1
|
Blockade of Acid-Sensing Ion Channels Attenuates Recurrent Hypoglycemia-Induced Potentiation of Ischemic Brain Damage in Treated Diabetic Rats. Neuromolecular Med 2019; 21:454-466. [PMID: 31134484 DOI: 10.1007/s12017-019-08546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a chronic metabolic disease and cerebral ischemia is a serious complication of diabetes. Anti-diabetic therapy mitigates this complication but increases the risk of exposure to recurrent hypoglycemia (RH). We showed previously that RH exposure increases ischemic brain damage in insulin-treated diabetic (ITD) rats. The present study evaluated the hypothesis that increased intra-ischemic acidosis in RH-exposed ITD rats leads to pronounced post-ischemic hypoperfusion via activation of acid-sensing (proton-gated) ion channels (ASICs). Streptozotocin-diabetic rats treated with insulin were considered ITD rats. ITD rats were exposed to RH for 5 days and were randomized into Psalmotoxin1 (PcTx1, ASIC1a inhibitor), APETx2 (ASIC3 inhibitor), or vehicle groups. Transient global cerebral ischemia was induced overnight after RH. Cerebral blood flow was measured using laser Doppler flowmetry. Ischemic brain injury in hippocampus was evaluated using histopathology. Post-ischemic hypoperfusion in RH-exposed rats was of greater extent than that in control rats. Inhibition of ASICs prevented RH-induced increase in the extent of post-ischemic hypoperfusion and ischemic brain injury. Since ASIC activation-induced store-operated calcium entry (SOCE) plays a role in vascular tone, next we tested if acidosis activates SOCE via activating ASICs in vascular smooth muscle cells (VSMCs). We observed that SOCE in VSMCs at lower pH is ASIC3 dependent. The results show the role of ASIC in post-ischemic hypoperfusion and increased ischemic damage in RH-exposed ITD rats. Understanding the pathways mediating exacerbated ischemic brain injury in RH-exposed ITD rats may help lower diabetic aggravation of ischemic brain damage.
Collapse
|
2
|
Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 2013; 140:463-76. [PMID: 23463389 DOI: 10.1007/s00418-013-1082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca(2+) concentration ([Ca(2+)]i) dynamics. In the present study, detection of acinar cell mRNA specific to known PAR subtypes was determined by reverse transcriptase polymerase chain reaction. Only PAR2 mRNA was detected in acinar cells of lacrimal glands. Both trypsin and a PAR2-activating peptide (PAR2-AP), SLIGRL-NH2, induced an increase in [Ca(2+)]i in acinar cells. The removal of extracellular Ca(2+) and the use of Ca(2+) channel blockers did not inhibit PAR2-AP-induced [Ca(2+)]i increases. Furthermore, U73122 and xestospongin C failed to inhibit PAR2-induced increases in [Ca(2+)]i. The origin of the calcium influx observed after activated PAR2-induced Ca(2+) release from intracellular Ca(2+) stores was also evaluated. The NO donor, GEA 3162, mimicked the effects of PAR2 in activating non-capacitative calcium entry (NCCE). However, both calyculin A (100 nM) and a low concentration of Gd(3+) (5 μM) did not completely block the PAR2-AP-induced increase in [Ca(2+)]i. These findings indicated that PAR2 activation resulted primarily in Ca(2+) mobilization from intracellular Ca(2+) stores and that PAR2-mediated [Ca(2+)]i changes were mainly independent of IP3. RT-PCR indicated that TRPC 1, 3 and 6, which play a role in CCE and NCCE, are expressed in acinar cells. We suggest that PAR2-AP differentially regulates both NCCE and CCE, predominantly NCCE. Finally, our results suggested that PAR2 may function as a key receptor in calcium-related cell homeostasis under pathophysiological conditions such as tissue injury or inflammation.
Collapse
|
3
|
Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M. Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 2009; 23:2425-37. [PMID: 19364762 PMCID: PMC2717784 DOI: 10.1096/fj.09-131128] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/12/2008] [Indexed: 11/11/2022]
Abstract
The identity of store-operated calcium (Ca(2+)) entry (SOCE) channels in vascular smooth muscle cells (VSMCs) remains a highly contentious issue. Whereas previous studies have suggested that SOCE in VSMCs is mediated by the nonselective transient receptor potential canonical (TRPC) 1 protein, the identification of STIM1 and Orai1 as essential components of I(CRAC), a highly Ca(2+)-selective SOCE current in leukocytes, has challenged that view. Here we show that cultured proliferative migratory VSMCs isolated from rat aorta (called "synthetic") display SOCE with classic features, namely inhibition by 2-aminoethoxydiphenyl borate, ML-9, and low concentrations of lanthanides. On store depletion, synthetic VSMCs and A7r5 cells display currents with characteristics of I(CRAC). Protein knockdown of either STIM1 or Orai1 in synthetic VSMCs greatly reduced SOCE, whereas Orai2, Orai3, TRPC1, TRPC4, and TRPC6 knockdown had no effect. Orai1 knockdown reduced I(CRAC) in synthetic VSMCs and A7r5 cells. Synthetic VSMCs showed up-regulated STIM1/Orai1 proteins and SOCE compared with quiescent freshly isolated VSMC. Knockdown of STIM1 and Orai1 inhibited synthetic VSMC proliferation and migration, whereas STIM2, Orai2, and Orai3 knockdown had no effect. To our knowledge, these results are the first to show I(CRAC) in VSMCs and resolve a long-standing controversy by identifying CRAC as the elusive VSMC SOCE channel important for proliferation and migration.
Collapse
MESH Headings
- Animals
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling
- Cell Movement/physiology
- Cell Proliferation
- Cells, Cultured
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- ORAI1 Protein
- Patch-Clamp Techniques
- RNA, Small Interfering/genetics
- Rats
- Stromal Interaction Molecule 1
- Thapsigargin/pharmacology
Collapse
Affiliation(s)
- Marie Potier
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Tai K, Hamaide MC, Debaix H, Gailly P, Wibo M, Morel N. Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1. Eur J Pharmacol 2008; 583:135-47. [PMID: 18289524 DOI: 10.1016/j.ejphar.2008.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 11/27/2022]
Abstract
Transient receptor potential canonical (TRPC) proteins have been proposed to function as plasma membrane Ca2+ channels activated by store depletion and/or by receptor stimulation. However, their role in the increase in cytosolic Ca2+ activated by contractile agonists in vascular smooth muscle is not yet elucidated. The present study was designed to investigate the functional and molecular properties of the Ca2+ entry pathway activated by endothelin-1 in primary cultured aortic smooth muscle cells. Measurement of the Ca2+ signal in fura-2-loaded cells allowed to characterize endothelin-1-evoked Ca2+ entry, which was resistant to dihydropyridine, and was blocked by 2-aminoethoxydiphenylborate (2-APB) and micromolar concentration of Gd3+. It was not activated by store depletion, but was inhibited by the endothelin ETA receptor antagonist BQ-123, and by heparin. On the opposite, thapsigargin-induced store depletion activated a Ca2+ entry pathway that was not affected by 2-APB, BQ-123 or heparin, and was less sensitive to Gd3+ than was endothelin-1-evoked Ca2+ entry. Investigation of the gene expression of TRPC isoforms by real-time RT-PCR revealed that TRPC1 was the most abundant. In cells transfected with TRPC1 small interfering RNA sequence, TRPC1 mRNA and protein expression were decreased by 72+/-3% and 86+/-2%, respectively, while TRPC6 expression was unaffected. In TRPC1 knockdown cells, both endothelin-1-evoked Ca2+ entry and store-operated Ca2+ entry evoked by thapsigargin were blunted. These results indicate that in aortic smooth muscle cells, TRPC1 is not only involved in Ca2+ entry activated by store depletion but also in receptor-operated Ca2+ entry, which requires inositol (1,4,5) triphosphate receptor activation.
Collapse
Affiliation(s)
- Khalid Tai
- Unit of Cellular Physiology, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Osei-Owusu P, Sun X, Drenan RM, Steinberg TH, Blumer KJ. Regulation of RGS2 and Second Messenger Signaling in Vascular Smooth Muscle Cells by cGMP-dependent Protein Kinase. J Biol Chem 2007; 282:31656-65. [PMID: 17681944 DOI: 10.1074/jbc.m706360200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent manner and discovered new mechanisms whereby cGK activity regulates RGS2. We show that RGS2 regulates vasoconstrictor-stimulated Ca(2+) store release, capacitative Ca(2+) entry, and noncapacitative Ca(2+) entry and that RGS2 is required for cGMP-mediated inhibition of vasoconstrictor-elicited phospholipase Cbeta activation, Ca(2+) store release, and capacitative Ca(2+) entry. RGS2 is degraded in vascular smooth muscle cells via the proteasome. Inhibition of cGK activity blunts RGS2 degradation. However, inactivation of the cGKIalpha phosphorylation sites in RGS2 does not stabilize the protein, suggesting that cGK activity regulates RGS2 degradation by other mechanisms. cGK activation promotes association of RGS2 with the plasma membrane by a mechanism requiring its cGKIalpha phosphorylation sites. By regulating GAP activity, plasma membrane association, and degradation, cGKIalpha therefore may control a cycle of RGS2 activation and inactivation. By diminishing cGK activity, endothelial dysfunction may impair RGS2 activation, thereby blunting vascular relaxation and contributing to hypertension.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Cell Biology and Physiology and Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
6
|
Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S. TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 2007; 42:205-11. [PMID: 17517433 PMCID: PMC2764400 DOI: 10.1016/j.ceca.2007.03.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/22/2007] [Indexed: 01/18/2023]
Abstract
Receptor-activated Ca(2+) influx is mediated largely by store-operated channels (SOCs). TRPC channels mediate a significant portion of the receptor-activated Ca(2+) influx. However, whether any of the TRPC channels function as a SOC remains controversial. Our understanding of the regulation of TRPC channels and their function as SOCs is being reshaped with the discovery of the role of STIM1 in the regulation of Ca(2+) influx channels. The findings that STIM1 is an ER resident Ca(2+) binding protein that regulates SOCs allow an expanded and molecular definition of SOCs. SOCs can be considered as channels that are regulated by STIM1 and require the clustering of STIM1 in response to depletion of the ER Ca(2+) stores and its translocation towards the plasma membrane. TRPC1 and other TRPC channels fulfill these criteria. STIM1 binds to TRPC1, TRPC2, TRPC4 and TRPC5 but not to TRPC3, TRPC6 and TRPC7, and STIM1 regulates TRPC1 channel activity. Structure-function analysis reveals that the C-terminus of STIM1 contains the binding and gating function of STIM1. The ERM domain of STIM1 binds to TRPC channels and a lysine-rich region participates in the gating of SOCs and TRPC1. Knock-down of STIM1 by siRNA and prevention of its translocation to the plasma membrane inhibit the activity of native SOCs and TRPC1. These findings support the conclusion that TRPC1 is a SOC. Similar studies with other TRPC channels demonstrate their regulation by STIM1 and indicate that all TRPC channels, except TRPC7, function as SOCs.
Collapse
Affiliation(s)
- Paul F. Worley
- The department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752
| | - Guo N. Huang
- The department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joseph P. Yuan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752
| | - Shmuel Muallem
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
7
|
Liu Y, Taylor CW. Stimulation of arachidonic acid release by vasopressin in A7r5 vascular smooth muscle cells mediated by Ca2+-stimulated phospholipase A2. FEBS Lett 2006; 580:4114-20. [PMID: 16828086 DOI: 10.1016/j.febslet.2006.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/19/2006] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.
Collapse
Affiliation(s)
- Yingjie Liu
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
8
|
Brueggemann LI, Markun DR, Henderson KK, Cribbs LL, Byron KL. Pharmacological and electrophysiological characterization of store-operated currents and capacitative Ca(2+) entry in vascular smooth muscle cells. J Pharmacol Exp Ther 2006; 317:488-99. [PMID: 16415091 DOI: 10.1124/jpet.105.095067] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Capacitative Ca(2+) entry (CCE) in vascular smooth muscle cells contributes to vasoconstrictor and mitogenic effects of vasoactive hormones. In A7r5 rat aortic smooth muscle cells, measurements of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) have demonstrated that depletion of intracellular Ca(2+) stores activates CCE. However, there is disagreement in published studies regarding the regulation of this mechanism by the vasoconstrictor hormone [Arg(8)]-vasopressin (AVP). We have employed electrophysiological methods to characterize the membrane currents activated by store depletion [store-operated current (I(SOC))]. Because of different recording conditions, it has not been previously determined whether I(SOC) corresponds to CCE measured using fura-2; nor has the channel protein responsible for CCE been identified. In the present study, the pharmacological characteristics of I(SOC), including its sensitivity to blockade by 2-aminoethoxydiphenylborane, diethylstilbestrol, or micromolar Gd(3+), were found to parallel the effects of these drugs on thapsigargin- or AVP-activated CCE measured under identical external ionic conditions using fura-2. Thapsigargin-stimulated I(SOC) was also measured in freshly isolated rat mesenteric artery smooth muscle cells (MASMC). Members of the transient receptor potential (TRP) family of nonselective cation channels, TRPC1, TRPC4, and TRPC6, were detected by reverse transcription-polymerase chain reaction and Western blot in both A7r5 cells and MASMC. TRPC1 expression was reduced in a stable A7r5 cell line expressing a small interfering RNA (siRNA) or by infection of A7r5 cells with an adenovirus expressing a TRPC1 antisense nucleotide sequence. Thapsigargin-stimulated I(SOC) was reduced in both the TRPC1 siRNA- and TRPC1 antisense-expressing cells, suggesting that the TRPC1 channel contributes to the I(SOC)/CCE pathway.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Department of Pharmacology and Experimental Therapeutics, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
9
|
Moneer Z, Pino I, Taylor E, Broad L, Liu Y, Tovey S, Staali L, Taylor C. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells. Biochem J 2005; 389:821-9. [PMID: 15918794 PMCID: PMC1180733 DOI: 10.1042/bj20050145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439-448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13-21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237-244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3).
Collapse
Affiliation(s)
- Zahid Moneer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Irene Pino
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Emily J. A. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Lisa M. Broad
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Yingjie Liu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Stephen C. Tovey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Leila Staali
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|