1
|
Genetic suppressors of Δgrx3 Δgrx4, lacking redundant multidomain monothiol yeast glutaredoxins, rescue growth and iron homeostasis. Biosci Rep 2022; 42:231328. [PMID: 35593209 PMCID: PMC9202360 DOI: 10.1042/bsr20212665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.
Collapse
|
2
|
Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study. Sci Rep 2020; 10:10524. [PMID: 32601343 PMCID: PMC7324377 DOI: 10.1038/s41598-020-67439-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Thiosemicarbazones (TSC) and their metal complexes display diverse biological activities and are active against multiple pathological conditions ranging from microbial infections to abnormal cell proliferation. Ribonucleotide reductase (RNR) is considered one of the main targets of TSCs, yet, the existence of additional targets, differently responsible for the multifaceted activities of TSCs and their metal complexes has been proposed. To set the basis for a more comprehensive delineation of their mode of action, we chemogenomically profiled the cellular effects of bis(citronellalthiosemicarbazonato)nickel(II) [Ni(S-tcitr)2] using the unicellular eukaryote Saccharomyces cerevisiae as a model organism. Two complementary genomic phenotyping screens led to the identification of 269 sensitive and 56 tolerant deletion mutant strains and of 14 genes that when overexpressed make yeast cells resistant to an otherwise lethal concentration of Ni(S-tcitr)2. Chromatin remodeling, cytoskeleton organization, mitochondrial function and iron metabolism were identified as lead cellular processes responsible for Ni(S-tcitr)2 toxicity. The latter process, and particularly glutaredoxin-mediated iron loading of RNR, was found to be affected by Ni(S-tcitr)2. Given the multiple pathways regulated by glutaredoxins, targeting of these proteins by Ni(S-tcitr)2 can negatively affect various core cellular processes that may critically contribute to Ni(S-tcitr)2 cytotoxicity.
Collapse
|
3
|
MIYAKAWA I. Organization and dynamics of yeast mitochondrial nucleoids. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:339-359. [PMID: 28496055 PMCID: PMC5489437 DOI: 10.2183/pjab.93.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics.
Collapse
Affiliation(s)
- Isamu MIYAKAWA
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Correspondence should be addressed: I. Miyakawa, Department of Biology, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan (e-mail: )
| |
Collapse
|
4
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Mozolewska MA, Krupa P, Scheraga HA, Liwo A. Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches. Proteins 2015; 83:1414-26. [PMID: 25973573 DOI: 10.1002/prot.24824] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022]
Abstract
The iron-sulfur protein 1 (Isu1) and the J-type co-chaperone Jac1 from yeast are part of a huge ATP-dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron-sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1-Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I-TASSER server and YASARA software and thereafter tested for stability in the all-atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1-Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse-grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the Γ-shaped Jac1 molecule by the β-sheet section of Isu1. Residues L105 , L109 , and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1-12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N(95), T(98), P(102), H(112), V(159), L(167), and A(170) of Jac1, not yet tested experimentally, were also found to be important in binding.
Collapse
Affiliation(s)
- Magdalena A Mozolewska
- Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland.,Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853-1301
| | - Paweł Krupa
- Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland.,Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853-1301
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853-1301
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
6
|
Monné M, Palmieri F. Antiporters of the mitochondrial carrier family. CURRENT TOPICS IN MEMBRANES 2014; 73:289-320. [PMID: 24745987 DOI: 10.1016/b978-0-12-800223-0.00008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them. The structure of the bovine ADP/ATP carrier consists of a six-transmembrane α-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy; Department of Sciences, University of Basilicata, Potenza, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy.
| |
Collapse
|
7
|
Pandey A, Gordon DM, Pain J, Stemmler TL, Dancis A, Pain D. Frataxin directly stimulates mitochondrial cysteine desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster scaffold protein with frataxin-bypassing ability acts similarly. J Biol Chem 2013; 288:36773-86. [PMID: 24217246 PMCID: PMC3873537 DOI: 10.1074/jbc.m113.525857] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/09/2013] [Indexed: 01/17/2023] Open
Abstract
For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the "buried" substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.
Collapse
Affiliation(s)
- Alok Pandey
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101
| | - Donna M. Gordon
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101
| | - Jayashree Pain
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101
| | - Timothy L. Stemmler
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101
| |
Collapse
|
8
|
Identification of a Nfs1p-bound persulfide intermediate in Fe-S cluster synthesis by intact mitochondria. Mitochondrion 2012; 12:539-49. [PMID: 22813754 DOI: 10.1016/j.mito.2012.07.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/19/2023]
Abstract
Cysteine desulfurases generate a covalent persulfide intermediate from cysteine, and this activated form of sulfur is essential for the synthesis of iron-sulfur (Fe-S) clusters. In yeast mitochondria, there is a complete machinery for Fe-S cluster synthesis, including a cysteine desulfurase, Nfs1p. Here we show that following supplementation of isolated mitochondria with [(35)S]cysteine, a radiolabeled persulfide could be detected on Nfs1p. The persulfide persisted under conditions that did not permit Fe-S cluster formation, such as nucleotide and/or iron depletion of mitochondria. By contrast, under permissive conditions, the radiolabeled Nfs1p persulfide was greatly reduced and radiolabeled aconitase was formed, indicating transfer of persulfide to downstream Fe-S cluster recipients. Nfs1p in mitochondria was found to be relatively more resistant to inactivation by N-ethylmaleimide (NEM) as compared with a prokaryotic cysteine desulfurase. Mitochondria treated with NEM (1 mM) formed the persulfide on Nfs1p but failed to generate Fe-S clusters on aconitase, likely due to inactivation of downstream recipient(s) of the Nfs1p persulfide. Thus the Nfs1p-bound persulfide as described here represents a precursor en route to Fe-S cluster synthesis in mitochondria.
Collapse
|
9
|
Seguin A, Sutak R, Bulteau AL, Garcia-Serres R, Oddou JL, Lefevre S, Santos R, Dancis A, Camadro JM, Latour JM, Lesuisse E. Evidence that yeast frataxin is not an iron storage protein in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:531-8. [PMID: 20307653 DOI: 10.1016/j.bbadis.2010.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 03/14/2010] [Accepted: 03/16/2010] [Indexed: 11/29/2022]
Abstract
Yeast cells deficient in the yeast frataxin homolog (Yfh1p) accumulate iron in their mitochondria. Whether this iron is toxic, however, remains unclear. We showed that large excesses of iron in the growth medium did not inhibit growth and did not decrease cell viability. Increasing the ratio of mitochondrial iron-to-Yfh1p by decreasing the steady-state level of Yfh1p to less than 100 molecules per cell had very few deleterious effects on cell physiology, even though the mitochondrial iron concentration greatly exceeded the iron-binding capacity of Yfh1p in these conditions. Mössbauer spectroscopy and FPLC analyses of whole mitochondria or of isolated mitochondrial matrices showed that the chemical and biochemical forms of the accumulated iron in mitochondria of mutant yeast strains (Deltayfh1, Deltaggc1 and Deltassq1) displayed a nearly identical distribution. This was also the case for Deltaggc1 cells, in which Yfh1p was overproduced. In these mitochondria, most of the iron was insoluble, and the ratio of soluble-to-insoluble iron did not change when the amount of Yfh1p was increased up to 4500 molecules per cell. Our results do not privilege the hypothesis of Yfh1p being an iron storage protein in vivo.
Collapse
Affiliation(s)
- Alexandra Seguin
- Laboratoire Mitochondries, Métaux et Stress oxydant, Institut Jacques Monod, CNRS-Université Paris Diderot, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Froschauer EM, Schweyen RJ, Wiesenberger G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1044-50. [PMID: 19285482 DOI: 10.1016/j.bbamem.2009.03.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/28/2008] [Accepted: 03/05/2009] [Indexed: 11/16/2022]
Abstract
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe(2+) homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe(2+) utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe(2+) which was driven by the external Fe(2+) concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Delta failed to show this rapid Fe(2+) uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe(2+) uptake rates. Cu(2+) was transported at similar rates as Fe(2+), while other divalent cations, such as Zn(2+) and Cd(2+) apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe(2+) across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.
Collapse
Affiliation(s)
- Elisabeth M Froschauer
- Max F. Perutz Laboratories, Department of Genetics, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
11
|
Amutha B, Gordon DM, Gu Y, Lyver ER, Dancis A, Pain D. GTP is required for iron-sulfur cluster biogenesis in mitochondria. J Biol Chem 2008; 283:1362-1371. [PMID: 18029354 DOI: 10.1074/jbc.m706808200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.
Collapse
Affiliation(s)
- Boominathan Amutha
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07101
| | - Donna M Gordon
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07101
| | - Yajuan Gu
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07101
| | - Elise R Lyver
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07101.
| |
Collapse
|
12
|
Bulteau AL, Dancis A, Gareil M, Montagne JJ, Camadro JM, Lesuisse E. Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia. Free Radic Biol Med 2007; 42:1561-70. [PMID: 17448903 DOI: 10.1016/j.freeradbiomed.2007.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/10/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022]
Abstract
Friedreich ataxia has frequently been associated with an increased susceptibility to oxidative stress. We used the yeast (Saccharomyces cerevisiae) model of Friedreich ataxia to study the physiological consequences of a shift from anaerobiosis to aerobiosis. Cells lacking frataxin (Deltayfh1) showed no growth defect when cultured anaerobically. Under these conditions, a significant amount of aconitase was functional, with an intact 4 Fe/4 S cluster. When shifted to aerobic conditions, aconitase was rapidly degraded, and oxidatively modified proteins (carbonylated and HNE-modified proteins) accumulated in both the cytosol and the mitochondria. The ATP-dependent mitochondrial protease Pim1 (Lon) was strongly activated, although its expression level remained unchanged, and the cytosolic activity of the 20S proteasome was greatly decreased, compared to that in wild-type cells. Analysis of the purified proteasome revealed that the decrease in proteasome activity was likely due to both direct inactivation of the enzyme and inhibition by cytosolic oxidized proteins. These features indicate that the cells were subjected to major oxidative stress triggered by oxygen. Accumulation of oxidatively modified proteins, activation of Pim1, and proteasome inhibition did not directly depend on the amount of mitochondrial iron, because these phenotypes remained unchanged when the cells were grown under iron-limiting conditions, and these phenotypes were not observed in another mutant (Deltaggc1) which overaccumulates iron in its mitochondrial compartment. We conclude that oxygen is primarily involved in generating the deleterious phenotypes that are observed in frataxin-deficient yeast cells.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Universite Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Pierrel F, Cobine PA, Winge DR. Metal Ion availability in mitochondria. Biometals 2007; 20:675-82. [PMID: 17225062 DOI: 10.1007/s10534-006-9052-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Transition metal ions are required for many aspects of mitochondrial physiology. Copper, iron, manganese and zinc are cofactors in metalloenzymes and metalloproteins within the organelle. Little is known how cells maintain optimal pools of these metal ions for mitochondrial function. This review documents the available literature on mitochondrial metal ion pools and protein metallation reactions. Upon perturbation in metal pools, mis-metallation reactions do occur. Thus, regulation of metal ion accessibility and bioavailability must exist.
Collapse
Affiliation(s)
- Fabien Pierrel
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
14
|
|
15
|
Gordon D, Lyver E, Lesuisse E, Dancis A, Pain D. GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis. Biochem J 2006; 400:163-8. [PMID: 16842238 PMCID: PMC1635451 DOI: 10.1042/bj20060904] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria are the major site of cellular iron utilization for the synthesis of essential cofactors such as iron-sulfur clusters and haem. In the present study, we provide evidence that GTP in the mitochondrial matrix is involved in organellar iron homoeostasis. A mutant of yeast Saccharomyces cerevisiae lacking the mitochondrial GTP/GDP carrier protein (Ggc1p) exhibits decreased levels of matrix GTP and increased levels of matrix GDP [Vozza, Blanco, Palmieri and Palmieri (2004) J. Biol. Chem. 279, 20850-20857]. This mutant (previously called yhm1) also manifests high cellular iron uptake and tremendous iron accumulation within mitochondria [Lesuisse, Lyver, Knight and Dancis (2004) Biochem. J. 378, 599-607]. The reason for these two very different phenotypic defects of the same yeast mutant has so far remained elusive. We show that in vivo targeting of a human nucleoside diphosphate kinase (Nm23-H4), which converts ATP into GTP, to the matrix of ggc1 mutants restores normal iron regulation. Thus the role of Ggc1p in iron metabolism is mediated by effects on GTP/GDP levels in the mitochondrial matrix.
Collapse
Affiliation(s)
- Donna M. Gordon
- *Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, NJ 07103, U.S.A
| | - Elise R. Lyver
- †Department of Medicine, Division of Haematology–Oncology, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Emmanuel Lesuisse
- ‡Laboratoire d'Ingénierie des Protéines et Contrôle Métabolique, Institut Jacques Monod, Tour 43, Université Paris 7/Paris 6, Paris, France
| | - Andrew Dancis
- †Department of Medicine, Division of Haematology–Oncology, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Debkumar Pain
- *Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, NJ 07103, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Yang M, Jensen L, Gardner A, Culotta V. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem J 2005; 386:479-87. [PMID: 15498024 PMCID: PMC1134866 DOI: 10.1042/bj20041582] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Manganese is an essential, but potentially toxic, trace metal in biological systems. Overexposure to manganese is known to cause neurological deficits in humans, but the pathways that lead to manganese toxicity are largely unknown. We have employed the bakers' yeast Saccharomyces cerevisiae as a model system to identify genes that contribute to manganese-related damage. In a genetic screen for yeast manganese-resistance mutants, we identified S. cerevisiae MAM3 as a gene which, when deleted, would increase cellular tolerance to toxic levels of manganese and also increased the cell's resistance towards cobalt and zinc. By sequence analysis, Mam3p shares strong similarity with the mammalian ACDP (ancient conserved domain protein) family of polypeptides. Mutations in human ACDP1 have been associated with urofacial (Ochoa) syndrome. However, the functions of eukaryotic ACDPs remain unknown. We show here that S. cerevisiae MAM3 encodes an integral membrane protein of the yeast vacuole whose expression levels directly correlate with the degree of manganese toxicity. Surprisingly, Mam3p contributes to manganese toxicity without any obvious changes in vacuolar accumulation of metals. Furthermore, through genetic epistasis studies, we demonstrate that MAM3 operates independently of the well-established manganese-trafficking pathways in yeast, involving the manganese transporters Pmr1p, Smf2p and Pho84p. This is the first report of a eukaryotic ACDP family protein involved in metal homoeostasis.
Collapse
Affiliation(s)
- Mei Yang
- *Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Laran T. Jensen
- *Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Allison J. Gardner
- †Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A
| | - Valeria C. Culotta
- *Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A
- †Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Rouault TA, Tong WH. Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 2005; 6:345-51. [PMID: 15803140 DOI: 10.1038/nrm1620] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iron-sulphur clusters are important cofactors for proteins that are involved in many cellular processes, including electron transport, enzymatic catalysis and regulation. The enzymes that catalyse the formation of iron-sulphur clusters are widely conserved from bacteria to humans. Recent studies in model systems and humans reveal that iron-sulphur proteins have important roles in mitochondrial iron homeostasis and in the pathogenesis of the human disease Friedreich ataxia.
Collapse
Affiliation(s)
- Tracey A Rouault
- National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
18
|
Kwok E, Kosman D. Iron in yeast: Mechanisms involved in homeostasis. TOPICS IN CURRENT GENETICS 2005. [DOI: 10.1007/4735_92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Lesuisse E, Knight SAB, Courel M, Santos R, Camadro JM, Dancis A. Genome-wide screen for genes with effects on distinct iron uptake activities in Saccharomyces cerevisiae. Genetics 2004; 169:107-22. [PMID: 15489514 PMCID: PMC1448889 DOI: 10.1534/genetics.104.035873] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We screened a collection of 4847 haploid knockout strains (EUROSCARF collection) of Saccharomyces cerevisiae for iron uptake from the siderophore ferrioxamine B (FOB). A large number of mutants showed altered uptake activities, and a few turned yellow when grown on agar plates with added FOB, indicating increased intracellular accumulation of undissociated siderophores. A subset consisting of 197 knockouts with altered uptake was examined further for regulated activities that mediate cellular uptake of iron from other siderophores or from iron salts. Hierarchical clustering analysis grouped the data according to iron sources and according to mutant categories. In the first analysis, siderophores grouped together with the exception of enterobactin, which grouped with iron salts, suggesting a reductive pathway of iron uptake for this siderophore. Mutant groupings included three categories: (i) high-FOB uptake, high reductase, low-ferrous transport; (ii) isolated high- or low-FOB transport; and (iii) induction of all activities. Mutants with statistically altered uptake activities included genes encoding proteins with predominant localization in the secretory pathway, nucleus, and mitochondria. Measurements of different iron-uptake activities in the yeast knockout collection make possible distinctions between genes with general effects on iron metabolism and those with pathway-specific effects.
Collapse
Affiliation(s)
- Emmanuel Lesuisse
- Laboratoire d'Ingéniérie des Protéines et Contrôle Métabolique, Département de Biologie des Génomes, Institut Jacques Monod, Unité Mixte de Recherche 7592 CNRS-Universités Paris 6 and 7, France.
| | | | | | | | | | | |
Collapse
|
20
|
Li L, Kaplan J. A Mitochondrial-Vacuolar Signaling Pathway in Yeast That Affects Iron and Copper Metabolism. J Biol Chem 2004; 279:33653-61. [PMID: 15161905 DOI: 10.1074/jbc.m403146200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria utilize iron, but the transporters that mediate mitochondrial iron uptake and efflux are largely unknown. Cells with a deletion in the vacuolar iron/manganese transporter Ccc1p are sensitive to high iron. Overexpression of MRS3 or MRS4 suppresses the high iron sensitivity of Deltaccc1 cells. MRS3 and MRS4 have recently been suggested to encode mitochondrial iron transporters. We demonstrate that deletion of MRS3 and MRS4 severely affects cellular and mitochondrial metal homeostasis, including a reduction in cytosolic and mitochondrial iron acquisition. We show that vacuolar iron transport is increased in Deltamrs3Deltamrs4 cells, resulting in decreased cytosolic iron and activation of the iron-sensing transcription factor Aft1p. Activation of Aft1p leads to increased expression of the high affinity iron transport system and increased iron uptake. Deletion of CCC1 in Deltamrs3Deltamrs4 cells restores cellular and mitochondrial iron homeostasis to near normal levels. Deltamrs3Deltamrs4 cells also show increased resistance to cobalt but decreased resistance to copper and cadmium. These phenotypes are also corrected by deletion of CCC1 in Deltamrs3Deltamrs4 cells. Decreased copper resistance in Deltamrs3Deltamrs4 cells results from activation of Aft1p by Ccc1p-mediated iron depletion, as deletion of CCC1 or AFT1 in Deltamrs3Deltamrs4 cells restores copper resistance. These results suggest that deletion of mitochondrial proteins can alter vacuolar metal homeostasis. The data also indicate that increased expression of the AFT1-regulated gene(s) can disrupt copper homeostasis.
Collapse
Affiliation(s)
- Liangtao Li
- Division of Immunology and Cell Biology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|