1
|
Agarwal NR, Kachhawa G, Oyeyemi BF, Bhavesh NS. Urine Metabolomics Reveals Overlapping Metabolic Associations Between Preeclampsia and Gestational Diabetes. Indian J Clin Biochem 2024; 39:356-364. [PMID: 39005861 PMCID: PMC11239642 DOI: 10.1007/s12291-022-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Pregnancy is associated with numerous metabolic adaptations to meet the demands of the growing foetus. These adaptations could be perturbed during pregnancy due to preeclampsia (PE) and gestational diabetes (GDM). As these two obstetric aliments show some overlapping pathophysiology and similar biochemical dysregulation, the present study was undertaken to compare urine metabolome of PE and GDM with normal pregnancy (NT) in all trimesters of gestation using nuclear magnetic resonance spectroscopy-based metabolomics analysis to ascertain and compare metabolome in the study groups. We observed overlapping metabolic perturbations in PE and GDM. Though a study with a small sample size, this is the first report which confirms significantly differential metabolites in urine of both PE and GDM. Dimethylglycine and oxoglutaric acid were decreased while benzoic acid was increased in both the cases in all trimesters. Alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, citrate and butanoate metabolism were the most perturbed pathways in both PE and GDM across pregnancy. These pathways have an association with energy metabolism, glucose homeostasis, insulin sensitivity and oxidative stress which play an important role in the development and progression of PE and GDM. In conclusion, our study showed that urine metabolome could reflect metabolic associations between PE and GDM and also in the identification of biomolecules that could be used as potential biomarker(s) for early detection of the metabolic diseases in pregnancy. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01103-2.
Collapse
Affiliation(s)
- Nupur Rani Agarwal
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Garima Kachhawa
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029 India
| | - Bolaji Fatai Oyeyemi
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
- Department of Science Technology, The Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, Nigeria
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
2
|
Tamarit-Rodriguez J. Metabolic Role of GABA in the Secretory Function of Pancreatic β-Cells: Its Hypothetical Implication in β-Cell Degradation in Type 2 Diabetes. Metabolites 2023; 13:697. [PMID: 37367856 DOI: 10.3390/metabo13060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The stimulus-secretion coupling of a glucose-induced release is generally attributed to the metabolism of the hexose in the β-cells in the glycolytic pathway and the citric acid cycle. Glucose metabolism generates an increased cytosolic concentration of ATP and of the ATP/ADP ratio that closes the ATP-dependent K+-channel at the plasma membrane. The resultant depolarization of the β-cells opens voltage-dependent Ca2+-channels at the plasma membrane that triggers the exocytosis of insulin secretory granules. The secretory response is biphasic with a first and transient peak followed by a sustained phase. The first phase is reproduced by a depolarization of the β-cells with high extracellular KCl maintaining the KATP-channels open with diazoxide (triggering phase); the sustained phase (amplifying phase) depends on the participation of metabolic signals that remain to be determined. Our group has been investigating for several years the participation of the β-cell GABA metabolism in the stimulation of insulin secretion by three different secretagogues (glucose, a mixture of L-leucine plus L-glutamine, and some branched chain alpha-ketoacids, BCKAs). They stimulate a biphasic secretion of insulin accompanied by a strong suppression of the intracellular islet content of gamma-aminobutyric acid (GABA). As the islet GABA release simultaneously decreased, it was concluded that this resulted from an increased GABA shunt metabolism. The entrance of GABA into the shunt is catalyzed by GABA transaminase (GABAT) that transfers an amino group between GABA and alpha-ketoglutarate, resulting in succinic acid semialdehyde (SSA) and L-glutamate. SSA is oxidized to succinic acid that is further oxidized in the citric acid cycle. Inhibitors of GABAT (gamma-vinyl GABA, gabaculine) or glutamic acid decarboxylating activity (GAD), allylglycine, partially suppress the secretory response as well as GABA metabolism and islet ATP content and the ATP/ADP ratio. It is concluded that the GABA shunt metabolism contributes together with the own metabolism of metabolic secretagogues to increase islet mitochondrial oxidative phosphorylation. These experimental findings emphasize that the GABA shunt metabolism is a previously unrecognized anaplerotic mitochondrial pathway feeding the citric acid cycle with a β-cell endogenous substrate. It is therefore a postulated alternative to the proposed mitochondrial cataplerotic pathway(s) responsible for the amplification phase of insulin secretion. It is concluded the new postulated alternative suggests a possible new mechanism of β-cell degradation in type 2 (perhaps also in type 1) diabetes.
Collapse
|
3
|
Jingjing E, Jingya Z, Rongze M, Zichao C, Caiqing Y, Ruixue W, Qiaoling Z, Ying Y, Jing L, Junguo W. Study of the internal mechanism of L-glutamate for improving the survival rate of Lactiplantibacillus plantarum LIP-1 after freeze-drying. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Cho JH, Lee KM, Lee YI, Nam HG, Jeon WB. Glutamate decarboxylase 67 contributes to compensatory insulin secretion in aged pancreatic islets. Islets 2019; 11:33-43. [PMID: 31084527 PMCID: PMC6548491 DOI: 10.1080/19382014.2019.1599708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pancreatic islets play an essential role in regulating blood glucose levels. Age-dependent development of glucose intolerance and insulin resistance results in hyperglycemia, which in turn stimulates insulin synthesis and secretion from aged islets, to fulfill the increased demand for insulin. However, the mechanism underlying enhanced insulin secretion remains unknown. Glutamic acid decarboxylase 67 (GAD67) catalyzes the conversion of glutamate into γ-aminobutyric acid (GABA) and CO2. Both glutamate and GABA can affect islet function. Here, we investigated the role of GAD67 in insulin secretion in young (3 month old) and aged (24 month old) C57BL/6J male mice. Unlike young mice, aged mice displayed glucose-intolerance and insulin-resistance. However, aged mice secreted more insulin and showed lower fed blood glucose levels than young mice. GAD67 levels in primary islets increased with aging and in response to high glucose levels. Inhibition of GAD67 activity using a potent inhibitor of GAD, 3-mercaptopropionic acid, abrogated glucose-stimulated insulin secretion from a pancreatic β-cell line and from young and aged islets. Collectively, our results suggest that blood glucose levels regulate GAD67 expression, which contributes to β-cell responses to impaired glucose homeostasis caused by advanced aging.
Collapse
Affiliation(s)
- Jung Hoon Cho
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Korea
| | - Kyeong-Min Lee
- Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu, Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Korea
- Department of New Biology, DGIST, Daegu, Korea
| | - Won Bae Jeon
- Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu, Korea
- Department of New Biology, DGIST, Daegu, Korea
- CONTACT Won Bae Jeon Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu 42988, Korea
| |
Collapse
|
5
|
Pizarro-Delgado J, Deeney JT, Corkey BE, Tamarit-Rodriguez J. Direct Stimulation of Islet Insulin Secretion by Glycolytic and Mitochondrial Metabolites in KCl-Depolarized Islets. PLoS One 2016; 11:e0166111. [PMID: 27851770 PMCID: PMC5112877 DOI: 10.1371/journal.pone.0166111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/24/2016] [Indexed: 11/26/2022] Open
Abstract
We have previously demonstrated that islet depolarization with 70 mM KCl opens Cx36 hemichannels and allows diffusion of small metabolites and cofactors through the β-cell plasma membrane. We have investigated in this islet “permeabilized” model whether glycolytic and citric acid cycle intermediates stimulate insulin secretion and how it correlates with ATP production (islet content plus extracellular nucleotide accumulation). Glycolytic intermediates (10 mM) stimulated insulin secretion and ATP production similarly. However, they showed differential sensitivities to respiratory chain or enzyme inhibitors. Pyruvate showed a lower secretory capacity and less ATP production than phosphoenolpyruvate, implicating an important role for glycolytic generation of ATP. ATP production by glucose-6-phosphate was not sensitive to a pyruvate kinase inhibitor that effectively suppressed the phosphoenolpyruvate-induced secretory response and islet ATP rise. Strong suppression of both insulin secretion and ATP production induced by glucose-6-phosphate was caused by 10 μM antimycin A, implicating an important role for the glycerophosphate shuttle in transferring reducing equivalents to the mitochondria. Five citric acid cycle intermediates were investigated for their secretory and ATP production capacity (succinate, fumarate, malate, isocitrate and α-ketoglutarate at 5 mM, together with ADP and/or NADP+ to feed the NADPH re-oxidation cycles). The magnitude of the secretory response was very similar among the different mitochondrial metabolites but α-ketoglutarate showed a more sustained second phase of secretion. Gabaculine (1 mM, a GABA-transaminase inhibitor) suppressed the second phase of secretion and the ATP-production stimulated by α-ketoglutarate, supporting a role for the GABA shuttle in the control of glucose-induced insulin secretion. None of the other citric acid intermediates essayed showed any suppression of both insulin secretion or ATP-production by the presence of gabaculine. We propose that endogenous GABA metabolism in the “GABA-shunt” facilitates ATP production in the citric acid cycle for an optimal insulin secretion.
Collapse
Affiliation(s)
- Javier Pizarro-Delgado
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Biochemistry Department, Medical School, Complutense University, Madrid, Spain
| | - Jude T. Deeney
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Barbara E. Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Jorge Tamarit-Rodriguez
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Biochemistry Department, Medical School, Complutense University, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the endocrine pancreas: a new target for diabetes treatment. Diabetes Metab Syndr Obes 2015; 8:79-87. [PMID: 25678807 PMCID: PMC4322886 DOI: 10.2147/dmso.s50642] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Excessive loss of functional pancreatic β-cell mass, mainly due to apoptosis, is a major factor in the development of hyperglycemia in both type 1 and type 2 diabetes (T1D and T2D). In T1D, β-cells are destroyed by immunological mechanisms. In T2D, while metabolic factors are known to contribute to β-cell failure and subsequent apoptosis, mounting evidence suggests that islet inflammation also plays an important role in the loss of β-cell mass. Therefore, it is of great importance for clinical intervention to develop new therapies. γ-Aminobutyric acid (GABA), a major neurotransmitter, is also produced by islet β-cells, where it functions as an important intraislet transmitter in regulating islet-cell secretion and function. Importantly, recent studies performed in rodents, including in vivo studies of xenotransplanted human islets, reveal that GABA exerts β-cell regenerative effects. Moreover, it protects β-cells against apoptosis induced by cytokines, drugs, and other stresses, and has anti-inflammatory and immunoregulatory activities. It ameliorates the manifestations of diabetes in preclinical models, suggesting potential applications for the treatment of diabetic patients. This review outlines the actions of GABA relevant to β-cell regeneration, including its signaling mechanisms and potential interactions with other mediators. These studies increase our understanding of the regenerative processes of pancreatic β-cells, and help pave the way for the development of regenerative medicine for diabetes.
Collapse
Affiliation(s)
- Yun Wan
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Medical College, Fudan University, Shanghai, People’s Republic of China
- Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science of St Michael’s Hospital, Toronto, ON, Canada
- Departments of Physiology and Medicine, Faculty of Medicine, Toronto, ON, Canada
- Correspondence: Qinghua Wang, Division of Endocrinology and Metabolism, St Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada, Tel +1 416 864 6060 ext 77 610, Fax +1 416 864 5140, Email
| | - Gerald J Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Vetterli L, Carobbio S, Pournourmohammadi S, Martin-Del-Rio R, Skytt DM, Waagepetersen HS, Tamarit-Rodriguez J, Maechler P. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase. Mol Biol Cell 2012; 23:3851-62. [PMID: 22875990 PMCID: PMC3459861 DOI: 10.1091/mbc.e11-08-0676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The amino acid profile and the secretory responses of glutamate dehydrogenase (GDH)-deficient β-cells are characterized. This study shows that GDH is essential for both insulin release and net glutamate synthesis evoked by glucose. Adding cellular glutamate restored the full development of glucose-stimulated insulin secretion, showing the requirement for permissive glutamate levels. In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.
Collapse
Affiliation(s)
- Laurène Vetterli
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Newsholme P, Krause M. Nutritional regulation of insulin secretion: implications for diabetes. Clin Biochem Rev 2012; 33:35-47. [PMID: 22896743 PMCID: PMC3387883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pancreatic β-cells are exquisitely organised to continually monitor and respond to dietary nutrients, under the modulation of additional neurohormonal signals, in order to secrete insulin to best meet the needs of the organism. β-cell nutrient sensing requires complex mechanisms of metabolic activation, resulting in production of stimulus-secretion coupling signals that promote insulin biosynthesis and release. The primary stimulus for insulin secretion is an elevation in blood glucose concentration and β-cells are particularly responsive to this important nutrient secretagogue via the tight regulation of glycolytic and mitochondrial pathways at steps such as glucokinase, pyruvate dehydrogenase, pyruvate carboxylase, glutamate dehydrogenase and mitochondrial redoxshuttles. With respect to development of type-2 diabetes (T2DM), it is important to consider individual effects of different classes of nutrient or other physiological or pharmacological agents on metabolism and insulin secretion and to also acknowledge and examine the interplay between glucose metabolism and that of the two other primary nutrient classes, amino acids (such as arginine and glutamine) and fatty acids. It is the mixed nutrient sensing and outputs of glucose, amino and fatty acid metabolism that generate the metabolic coupling factors (MCFs) essential for signalling for insulin exocytosis. Primary MCFs in the β-cell include ATP, NADPH, glutamate, long chain acyl coenzyme A and diacylglycerol. It is the failure to generate MCFs in a coordinated manner and at sufficient levels that underlies the failure of β-cell secretion during the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Mauricio Krause
- Biomedical Research Group, Department of Science, ITT Dublin, Ireland
- School of Public Health, Physiotherapy & Population Science, UCD Dublin 4, Ireland
| |
Collapse
|
9
|
An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 2012; 107:686-98. [PMID: 22484112 DOI: 10.1016/j.physbeh.2012.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and "flight" associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypic features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO(2), or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model's predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders.
Collapse
|
10
|
Huypens PR, Huang M, Joseph JW. Overcoming the spatial barriers of the stimulus secretion cascade in pancreatic β-cells. Islets 2012; 4:1-116. [PMID: 22143007 DOI: 10.4161/isl.18338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of the pancreatic β-cells to adapt the rate of insulin release in accordance to changes in circulating glucose levels is essential for glucose homeostasis. Two spatial barriers imposed by the plasma membrane and inner mitochondrial membrane need to be overcome in order to achieve stringent coupling between the different steps in the stimulus-secretion cascade. The first spatial barrier is overcome by the presence of a glucose transporter (GLUT) in the plasma membrane, whereas a low affinity hexokinase IV (glucokinase, GK) in the cytosol conveys glucose availability into a metabolic flux that triggers and accelerates insulin release. The mitochondrial inner membrane comprises a second spatial barrier that compartmentalizes glucose metabolism into glycolysis (cytosol) and tricarboxylate (TCA) cycle (mitochondrial matrix). The exchange of metabolites between cytosol and mitochondrial matrix is mediated via a set of mitochondrial carriers, including the aspartate-glutamate carrier (aralar1), α- ketoglutarate carrier (OGC), ATP/ADP carrier (AAC), glutamate carrier (GC1), dicarboxylate carrier (DIC) and citrate/isocitrate carrier (CIC). The scope of this review is to provide an overview of the role these carriers play in stimulus-secretion coupling and discuss the importance of these findings in the context of the exquisite glucose responsive state of the pancreatic β-cell.
Collapse
Affiliation(s)
- Peter R Huypens
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Mei Huang
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Jamie W Joseph
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| |
Collapse
|
11
|
Feldmann N, del Rio RM, Gjinovci A, Tamarit-Rodriguez J, Wollheim CB, Wiederkehr A. Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Mol Cell Endocrinol 2011; 338:46-57. [PMID: 21371522 DOI: 10.1016/j.mce.2011.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
Abstract
Glutamate is generated during nutrient stimulation of pancreatic islets and has been proposed to act both as an intra- and extra-cellular messenger molecule. We demonstrate that glutamate is not co-secreted with the hormones from intact islets or purified α- and β-cells. Fractional glutamate release was 5-50 times higher than hormone secretion. Furthermore, various hormone secretagogues did not elicit glutamate efflux. Interestingly, epinephrine even decreased glutamate release while increasing glucagon secretion. Rather than being co-secreted with hormones, we show that glutamate is mainly released via plasma membrane excitatory amino acid transporters (EAAT) by uptake reversal. Transcripts for EAAT1, 2 and 3 were present in both rat α- and β-cells. Inhibition of EAATs by L-trans-pyrrolidine-2,4-dicarboxylate augmented intra-cellular glutamate and α-ketoglutarate contents and potentiated glucose-stimulated insulin secretion from islets and purified β-cells without affecting glucagon secretion from α-cells. In conclusion, intra-cellular glutamate-derived metabolite pools are linked to glucose-stimulated insulin but not glucagon secretion.
Collapse
Affiliation(s)
- Nicole Feldmann
- Department of Cell Physiology and Metabolism, University Medical Centre, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Glucose promotion of GABA metabolism contributes to the stimulation of insulin secretion in β-cells. Biochem J 2010; 431:381-9. [PMID: 20695849 DOI: 10.1042/bj20100714] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated recently that branched-chain α-keto acid stimulation of insulin secretion is dependent on islet GABA (γ-aminobutyric acid) metabolism: GABA transamination to succinic semialdehyde is increased by 2-oxoglutarate, generated in α-keto acid transamination to its corresponding α-amino acid. The present work was aimed at investigating whether glucose also promotes islet GABA metabolism and whether the latter contributes to the stimulation of insulin secretion. Glucose (20 mM) decreased both the content and release of islet GABA. Gabaculine (1 mM), a GABA transaminase inhibitor, partially suppressed the secretory response of rat perifused islets to 20 mM glucose at different L-glutamine concentrations (0, 1 and 10 mM), as well as the glucose-induced decrease in islet GABA. The drug also reduced islet ATP content and the ATP/ADP ratio at 20 mM glucose. Exogenous succinic semialdehyde induced a dose-dependent increase in islet GABA content by reversal of GABA transamination and a biphasic insulin secretion in the absence of glucose. It depolarized isolated β-cells and triggered action potential firing, accompanied by a reduction of membrane currents through ATP-sensitive K(+) channels. The gene expression and enzyme activity of GABA transaminase were severalfold higher than that of 2-oxoglutarate dehydrogenase in islet homogenates. We conclude that, at high glucose concentrations, there is an increased diversion of glucose metabolism from the citric acid cycle into the 'GABA shunt'. Semialdehyde succinic acid is a cell-permeant 'GABA-shunt' metabolite that increases ATP and the ATP/ADP ratio, depolarizes β-cells and stimulates insulin secretion. In summary, an increased islet GABA metabolism may trigger insulin secretion.
Collapse
|
13
|
Molosh AI, Johnson PL, Fitz SD, DiMicco JA, Herman JP, Shekhar A. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder. Neuropsychopharmacology 2010; 35:1333-47. [PMID: 20130534 PMCID: PMC2855744 DOI: 10.1038/npp.2010.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.
Collapse
Affiliation(s)
- Andre I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie D Fitz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph A DiMicco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James P Herman
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, Cincinnati, OH, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Psychiatry, Indiana University School of Medicine, 1111 West 10th Street, Indianapolis, IN 46202, USA, Tel: +1 317 278 9047, Fax: +1 317 278 9739, E-mail:
| |
Collapse
|
14
|
Branched-chain 2-oxoacid transamination increases GABA-shunt metabolism and insulin secretion in isolated islets. Biochem J 2009; 419:359-68. [PMID: 19173679 DOI: 10.1042/bj20081731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously shown that oxo-4-methylpentanoate promotes islet GABA (gamma-aminobutyric acid) metabolism and stimulates insulin secretion. The main aim of this work was to explore the participation of the transamination of branched-chain 2-oxoacids in these processes with the aid of several inhibitors of this enzyme activity. No correlation was found between the transamination of branched-chain 2-oxoacids in islet homogenates and insulin secretion. However, in vivo transamination rates correlated better with the secretion capacity of the different branched-chain 2-oxoacids. Gabapentin, a specific inhibitor of the cytosolic isoenzyme, showed greater potential to decrease the in vitro transamination rates of oxo-3-methylbutyrate and oxo-3-methylpentanoate than those of oxo-4-methylpentanoate and oxohexanoate; this correlated with its capacity to decrease insulin secretion. 4-Methylvaleric acid very strongly inhibited the transamination of all the branched-chain 2-oxoacids and blocked their capacity to decrease islet GABA and to stimulate insulin secretion. KCl at 70 mM at stimulated islet GABA release, subsequently decreasing its tissue concentration. This 'non-metabolic' decrease of GABA suppressed the second phase of insulin secretion triggered by oxo-4-methylpentanoate and oxohexanoate. Oxo-4-methylpentanoate and oxo-3-methylpentanoate suppressed dose-dependent 2-oxoglutarate dehydrogenase activity in islet homogenates. In conclusion, the transamination of branchedchain 2-oxoacids is more important to the stimulation of insulin secretion than their catabolism, and transamination decreases islet GABA concentrations by promoting GABA metabolism. Also, inhibition of 2-oxoglutarate dehydrogenase by branched-chain 2-oxoacids may increase metabolic flux in the 'GABA-shunt' at the expense of reduced tricarboxylic acid cycle flux.
Collapse
|
15
|
Gammelsaeter R, Jenstad M, Bredahl MKL, Gundersen V, Chaudhry FA. Complementary expression of SN1 and SAT2 in the islets of Langerhans suggests concerted action of glutamine transport in the regulation of insulin secretion. Biochem Biophys Res Commun 2009; 381:378-82. [PMID: 19233140 DOI: 10.1016/j.bbrc.2009.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 11/29/2022]
Abstract
Insulin and glucagon secretion from the islets of Langerhans is highly regulated. Although an increased plasma glucose level is the major stimulus for insulin exocytosis, roles for glutamine and glutamate have been suggested. Interestingly, the islet cells display elements associated with synaptic transmission. In the central nervous system (CNS), glutamine transport by SN1 and SAT2 sustain the generation of neurotransmitter glutamate. We hypothesized that the same transporters are essential for glutamine transport into the islet cells and for subsequent formation of glutamate acting as an intracellular signaling molecule. We demonstrate that islet cells express several transporters which can mediate glutamine transport. In particular, we show pronounced expression of SN1 and SAT2 in B-cells and A-cells, respectively. The cell-specific expression of these transporters together with their functional characteristics suggest an important role for glutamine in the regulation of insulin secretion.
Collapse
Affiliation(s)
- R Gammelsaeter
- The Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
16
|
Willenborg M, Panten U, Rustenbeck I. Triggering and amplification of insulin secretion by dimethyl alpha-ketoglutarate, a membrane permeable alpha-ketoglutarate analogue. Eur J Pharmacol 2009; 607:41-6. [PMID: 19233162 DOI: 10.1016/j.ejphar.2009.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 01/29/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Cytosolic alpha-ketoglutarate is a potential signalling compound at late steps of stimulus-secretion-coupling in the course of insulin secretion induced by glucose and other fuels. This hypothesis is mainly based on the insulin-releasing effect of the membrane permeable ester dimethyl alpha-ketoglutarate which enters the beta-cell and is cleaved to produce cytosolic monomethyl alpha-ketoglutarate and eventually alpha-ketoglutarate. The present study tested this hypothesis. Insulin release, K(ATP) channel currents, membrane potential, ATP/ADP ratio and fluorescence of NAD(P)H (reduced pyridine nucleotides) were measured in mouse pancreatic islets and beta-cells. At a substimulatory glucose concentration (5 mM), dimethyl alpha-ketoglutarate (15 mM) produced a sustained insulin release, but no change of the islet ATP/ADP ratio and NAD(P)H fluorescence. In the absence of glucose, however, dimethyl alpha-ketoglutarate (15 mM) did not stimulate insulin release although it increased the ATP/ADP ratio and NAD(P)H fluorescence. Insulin secretion induced by a maximally effective concentration of the K(ATP) channel-blocking sulfonylurea glipizide was strongly amplified by dimethyl alpha-ketoglutarate in the presence of 5 mM glucose, but only moderately in the absence of glucose. Dimethyl alpha-ketoglutarate directly inhibited K(ATP) channels in inside-out membrane patches, depolarized the plasma membrane of intact beta-cells and generated action potentials. In conclusion, the stimulation of insulin secretion by extracellularly applied dimethyl alpha-ketoglutarate depends on inhibition of beta-cell K(ATP) channels by direct action of dimethyl alpha-ketoglutarate. The metabolism of alpha-ketoglutarate generated intracellularly by ester cleavage contributes to stimulation of insulin secretion both by indirect K(ATP) channel inhibition (via activation of ATP production) and by an amplifying effect.
Collapse
Affiliation(s)
- Michael Willenborg
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technical University of Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
17
|
Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT. Microfluidic device for multimodal characterization of pancreatic islets. LAB ON A CHIP 2009; 9:97-106. [PMID: 19209341 PMCID: PMC3759253 DOI: 10.1039/b809590f] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A microfluidic device to perfuse pancreatic islets while simultaneously characterizing their functionality through fluorescence imaging of the mitochondrial membrane potential and intracellular calcium ([Ca(2+)](i)) in addition to enzyme linked immunosorbent assay (ELISA) quantification of secreted insulin was developed and characterized. This multimodal characterization of islet function will facilitate rapid assessment of tissue quality immediately following isolation from donor pancreas and allow more informed transplantation decisions to be made which may improve transplantation outcomes. The microfluidic perfusion chamber allows flow rates of up to 1 mL min(-1), without any noticeable perturbation or shear of islets. This multimodal quantification was done on both mouse and human islets. The ability of this simple microfluidic device to detect subtle variations in islet responses in different functional assays performed in short time-periods demonstrates that the microfluidic perfusion chamber device can be used as a new gold standard to perform comprehensive islet analysis and obtain a more meaningful predictive value for islet functionality prior to transplantation into recipients, which is currently difficult to predict using a single functional assay.
Collapse
|
18
|
Abstract
In addition to the primary stimulus of glucose, specific amino acids may acutely and chronically regulate insulin secretion from pancreatic beta-cells in vivo and in vitro. Mitochondrial metabolism is crucial for the coupling of glucose, alanine, glutamine and glutamate recognition with exocytosis of insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP (the main coupling messenger in insulin secretion) and other factors that serve as sensors for the control of the exocytotic process. The main factors that mediate the key amplifying pathway over the Ca(2+) signal in nutrient-stimulated insulin secretion are nucleotides (ATP, GTP, cAMP and NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and glutamate. In addition, after chronic exposure, specific amino acids may influence gene expression in the beta-cell, which have an impact on insulin secretion and cellular integrity. Therefore amino acids may play a direct or indirect (via generation of putative messengers of mitochondrial origin) role in insulin secretion.
Collapse
|
19
|
Panten U, Rustenbeck I. Fuel-induced amplification of insulin secretion in mouse pancreatic islets exposed to a high sulfonylurea concentration: role of the NADPH/NADP+ ratio. Diabetologia 2008; 51:101-9. [PMID: 17960358 DOI: 10.1007/s00125-007-0849-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to examine whether the cytosolic NADPH/NADP+ ratio of beta cells serves as an amplifying signal in fuel-induced insulin secretion and whether such a function is mediated by cytosolic alpha-ketoglutarate. METHODS Pancreatic islets and islet cells were isolated from albino mice by collagenase digestion. Insulin secretion of incubated or perifused islets was measured by ELISA. The NADPH and NADP+ content of incubated islets was determined by enzymatic cycling. The cytosolic Ca2+ concentration ([Ca2+]c) in islets was measured by microfluorimetry and the activity of ATP-sensitive K+ channels in islet cells by patch-clamping. RESULTS Both 30 mmol/l glucose and 10 mmol/l alpha-ketoisocaproate stimulated insulin secretion and elevated the NADPH/NADP+ ratio of islets preincubated in the absence of fuel. The increase in the NADPH/NADP+ ratio was abolished in the presence of 2.7 micromol/l glipizide (closing all ATP-sensitive K+ channels). However, alpha-ketoisocaproate, but not glucose, still stimulated insulin secretion. That glipizide did not inhibit alpha-ketoisocaproate-induced insulin secretion was not the result of elevated [Ca2+]c, as glucose caused a more marked [Ca2+]c increase. Insulin release triggered by glipizide alone was moderately amplified by dimethyl alpha-ketoglutarate (which is cleaved to produce cytosolic alpha-ketoglutarate), but there was no indication of a signal function of cytosolic alpha-ketoglutarate. CONCLUSIONS/INTERPRETATION The results strongly suggest that the NADPH/NADP+ ratio in the beta cell cytosol does not serve as an amplifying signal in fuel-induced insulin release. The study supports the view that amplification results from the intramitochondrial production of citrate by citrate synthase and from the associated export of citrate into the cytosol.
Collapse
Affiliation(s)
- U Panten
- Institute of Pharmacology and Toxicology, Technical University of Braunschweig, Mendelssohnstrasse 1, 38106, Brunswick, Germany.
| | | |
Collapse
|
20
|
Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W. Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 2007; 148:4984-92. [PMID: 17615148 DOI: 10.1210/en.2007-0653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular calcium-sensing receptors (CaRs) and metabotropic or type B gamma-aminobutyric acid receptors (GABA-B-Rs), two closely related members of family C of the G protein-coupled receptor superfamily, dimerize in the formation of signaling and membrane-anchored receptor complexes. We tested whether CaRs and two GABA-B-R subunits (R1 and R2) are expressed in mouse growth plate chondrocytes (GPCs) by PCR and immunocytochemistry and whether interactions between these receptors influence the expression and function of the CaR and extracellular Ca(2+)-mediated cell differentiation. Both CaRs and the GABA-B-R1 and -R2 were expressed in the same zones of the growth plate and extensively colocalized in intracellular compartments and on the membranes of cultured GPCs. The GABA-B-R1 co-immunoprecipitated with the CaR, confirming a physical interaction between the two receptors in GPCs. In vitro knockout of GABA-B-R1 genes, using a Cre-lox recombination strategy, blunted the ability of high extracellular Ca(2+) concentration to activate phospholipase C and ERK1/2, suppressed cell proliferation, and enhanced apoptosis in cultured GPCs. In GPCs, in which the GABA-B-R1 was acutely knocked down, there was reduced expression of early chondrocyte markers, aggrecan and type II collagen, and increased expression of the late differentiation markers, type X collagen and osteopontin. These results support the idea that physical interactions between CaRs and GABA-B-R1s modulate the growth and differentiation of GPCs, potentially by altering the function of CaRs.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D. Complex Formation with the Type B γ-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. J Biol Chem 2007; 282:25030-40. [PMID: 17591780 DOI: 10.1074/jbc.m700924200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We co-immunoprecipitated the Ca(2+)-sensing receptor (CaR) and type B gamma-aminobutyric acid receptor (GABA-B-R) from human embryonic kidney (HEK)-293 cells expressing these receptors and from brain lysates where both receptors are present. CaRs extensively co-localized with the two subunits of the GABA-B-R (R1 and R2) in HEK-293 cell membranes and intracellular organelles. Coexpressing CaRs and GABA-B-R1s in HEK-293 cells suppressed the total cellular and cell surface expression of CaRs and inhibited phospholipase C activation in response to high extracellular [Ca(2+)] ([Ca(2+)](e)). In contrast, coexpressing CaRs and GABA-B-R2s enhanced CaR expression and signaling responses to raising [Ca(2+)](e). The latter effects of the GABA-B-R2 on the CaR were blunted by coexpressing the GABA-B-R1. Coexpressing the CaR with GABA-B-R1 or R2 enhanced the total cellular and cell surface expression of the GABA-B-R1 or R2, respectively. Studies with truncated CaRs indicated that the N-terminal extracellular domain of the CaR participated in the interaction of the CaR with the GABA-B-R1 and R2. In cultured mouse hippocampal neurons, CaRs co-localized with the GABA-B-R1 and R2. CaRs and GABA-B-R1s also co-immunoprecipitated from brain lysates. The expression of the CaR was increased in lysates from GABA-B-R1 knock-out mouse brains and in cultured hippocampal neurons with their GABA-B-R1 genes deleted in vitro. Thus, CaRs and GABA-B-R subunits can form heteromeric complexes in cells, and their interactions affect cell surface expression and signaling of CaR, which may contribute to extracellular Ca(2+)-dependent receptor activation in target tissues.
Collapse
Affiliation(s)
- Wenhan Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang C, Mao R, Van de Casteele M, Pipeleers D, Ling Z. Glucagon-like peptide-1 stimulates GABA formation by pancreatic beta-cells at the level of glutamate decarboxylase. Am J Physiol Endocrinol Metab 2007; 292:E1201-6. [PMID: 17190904 DOI: 10.1152/ajpendo.00459.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic beta-cells are the major extraneural site of glutamate decarboxylase expression (GAD). During culture of isolated beta-cells, the GAD product gamma-aminobutyrate (GABA) is rapidly released in the medium, independently of insulin. It is considered as a possible mediator of beta-cell influences on alpha-cells, acinar cells, and/or infiltrating lymphocytes. In this perspective, we investigated the regulation of GABA release by rat beta-cells during a 24-h culture period. Glucose was previously reported to inhibit GABA release by diverting cellular GABA to mitochondrial breakdown through activation of GABA transferase (GABA-T). In the present study, glucagon-like peptide-1 (GLP-1) was shown to stimulate GABA formation at the level of GAD, its effect being suppressed by the GAD inhibitor allylglycine and remaining unaltered by the GABA-T inhibitor gamma-vinyl-GABA. The stimulatory action of GLP-1 is cAMP dependent, being reproduced by the adenylate cyclase activator forskolin and the cAMP analog N(6)-benzoyladenosine-3',5'-cAMP and inhibited by a PKA inhibitor. It is dependent on protein synthesis and associated with an increased expression of GAD67 but not GAD65. The GLP-1-induced stimulation of GAD activity in beta-cells can elevate medium GABA levels in conditions of glucose-driven intracellular GABA breakdown and thus maintain GABA-mediated beta-cell influences on neighboring cells.
Collapse
Affiliation(s)
- Chen Wang
- Diabetes Research Center, Brussels Free University-VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Hernández-Fisac I, Fernández-Pascual S, Ortsäter H, Pizarro-Delgado J, Martín Del Río R, Bergsten P, Tamarit-Rodriguez J. Oxo-4-methylpentanoic acid directs the metabolism of GABA into the Krebs cycle in rat pancreatic islets. Biochem J 2006; 400:81-9. [PMID: 16819942 PMCID: PMC1635448 DOI: 10.1042/bj20060173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OMP (oxo-4-methylpentanoic acid) stimulates by itself a biphasic secretion of insulin whereas L-leucine requires the presence of L-glutamine. L-Glutamine is predominantly converted into GABA (gamma-aminobutyric acid) in rat islets and L-leucine seems to promote its metabolism in the 'GABA shunt' [Fernández-Pascual, Mukala-Nsengu-Tshibangu, Martín del Río and Tamarit-Rodríguez (2004) Biochem. J. 379, 721-729]. In the present study, we have investigated how 10 mM OMP affects L-glutamine metabolism to uncover possible differences with L-leucine that might help to elucidate whether they share a common mechanism of stimulation of insulin secretion. In contrast with L-leucine, OMP alone stimulated a biphasic insulin secretion in rat perifused islets and decreased the islet content of GABA without modifying its extracellular release irrespective of the concentration of L-glutamine in the medium. GABA was transaminated to L-leucine whose intracellular concentration did not change because it was efficiently transported out of the islet cells. The L-[U-14C]-Glutamine (at 0.5 and 10.0 mM) conversion to 14CO2 was enhanced by 10 mM OMP within 30% and 70% respectively. Gabaculine (250 microM), a GABA transaminase inhibitor, suppressed OMP-induced oxygen consumption but not L-leucine- or glucose-stimulated respiration. It also suppressed the OMP-induced decrease in islet GABA content and the OMP-induced increase in insulin release. These results support the view that OMP promotes islet metabolism in the 'GABA shunt' generating 2-oxo-glutarate, in the branched-chain alpha-amino acid transaminase reaction, which would in turn trigger GABA deamination by GABA transaminase. OMP, but not L-leucine, suppressed islet semialdehyde succinic acid reductase activity and this might shift the metabolic flux of the 'GABA shunt' from gamma-hydroxybutyrate to succinic acid production.
Collapse
Affiliation(s)
- Inés Hernández-Fisac
- *Biochemistry Department, Medical School, Complutense University, Madrid-28040, Spain
| | | | - Henrik Ortsäter
- †Department of Medical Cell Biology, University of Uppsala, Uppsala, 751 23, Sweden
| | | | | | - Peter Bergsten
- †Department of Medical Cell Biology, University of Uppsala, Uppsala, 751 23, Sweden
| | - Jorge Tamarit-Rodriguez
- *Biochemistry Department, Medical School, Complutense University, Madrid-28040, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Re DB, Nafia I, Melon C, Shimamoto K, Kerkerian-Le Goff L, Had-Aissouni L. Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia 2006; 54:47-57. [PMID: 16673373 DOI: 10.1002/glia.20353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Astrocytes have essential roles for neuron survival and function, so that their demise in neurodegenerative insults, such as ischemia, deserves attention. A major event of the cell death cascade in ischemia is the reversed operation of excitatory amino acid transporters (EAAT), releasing glutamate. Cytotoxicity is conventionally attributed to extracellular glutamate accumulation. We previously reported that mimicking such dysfunction by EAAT substrate inhibitors, whose uptake induces glutamate release by heteroexchange, triggers glutathione (GSH) depletion and oxidative death of differentiated astrocytes in culture. Here we demonstrate that astrocyte death, although correlated with glutamate release, is not resulting from high extracellular glutamate-mediated toxicity. L-glutamate per se was gliotoxic only at concentrations much higher than the maximum reached with the potent EAAT substrate inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC), and toxicity was lower. Moreover, high glutamate concentrations offered protection against PDC. Protection was also provided by L-aspartate, which is both transported by EAAT and metabolized into glutamate, and by inhibiting glutamine synthetase, which uses transported glutamate to synthesize glutamine. Neither D-aspartate, a metabolically inert EAAT substrate, nor compounds that can provide glutamate intracellularly but are not EAAT substrates offered protection. Interestingly, only the compounds providing protection prevented PDC-induced GSH depletion. These data strongly suggest that reversed uptake-mediated astrocyte death results from the leakage of glutamate from a compartmentalized intracellular metabolic pool specifically fuelled by EAAT, crucial for preserving GSH contents. In addition, we provide evidence for a minor contribution of the cystine-glutamate antiporter x(c) (-) but a major role of the 5-lipoxygenase pathway in this death mechanism.
Collapse
Affiliation(s)
- Diane B Re
- Interactions Cellulaires Neurodégénérescence et Neuroplasticité, IC2N, CNRS UMR 6186, Marseille, France
| | | | | | | | | | | |
Collapse
|
25
|
Newsholme P, Brennan L, Rubi B, Maechler P. New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 2005; 108:185-94. [PMID: 15544573 DOI: 10.1042/cs20040290] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Specific amino acids are now known to acutely and chronically regulate insulin secretion from pancreatic beta-cells in vivo and in vitro. Understanding the molecular mechanisms by which amino acids regulate insulin secretion may identify novel targets for future diabetes therapies. Mitochondrial metabolism is crucial for the coupling of amino acid and glucose recognition to the exocytosis of the insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP, which is the main coupling factor in insulin secretion; however, the subsequent Ca2+ signal in the cytosol is necessary, but not sufficient, for full development of sustained insulin secretion. Hence mitochondria generate ATP and other coupling factors serving as fuel sensors for the control of the exocytotic process. Numerous studies have sought to identify the factors that mediate the amplifying pathway over the Ca2+ signal in nutrient-stimulated insulin secretion. Predominantly, these factors are nucleotides (GTP, ATP, cAMP and NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and the key amino acid glutamate. This scenario highlights further the importance of the key enzymes or transporters, glutamate dehydrogenase, the aspartate and alanine aminotransferases and the malate/aspartate shuttle, in the control of insulin secretion. Therefore amino acids may play a direct or indirect (via generation of putative messengers of mitochondrial origin) role in insulin secretion.
Collapse
Affiliation(s)
- Philip Newsholme
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|