoters by RNAp and thereby increases the amount of transcription initiated at P2 and P3. However, the AgrA-mediated effect on transcription initiation is more prominent at P3 that at P2. The effect of AgrA at P2 and P3 appears to be restricted to events leading to the formation of RPo. The relevance of AgrA-independent and AgrA-dependent transcription initiation at P2 and P3 is presented in the context of our current understanding of the role of the agr operon in the pathobiology of S. aureus.
Collapse
Affiliation(s)
- Jonathan Reynolds
- Section of Microbiology, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
16
|
Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081. [PMID: 21673794 PMCID: PMC3105977 DOI: 10.1371/journal.pone.0020081] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Gao H, Zhang Y, Tan Y, Wang L, Xiao X, Guo Z, Zhou D, Yang R. Transcriptional regulation of ompF2, an ompF paralogue, in Yersinia pestis. Can J Microbiol 2011; 57:468-75. [PMID: 21627465 DOI: 10.1139/w11-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A regulatory circuit composed of three porins (OmpF, OmpC, and OmpX) and two transcriptional regulators (OmpR and CRP) has previously been characterized in Yersinia pestis . In this follow-up study, OmpF2, an OmpF paralogue, was integrated into this regulatory circuit. Only basal expression was detected for ompF2 in the wild-type strain under different osmotic conditions. The ompF2 transcription was dramatically enhanced with increasing medium osmolarity in the ompR null mutant background. The CRP regulator had no regulatory effect on ompF2 under the growth conditions tested.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol 2011; 11:39. [PMID: 21345178 PMCID: PMC3050692 DOI: 10.1186/1471-2180-11-39] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The osmotic regulator OmpR in Escherichia coli regulates differentially the expression of major porin proteins OmpF and OmpC. In Yersinia enterocolitica and Y. pseudotuberculosis, OmpR is required for both virulence and survival within macrophages. However, the phenotypic and regulatory roles of OmpR in Y. pestis are not yet fully understood. RESULTS Y. pestis OmpR is involved in building resistance against phagocytosis and controls the adaptation to various stressful conditions met in macrophages. The ompR mutation likely did not affect the virulence of Y. pestis strain 201 that was a human-avirulent enzootic strain. The microarray-based comparative transcriptome analysis disclosed a set of 224 genes whose expressions were affected by the ompR mutation, indicating the global regulatory role of OmpR in Y. pestis. Real-time RT-PCR or lacZ fusion reporter assay further validated 16 OmpR-dependent genes, for which OmpR consensus-like sequences were found within their upstream DNA regions. ompC, F, X, and R were up-regulated dramatically with the increase of medium osmolarity, which was mediated by OmpR occupying the target promoter regions in a tandem manner. CONCLUSION OmpR contributes to the resistance against phagocytosis or survival within macrophages, which is conserved in the pathogenic yersiniae. Y. pestis OmpR regulates ompC, F, X, and R directly through OmpR-promoter DNA association. There is an inducible expressions of the pore-forming proteins OmpF, C, and × at high osmolarity in Y. pestis, in contrast to the reciprocal regulation of them in E. coli. The main difference is that ompF expression is not repressed at high osmolarity in Y. pestis, which is likely due to the absence of a promoter-distal OmpR-binding site for ompF.
Collapse
|
19
|
Gao H, Zhang Y, Yang L, Liu X, Guo Z, Tan Y, Han Y, Huang X, Zhou D, Yang R. Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis. BMC Microbiol 2011; 11:40. [PMID: 21345179 PMCID: PMC3050693 DOI: 10.1186/1471-2180-11-40] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 02/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background The cAMP receptor protein (CRP) is a global bacterial regulator that controls many target genes. The CRP-cAMP complex regulates the ompR-envZ operon in E. coli directly, involving both positive and negative regulations of multiple target promoters; further, it controls the production of porins indirectly through its direct action on ompR-envZ. Auto-regulation of CRP has also been established in E. coli. However, the regulation of porin genes and its own gene by CRP remains unclear in Y. pestis. Results Y. pestis employs a distinct mechanism indicating that CRP has no regulatory effect on the ompR-envZ operon; however, it stimulates ompC and ompF directly, while repressing ompX. No transcriptional regulatory association between CRP and its own gene can be detected in Y. pestis, which is also in contrast to the fact that CRP acts as both repressor and activator for its own gene in E. coli. It is likely that Y. pestis OmpR and CRP respectively sense different signals (medium osmolarity, and cellular cAMP levels) to regulate porin genes independently. Conclusion Although the CRP of Y. pestis shows a very high homology to that of E. coli, and the consensus DNA sequence recognized by CRP is shared by the two bacteria, the Y. pestis CRP can recognize the promoters of ompC, F, and X directly rather than that of its own gene, which is different from the relevant regulatory circuit of E. coli. Data presented here indicate a remarkable remodeling of the CRP-mediated regulation of porin genes and of its own one between these two bacteria.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Khodak YA, Koroleva ON, Drutsa VL. Purification of core enzyme of Escherichia coli RNA polymerase by affinity chromatography. BIOCHEMISTRY (MOSCOW) 2010; 75:769-76. [DOI: 10.1134/s000629791006012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Kugelberg E, Gollan B, Farrance C, Bratcher H, Lucidarme J, Ibarz-Pavón AB, Maiden MCJ, Borrow R, Tang CM. The influence of IS1301 in the capsule biosynthesis locus on meningococcal carriage and disease. PLoS One 2010; 5:e9413. [PMID: 20195528 PMCID: PMC2828469 DOI: 10.1371/journal.pone.0009413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/03/2009] [Indexed: 11/19/2022] Open
Abstract
Previously we have shown that insertion of IS1301 in the sia/ctr intergenic region (IGR) of serogroup C Neisseria meningitidis (MenC) isolates from Spain confers increased resistance against complement-mediated killing. Here we investigate the significance of IS1301 in the same location in N. meningitidis isolates from the UK. PCR and sequencing was used to screen a collection of more than 1500 meningococcal carriage and disease isolates from the UK for the presence of IS1301 in the IGR. IS1301 was not identified in the IGR among vaccine failure strains but was frequently found in serogroup B isolates (MenB) from clonal complex 269 (cc269). Almost all IS1301 insertions in cc269 were associated with novel polymorphisms, and did not change capsule expression or resistance to human complement. After excluding sequence types (STs) distant from the central genotype within cc269, there was no significant difference for the presence of IS1301 in the IGR of carriage isolates compared to disease isolates. Isolates with insertion of IS1301 in the IGR are not responsible for MenC disease in UK vaccine failures. Novel polymorphisms associated with IS1301 in the IGR of UK MenB isolates do not lead to the resistance phenotype seen for IS1301 in the IGR of MenC isolates.
Collapse
MESH Headings
- Bacterial Capsules/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Complement System Proteins/immunology
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- DNA, Intergenic/genetics
- Humans
- Meningococcal Infections/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/immunology
- Mutagenesis, Insertional
- Neisseria meningitidis, Serogroup B/classification
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup C/classification
- Neisseria meningitidis, Serogroup C/genetics
- Neisseria meningitidis, Serogroup C/immunology
- Phylogeny
- Sequence Homology, Nucleic Acid
- Spain
- United Kingdom
Collapse
Affiliation(s)
- Elisabeth Kugelberg
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London, United Kingdom
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London, United Kingdom
| | - Christopher Farrance
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London, United Kingdom
| | - Holly Bratcher
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Jay Lucidarme
- Manchester Royal Infirmary, Health Protection Agency, Manchester, United Kingdom
| | | | | | - Ray Borrow
- Manchester Royal Infirmary, Health Protection Agency, Manchester, United Kingdom
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Abstract
Transcription factors interact at promoters to modulate the transcription of genes. This chapter describes three in vitro methods that can be used to monitor their activity: transcript assays, abortive initiation assays, and potassium permanganate footprinting. These techniques have been developed using bacterial systems, and can be used to study the kinetics of transcription initiation, and hence to unravel regulatory mechanisms.
Collapse
Affiliation(s)
- Douglas Browning
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
23
|
Comprehensive assessment of the regulons controlled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum. J Bacteriol 2008; 190:6568-79. [PMID: 18689489 DOI: 10.1128/jb.00748-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic N(2) fixation in Bradyrhizobium japonicum is controlled by a complex transcription factor network. Part of it is a hierarchically arranged cascade in which the two-component regulatory system FixLJ, in response to a moderate decrease in oxygen concentration, activates the fixK(2) gene. The FixK(2) protein then activates not only a number of genes essential for microoxic respiration in symbiosis (fixNOQP and fixGHIS) but also further regulatory genes (rpoN(1), nnrR, and fixK(1)). The results of transcriptome analyses described here have led to a comprehensive and expanded definition of the FixJ, FixK(2), and FixK(1) regulons, which, respectively, consist of 26, 204, and 29 genes specifically regulated in microoxically grown cells. Most of these genes are subject to positive control. Particular attention was addressed to the FixK(2)-dependent genes, which included a bioinformatics search for putative FixK(2) binding sites on DNA (FixK(2) boxes). Using an in vitro transcription assay with RNA polymerase holoenzyme and purified FixK(2) as the activator, we validated as direct targets eight new genes. Interestingly, the adjacent but divergently oriented fixK(1) and cycS genes shared the same FixK(2) box for the activation of transcription in both directions. This recognition site may also be a direct target for the FixK(1) protein, because activation of the cycS promoter required an intact fixK(1) gene and either microoxic or anoxic, denitrifying conditions. We present evidence that cycS codes for a c-type cytochrome which is important, but not essential, for nitrate respiration. Two other, unexpected results emerged from this study: (i) specifically FixK(1) seemed to exert a negative control on genes that are normally activated by the N(2) fixation-specific transcription factor NifA, and (ii) a larger number of genes are expressed in a FixK(2)-dependent manner in endosymbiotic bacteroids than in culture-grown cells, pointing to a possible symbiosis-specific control.
Collapse
|
24
|
Browning DF, Grainger DC, Beatty CM, Wolfe AJ, Cole JA, Busby SJW. Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol Microbiol 2005; 57:496-510. [PMID: 15978080 DOI: 10.1111/j.1365-2958.2005.04701.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression from the Escherichia coli nrf operon promoter is activated by the anaerobically triggered transcription factor, FNR, and by the nitrate/nitrite ion-controlled response regulators, NarL or NarP, but is repressed by the IHF and Fis proteins. Here, we present in vitro studies on the nrf promoter, using permanganate footprinting to measure open complex formation, and DNase I footprinting to monitor binding of the different regulators and the interactions between them. Our results show that open complex formation is completely dependent on FNR and is enhanced by NarL, but is repressed by IHF or Fis. NarL counteracts repression by IHF but is unable to alter repression by Fis. These results suggest mechanisms by which nrf promoter activity is modulated by the different factors. Expression from the nrf promoter is known to be repressed in rich media, especially in the presence of glucose, but the molecular basis of this is not understood. Here, we show that this catabolite repression is relieved by mutations that weaken the DNA site for Fis, improve the DNA site for FNR or improve the promoter -10 or -35 elements. Hence, Fis protein is a major factor responsible for catabolite repression at the nrf promoter, and Fis can override activation by FNR and NarL or NarP.
Collapse
Affiliation(s)
- Douglas F Browning
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Withey JH, DiRita VJ. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol Microbiol 2005; 56:1062-77. [PMID: 15853890 DOI: 10.1111/j.1365-2958.2005.04589.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Vibrio cholerae is the infectious agent responsible for the disease Asiatic cholera. The genes required for V. cholerae virulence, such as those encoding the cholera toxin (CT) and toxin-coregulated pilus (TCP), are controlled by a cascade of transcriptional activators. Ultimately, the direct transcriptional activator of the majority of V. cholerae virulence genes is the AraC/XylS family member ToxT protein, the expression of which is activated by the ToxR and TcpP proteins. Previous studies have identified the DNA sites to which ToxT binds upstream of the ctx operon, encoding CT, and the tcpA operon, encoding, among other products, the major subunit of the TCP. These known ToxT binding sites are seemingly dissimilar in sequence other than being A/T rich. Further results suggested that ctx and tcpA each has a pair of ToxT binding sites arranged in a direct repeat orientation upstream of the core promoter elements. In this work, using both transcriptional lacZ fusions and in vitro copper-phenanthroline footprinting experiments, we have identified the ToxT binding sites between the divergently transcribed acfA and acfD genes, which encode components of the accessory colonization factor required for efficient intestinal colonization by V. cholerae. Our results indicate that ToxT binds to a pair of DNA sites between acfA and acfD in an inverted repeat orientation. Moreover, a mutational analysis of the ToxT binding sites indicates that both binding sites are required by ToxT for transcriptional activation of both acfA and acfD. Using copper-phenanthroline footprinting to assess the occupancy of ToxT on DNA having mutations in one of these binding sites, we found that protection by ToxT of the unaltered binding site was not affected, whereas protection by ToxT of the mutant binding site was significantly reduced in the region of the mutations. The results of further footprinting experiments using DNA templates having +5 bp and +10 bp insertions between the two ToxT binding sites indicate that both binding sites are occupied by ToxT regardless of their positions relative to each other. Based on these results, we propose that ToxT binds independently to two DNA sites between acfA and acfD to activate transcription of both genes.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0614, USA
| | | |
Collapse
|
26
|
Sevastsyanovich YR, Titok MA, Krasowiak R, Bingle LEH, Thomas CM. Ability of IncP-9 plasmid pM3 to replicate in Escherichia coli is dependent on both rep and par functions. Mol Microbiol 2005; 57:819-33. [PMID: 16045624 DOI: 10.1111/j.1365-2958.2005.04732.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IncP-9 plasmids are common in Pseudomonas species and can be transferred to other Gram-negative eubacteria but tend not to be stably maintained outside their natural host genus. A 1.3 kb ori V-rep fragment from IncP-9 plasmid pM3 was sufficient for autonomous replication in Pseudomonas putida but not in Escherichia coli. Replication of ori V-rep in E. coli was restored when additional rep was provided in trans, suggesting that the replication defect resulted from insufficient rep expression from its natural promoter. A promoter deficiency in E. coli was confirmed by reporter gene assays, transcriptional start point mapping and mutation of the promoter recognition elements. Dissection of the pM3 mini-replicon, pMT2, showed that this replication deficiency in E. coli is suppressed by additional determinants from its par operon: ParB, which can be supplied in trans, and its target, the par operon promoter, required in cis to ori V-rep. We propose that ParB binding to its target either changes plasmid DNA and thus promoter conformation or by spreading or looping contacts RNAP at the rep promoter so that rep expression is sufficient to activate ori V.
Collapse
|
27
|
Lambertsen LM, Molin S, Kroer N, Thomas CM. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440. Plasmid 2005; 52:169-81. [PMID: 15518874 DOI: 10.1016/j.plasmid.2004.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/01/2004] [Indexed: 11/26/2022]
Abstract
The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the IncP-9 transfer genes are transcribed from at least three promoter regions. The promoters for traA and traD act divergently from the region found to encode the origin of transfer, oriT. These promoters regulate expression of traA, B, and perhaps traC in one direction and traD in the other, all of whose gene products are predicted to be involved in relaxasome formation and DNA processing during transfer, and they are repressed by TraA. The third promoter region, upstream of mpfR, is responsible for transcription of mpfR and mpfA to mpfJ, encoding proteins involved in mating pair formation. Transcription from this region is negatively autoregulated by MpfR. Thus the pWW0 transfer genes, like those of the IncP-1 plasmids, are expressed at all times, but kept in control by a negative feed back loop to limit the metabolic burden on the host. Although many of the related mating pair formation systems are, as in pWW0, transcribed divergently from an operon for replication and/or stable inheritance functions, MpfR is not related to the known regulatory proteins of these other transfer systems outside those of the IncP-9 family and indeed the regulators tend to be specific for each plasmid family. This suggests that the general pattern of genetic organisation exhibited by these systems has arisen a number of times independently and must therefore be highly favourable to plasmid survival and spread.
Collapse
Affiliation(s)
- Lotte M Lambertsen
- Molecular Microbial Ecology Group, Centre for Biomedical Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
28
|
Korbel JO, Jensen LJ, von Mering C, Bork P. Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nat Biotechnol 2005; 22:911-7. [PMID: 15229555 DOI: 10.1038/nbt988] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several widely used methods for predicting functional associations between proteins are based on the systematic analysis of genomic context. Efforts are ongoing to improve these methods and to search for novel aspects in genomes that could be exploited for function prediction. Here, we use gene expression data to demonstrate two functional implications of genome organization: first, chromosomal proximity indicates gene coregulation in prokaryotes independent of relative gene orientation; and second, adjacent bidirectionally transcribed genes (that is,'divergently' organized coding regions) with conserved gene orientation are strongly coregulated. We further demonstrate that such bidirectionally transcribed gene pairs are functionally associated and derive from this a novel genomic context method that reliably predicts links between >2,500 pairs of genes in approximately 100 species. Around 650 of these functional associations are supported by other genomic context methods. In most instances, one gene encodes a transcriptional regulator, and the other a nonregulatory protein. In-depth analysis in Escherichia coli shows that the vast majority of these regulators both control transcription of the divergently transcribed target gene/operon and auto-regulate their own biosynthesis. The method thus enables the prediction of target processes and regulatory features for several hundred transcriptional regulators.
Collapse
Affiliation(s)
- Jan O Korbel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
Sanderson A, Mitchell JE, Minchin SD, Busby SJW. Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended -10 elements at promoters. FEBS Lett 2003; 544:199-205. [PMID: 12782316 DOI: 10.1016/s0014-5793(03)00500-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous work has shown that the base sequence of the DNA segment immediately upstream of the -10 hexamer at bacterial promoters (the extended -10 element) can make a significant contribution to promoter strength. Guided by recently published structural information, we used alanine scanning and suppression mutagenesis of Region 2.4 and Region 3.0 of the Escherichia coli RNA polymerase sigma(70) subunit to identify amino acid sidechains that play a role in recognition of this element. Our study shows that changes in these regions of the sigma(70) subunit can affect the recognition of different extended -10 element sequences.
Collapse
|