1
|
The Structural Characterization and Antipathogenic Activities of Quinoin, a Type 1 Ribosome-Inactivating Protein from Quinoa Seeds. Int J Mol Sci 2021; 22:ijms22168964. [PMID: 34445686 PMCID: PMC8396469 DOI: 10.3390/ijms22168964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.
Collapse
|
2
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
3
|
Liu WY. Research on ribosome-inactivating proteins from angiospermae to gymnospermae and cryptogamia. Am J Transl Res 2017; 9:5719-5742. [PMID: 29312524 PMCID: PMC5752922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Ribosome-inactivating Proteins (RIPs) are a group of cytotoxin proteins that usually contain a RNA N-glycosidase domain, which irreversibly inactivates ribosome, thus inhibiting protein synthesis. During the past 14 years (1990-2004), the studies conducted in our laboratory had been focusing on the structure and enzymatic mechanism of several PIPs. Herein, we briefly described a summary of the studies conducted mainly in our laboratory on RIPs from angiospermae to gymnospermae and cryptogamia as follows. (1) Cinnamomin is a novel type II RIP isolated from mature seeds of camphor tree. Like ricin, it specifically removes the adenine at A4324 in rat liver 28S rRNA. We systematically studied this low-toxic RIP in term of its enzymatic mechanism, the primary and crystal structure and the nucleotide sequence of its gene, the genetic expression, and its physiological role in the seed cell and the toxicity to human cancer cells and insect larvae. The cleavage of supercoiled double-stranded DNA was its intrinsic property of cinnamomin A-chain, its N- and C-terminal regions were found to be required for deadenylation of rRNA and also necessary for deadenylation of supercoiled double-stranded circular DNA. These results strongly excluded the possibility that cleavage of supercoiled DNA was due to nuclease contamination. (2) Trichosanthin, an abortifacient protein, was purified from the Chinese medicinal herb, Tian-hua-fen, obtained from root tubers of Chinese trichosanthes plant. We proved that trichosanthin was a RNA N-glycosidase, inactivating eukaryotic ribosome by hydrolyzing the N-C glycosidic bond of the adenose at site 4324 in rat 28S rRNA, and inhibited protein synthesis in vitro. (3) A unique Biota orientalis RNase (RNase Bo) was extracted from the mature seeds of the cypress cypress tree (Oriental arborvita), which was gymnospermae plant. It cleaved only a specific phosphodiester bond between C4453 and A4454 of 28S RNA in rat ribosomes, producing a small RNA-fragment (S-fragment), thus inhibiting protein synthesis and belonging to RNase-like RIP, similar to α-sarcin, a special RIP. (4) Lamjapin, the first RIP purified from kelp, the marine cryptogamia algal plant, was shown to be the first single-chained RNA N-glycosidase from marine plant to date. It hydrolyzed rat ribosomal 28S RNA to produce meanly a rather smaller RNA, shorter than the diagnostic R-fragment under the restricted condition. The significance of existence of type I RIP in the lower marine algal plant was briefly discussed.
Collapse
Affiliation(s)
- Wang-Yi Liu
- Institute of Biochemistry and Cell Biology, The Chinese Academy of Sciences 320 Yue-Yang RoadShanghai 200031, China
| |
Collapse
|
4
|
Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses. Int J Mol Sci 2017; 18:ijms18112300. [PMID: 29104238 PMCID: PMC5713270 DOI: 10.3390/ijms18112300] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.
Collapse
|
5
|
Di Maro A, Citores L, Russo R, Iglesias R, Ferreras JM. Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. PLANT MOLECULAR BIOLOGY 2014; 85:575-88. [PMID: 24880476 DOI: 10.1007/s11103-014-0204-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/16/2014] [Indexed: 05/16/2023]
Abstract
Ribosome-inactivating proteins (RIPs) from angiosperms are rRNA N-glycosidases that have been proposed as defence proteins against virus and fungi. They have been classified as type 1 RIPs, consisting of single-chain proteins, and type 2 RIPs, consisting of an A chain with RIP properties covalently linked to a B chain with lectin properties. In this work we have carried out a broad search of RIP sequence data banks from angiosperms in order to study their main structural characteristics and phylogenetic evolution. The comparison of the sequences revealed the presence, outside of the active site, of a novel structure that might be involved in the internal protein dynamics linked to enzyme catalysis. Also the B-chains presented another conserved structure that might function either supporting the beta-trefoil structure or in the communication between both sugar-binding sites. A systematic phylogenetic analysis of RIP sequences revealed that the most primitive type 1 RIPs were similar to that of the actual monocots (Poaceae and Asparagaceae). The primitive RIPs evolved to the dicot type 1 related RIPs (like those from Caryophyllales, Lamiales and Euphorbiales). The gene of a type 1 RIP related with the actual Euphorbiaceae type 1 RIPs fused with a double beta trefoil lectin gene similar to the actual Cucurbitaceae lectins to generate the type 2 RIPs and finally this gene underwent deletions rendering either type 1 RIPs (like those from Cucurbitaceae, Rosaceae and Iridaceae) or lectins without A chain (like those from Adoxaceae).
Collapse
Affiliation(s)
- Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100, Caserta, Italy
| | | | | | | | | |
Collapse
|
6
|
Ruggiero A, Di Maro A, Severino V, Chambery A, Berisio R. Crystal structure of PD-L1, a ribosome inactivating protein fromPhytolacca dioicaL. Leaves with the property to induce DNA cleavage. Biopolymers 2009; 91:1135-42. [DOI: 10.1002/bip.21260] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Azzi A, Wang T, Zhu DW, Zou YS, Liu WY, Lin SX. Crystal structure of native cinnamomin isoform III and its comparison with other ribosome inactivating proteins. Proteins 2009; 74:250-5. [DOI: 10.1002/prot.22251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Henderson TJ, Cullinan DB, Lawrence RJ, Oyler JM. Positive Identification of the Principal Component of a White Powder as Scopolamine by Quantitative One-Dimensional and Two-Dimensional NMR Techniques. J Forensic Sci 2008; 53:151-61. [DOI: 10.1111/j.1556-4029.2007.00606.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
. ND, . KM, . AUS, . HBK, . HP, . HS. Effect of Plant Extracts and Acetone Precipitated Proteins from Six Medicinal Plants Against Tobamovirus Infection. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/ijv.2007.80.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Wang T, Zou YS, Zhu DW, Azzi A, Liu WY, Lin SX. Cinnamomin: separation, crystallization and preliminary X-ray diffraction study. Amino Acids 2007; 34:239-43. [PMID: 17404804 DOI: 10.1007/s00726-006-0490-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Cinnamomin from Cinnamonum camphora seeds, a type II ribosome-inactivating protein that interferes with protein biosynthesis in mammalian cells, can induce the apoptosis of carcinoma cells and be used as an insecticide. A rapid and improved method has been developed for the extraction and purification of cinnamomin from camphora seed. Purification of cinnamomin is achieved with two successive steps of hydrophobic interaction chromatography carried out on a fast protein liquid chromatography (FPLC) system. Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion method. A complete data set at 2.8 A resolution has been collected. Data indexation and refinement indicate that the crystal is orthorhombic with space group P2(1)2(1)2(1) and unit cell dimensions a = 52.39 A, b = 126.33 A, c = 161.45 A. There are two molecules per asymmetric unit. Initial phasing by molecular replacement method yielded a solution, which will contribute to the structure determination. A molecular model will further the understanding of the mechanism of cinnamomin function. The latter will be combined with bio-informatics to facilitate the medical and other applications of cinnamomin.
Collapse
Affiliation(s)
- T Wang
- Structural Biology Platform, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
11
|
Ghosh P, Batra J. The differential catalytic activity of ribosome-inactivating proteins saporin 5 and 6 is due to a single substitution at position 162. Biochem J 2006; 400:99-104. [PMID: 16831127 PMCID: PMC1635434 DOI: 10.1042/bj20060895] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saporin, a type I ribosome-inactivating protein produced by the soapwort plant Saponaria officinalis belongs to a multigene family that encodes its several isoforms. The saporin seed isoform 6 has significantly higher N-glycosidase and cytotoxic activities compared with the seed isoform 5, although the two have identical active sites. In the present study, we have investigated the contribution of non-conservative amino acid changes outside the active sites of these isoforms towards their differential catalytic activity. The saporin 6 residues Lys134, Leu147, Phe149, Asn162, Thr188 and Asp196 were replaced by the corresponding saporin 5 residues, Gln134, Ser147, Ser149, Asp162, Ile188 and Asn196, to generate six variants of saporin 6, K134Q, L147S, F149S, N162D, T188I and D196N. By functional characterization, we show that the change in amino acid Asn162 in saporin 6 to aspartic acid residue of saporin 5 contributes mainly to the lower catalytic activity of saporin 5 compared with saporin 6. The non-involvement of other non-conservative amino acids in the differential catalytic activity of these isoforms was confirmed with the help of the double mutations N162D/K134Q, N162D/L147S, N162D/F149S, N162D/T188I and N162D/D196N.
Collapse
Affiliation(s)
- Paroma Ghosh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K. Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
12
|
Park SW, Vepachedu R, Sharma N, Vivanco JM. Ribosome-inactivating proteins in plant biology. PLANTA 2004; 219:1093-6. [PMID: 15605180 DOI: 10.1007/s00425-004-1357-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 07/12/2004] [Indexed: 05/24/2023]
Affiliation(s)
- Sang-Wook Park
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173, USA
| | | | | | | |
Collapse
|