1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Nagase M, Ando H, Beppu Y, Kurihara H, Oki S, Kubo F, Yamamoto K, Nagase T, Kaname S, Akimoto Y, Fukuhara H, Sakai T, Hirose S, Nakamura N. Glomerular Endothelial Cell Receptor Adhesion G-Protein-Coupled Receptor F5 (ADGRF5) and the Integrity of the Glomerular Filtration Barrier. J Am Soc Nephrol 2024; 35:1366-1380. [PMID: 38844335 PMCID: PMC11452135 DOI: 10.1681/asn.0000000000000427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 09/13/2024] Open
Abstract
Key Points Deletion of endothelial receptor adhesion G-protein–coupled receptor F5 in mice led to abnormal structural and functional properties of the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 regulates gene expression of glomerular basement membrane components and a mechanosensitive transcription factor. Background Glomerular endothelial cells are recognized to be important for maintaining the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 (ADGRF5), an adhesion G protein–coupled receptor, has been suggested to be involved in endothelial cell function. However, the role of ADGRF5 in the glomerular filtration barrier integrity remains elusive. Methods Cellular expression of ADGRF5 in mouse glomerulus was determined by histological analyses. The effect of ADGRF5 deletion on the glomerular morphology, kidney function, and glomerular endothelial gene/protein expression was then analyzed using ADGRF5 knockout (Adgrf5 −/−) mice and human primary glomerular endothelial cells. Results ADGRF5 was specifically expressed in the capillary endothelial cells within the glomerulus. Adgrf5 −/− mice developed albuminuria and impaired kidney function with morphological defects in the glomeruli, namely glomerular hypertrophy, glomerular basement membrane splitting and thickening, diaphragmed fenestration and detachment of the glomerular endothelial cells, and mesangial interposition. These defects were accompanied by the altered expression of genes responsible for glomerular basement membrane organization (type 4 collagens and laminins) and Krüppel-like factor 2 (Klf2 ) in glomerular endothelial cells. Moreover, ADGRF5 knockdown decreased COL4A3 and COL4A4 expression and increased KLF2 expression in human primary glomerular endothelial cells. Conclusions The loss of ADGRF5 resulted in altered gene expression in glomerular endothelial cells and perturbed the structure and permselectivity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Hikaru Ando
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshiaki Beppu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Faculty of Health Science, Aino University, Osaka, Japan
| | - Souta Oki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Fumimasa Kubo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Shinya Kaname
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigehisa Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhiro Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Guo KS, Brodsky AS. Tumor collagens predict genetic features and patient outcomes. NPJ Genom Med 2023; 8:15. [PMID: 37414817 DOI: 10.1038/s41525-023-00358-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The extracellular matrix (ECM) is a critical determinant of tumor fate that reflects the output from myriad cell types in the tumor. Collagens constitute the principal components of the tumor ECM. The changing collagen composition in tumors along with their impact on patient outcomes and possible biomarkers remains largely unknown. The RNA expression of the 43 collagen genes from solid tumors in The Cancer Genome Atlas (TCGA) was clustered to classify tumors. PanCancer analysis revealed how collagens by themselves can identify the tissue of origin. Clustering by collagens in each cancer type demonstrated strong associations with survival, specific immunoenvironments, somatic gene mutations, copy number variations, and aneuploidy. We developed a machine learning classifier that predicts aneuploidy, and chromosome arm copy number alteration (CNA) status based on collagen expression alone with high accuracy in many cancer types with somatic mutations, suggesting a strong relationship between the collagen ECM context and specific molecular alterations. These findings have broad implications in defining the relationship between cancer-related genetic defects and the tumor microenvironment to improve prognosis and therapeutic targeting for patient care, opening new avenues of investigation to define tumor ecosystems.
Collapse
Affiliation(s)
- Kevin S Guo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Parker AL, Bowman E, Zingone A, Ryan BM, Cooper WA, Kohonen-Corish M, Harris CC, Cox TR. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med 2022; 14:126. [PMID: 36404344 PMCID: PMC9677915 DOI: 10.1186/s13073-022-01127-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.
Collapse
Affiliation(s)
- Amelia L. Parker
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| | - Elise Bowman
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Adriana Zingone
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Brid M. Ryan
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA ,Present address: MiNA Therapeutics, London, UK
| | - Wendy A. Cooper
- grid.413249.90000 0004 0385 0051Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia ,grid.1013.30000 0004 1936 834XSydney Medical School, University of Sydney, Sydney, NSW 2050 Australia ,grid.1029.a0000 0000 9939 5719Discipline of Pathology, School of Medicine, Western Sydney University, Liverpool, NSW 2170 Australia
| | - Maija Kohonen-Corish
- grid.417229.b0000 0000 8945 8472Woolcock Institute of Medical Research, Sydney, NSW 2037 Australia ,grid.1005.40000 0004 4902 0432Microbiome Research Centre, School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia ,grid.415306.50000 0000 9983 6924Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Curtis C. Harris
- grid.48336.3a0000 0004 1936 8075Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Thomas R. Cox
- grid.415306.50000 0000 9983 6924Matrix and Metastasis Lab, Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, 384 Victoria St, Darlinghurst, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Clinical Medicine, UNSW Sydney, Sydney, 2052 Australia
| |
Collapse
|
5
|
Panagopoulos I, Gorunova L, Lobmaier I, Andersen K, Lund-Iversen M, Micci F, Heim S. Fusion of the COL4A5 Gene With NR2F2-AS1 in a Hemangioma Carrying a t(X;15)(q22;q26) Chromosomal Translocation. Cancer Genomics Proteomics 2021; 17:383-390. [PMID: 32576583 DOI: 10.21873/cgp.20197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Hemangiomas are benign neoplastic proliferations of blood vessels. Cytogenetic information on hemangiomas is limited to four tumors with abnormal karyotypes. We report here a solitary chromosomal translocation and its molecular consequence in a hemangioma. MATERIALS AND METHODS A cavernous hemangioma was extirpated from the foot of a 62 years old man and genetically studied with cytogenetic and molecular genetic methodologies. RESULTS G-Banding analysis of short-term cultured tumor cells yielded the karyotype 46,Y,t(X;15)(q22;q26)[4]/46,XY[12]. RNA sequencing detected fusion of the collagen type IV alpha 5 chain gene (COL4A5 on Xq22.3) with intronic sequences of nuclear receptor subfamily 2 group F member 2 antisense RNA 1 (NR2F2-AS1 on 15q26.2) resulting in a putative COL4A5 truncated protein. The fusion was verified by RT-PCR together with Sanger sequencing and FISH analyses. CONCLUSION The involvement of COL4A5 indicates that some hemangiomas have pathogenetic similarities with other benign tumors such as leiomyomas and subungual exostosis.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Barozzi S, Soi D, Intieri E, Giani M, Aldè M, Tonon E, Signorini L, Renieri A, Fallerini C, Perin P, Montini G, Ambrosetti U. Vestibular and audiological findings in the Alport syndrome. Am J Med Genet A 2020; 182:2345-2358. [PMID: 32820599 DOI: 10.1002/ajmg.a.61796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Alport syndrome (AS) is caused by mutations in collagen IV, which is widespread in the basement membranes of many organs, including the kidneys, eyes, and ears. Whereas the effects of collagen IV changes in the cochlea are well known, no changes have been described in the posterior labyrinth. The aim of this study was to investigate both the auditory and the vestibular function of a group of individuals with AS. Seventeen patients, aged 9-52, underwent audiological tests including pure-tone and speech audiometry, immittance test and otoacoustic emissions and vestibular tests including video head impulse test, rotatory test, and vestibular evoked myogenic potentials. Hearing loss affected 25% of the males and 27.3% of the females with X-linked AS. It was sensorineural with a cochlear localization and a variable severity. 50% of the males and 45.4% of the females had a hearing impairment in the high-frequency range. Otoacoustic emissions were absent in about one-third of the individuals. A peripheral vestibular dysfunction was present in 75% of the males and 45.4% of the females, with no complaints of vertigo or dizziness. The vestibular impairment was compensated and the vestibulo-ocular reflex asymmetry was more evident in rotatory tests carried out at lower than higher speeds; a vestibular hypofunction was present in all hearing impaired ears although it was also found in subjects with normal hearing. A posterior labyrinth injury should be hypothesized in AS even when the patient does not manifest hearing disorders or evident signs of renal failure.
Collapse
Affiliation(s)
- Stefania Barozzi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Soi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,ASST Nord Milano, Milan, Italy
| | - Elisabetta Intieri
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Otorinolaringoiatria ASST Valle Olona, Busto Arsizio, Italy
| | - Marisa Giani
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirko Aldè
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tonon
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lia Signorini
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Paola Perin
- Dipartimento di scienze del Sistema nervoso e del comportamento, Università di Pavia, Pavia, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Giuliana Bernardo Caprotti chair of Pediatrics, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Umberto Ambrosetti
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Zhang X, Gong W, Cao S, Yin J, Zhang J, Cao J, Shen Y. Comprehensive Analysis of Non-coding RNA Profiles of Exosome-Like Vesicles From the Protoscoleces and Hydatid Cyst Fluid of Echinococcus granulosus. Front Cell Infect Microbiol 2020; 10:316. [PMID: 32793506 PMCID: PMC7387405 DOI: 10.3389/fcimb.2020.00316] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cystic echinococcosis is a worldwide chronic zoonotic disease that threatens human health and animal husbandry. Exosome-like vesicles (ELVs) have emerged recently as mediators in the parasite-parasite intercommunication and parasite-host interactions. Exosome-like vesicles from parasites can transfer non-coding RNAs (ncRNAs) into host cells to regulate their gene expression; however, the ncRNAs profiles of the ELVs from Echinococcus granulosus remain unknown. Here, we isolated protoscolece (PSC)-ELVs and hydatid fluid (HF)-ELVs from the culture medium for E. granulosus PSCs in vitro and the HF of fertile sheep cysts, respectively. The microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) profiles of the two types of ELVs were analyzed using high-throughput sequencing, and their functions were predicted using Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. In PSC-ELVs and HF-ELVs, 118 and 58 miRNAs were identified, respectively, among which 53 miRNAs were present in both ELVs, whereas 65 and 5 miRNAs were unique to PSC-ELVs and HF-ELVs, respectively; 2,361 and 1,254 lncRNAs were identified in PSC-ELVs and HF-ELVs, respectively, among which 1,004 lncRNAs were present in both ELVs, whereas 1,357 and 250 lncRNAs were unique to PSC-ELVs and HF-ELVs, respectively. Intriguingly, the spilled PSCs from cysts excrete ELVs with higher numbers of and higher expression levels of miRNAs and circRNAs than HF-ELVs. The miRNA sequencing data were validated by quantitative reverse transcription-polymerase chain reaction. Furthermore, the target lncRNAs and mRNAs regulated by the 20 most abundant miRNAs were screened, and a ceRNA regulatory network containing 5 miRNAs, 41 lncRNAs, and 23 mRNAs was constructed, which provided new ideas and the molecular basis for further clarification of the function and mechanism of E. granulosus ELVs ncRNAs in the parasite-host interactions. Egr-miR-125-5p and egr-miR-10a-5p, sharing identical seed sites with host miRNAs, were predicted to mediate inflammatory response, collagen catabolic process, and mitogen-activated protein kinase cascade during parasite infections. In conclusion, for the first time, we identified the ncRNAs profiles in PSC-ELVs and HF-ELVs that might be involved in host immunity and pathogenesis, and enriched the ncRNAs data of E. granulosus. These results provided valuable resources for further analysis of the regulatory potential of ncRNAs, especially miRNAs, in both types of ELVs at the parasite-host interface.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Wenci Gong
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Shengkui Cao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jianhai Yin
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jing Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jianping Cao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yujuan Shen
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Savige J. A further genetic cause of thin basement membrane nephropathy. Nephrol Dial Transplant 2016; 31:1758-1760. [DOI: 10.1093/ndt/gfw217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/29/2023] Open
|
9
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Sá MJN, Fieremans N, de Brouwer APM, Sousa R, Costa FTE, Brito MJ, Carvalho F, Rodrigues M, de Sousa FT, Felgueiras J, Neves F, Carvalho A, Ramos U, Vizcaíno JR, Alves S, Carvalho F, Froyen G, Oliveira JP. Deletion of the 5′exons ofCOL4A6is not needed for the development of diffuse leiomyomatosis in patients with Alport syndrome. J Med Genet 2013; 50:745-53. [DOI: 10.1136/jmedgenet-2013-101670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Dhadi SR, Deshpande A, Driscoll K, Ramakrishna W. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5'-untranslated regions. Gene 2013; 526:400-10. [PMID: 23756196 DOI: 10.1016/j.gene.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Bidirectional promoters are defined as those that regulate adjacent genes organized in a divergent fashion (head to head orientation) and separated by <1 kb. In order to dissect bidirectional promoter activity in a model plant, deletion analysis was performed for seven rice promoters using promoter-reporter gene constructs, which identified three promoters to be bidirectional. Regulatory elements located in or close to the 5'-untranslated regions (UTR) of one of the genes (divergent gene pair) were found to be responsible for their bidirectional activity. DNA footprinting analysis identified unique protein binding sites in these promoters. Deletion/alteration of these motifs resulted in significant loss of expression of the reporter genes on either side of the promoter. Changes in the motifs at both the positions resulted in a remarkable decrease in bidirectional activity of the reporter genes flanking the promoter. Based on our results, we propose a novel mechanism for the bidirectionality of rice bidirectional promoters.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
12
|
Bahramsoltani M, Slosarek I, De Spiegelaere W, Plendl J. Angiogenesis and collagen type IV expression in different endothelial cell culture systems. Anat Histol Embryol 2013; 43:103-15. [PMID: 23551189 DOI: 10.1111/ahe.12052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
In vitro angiogenesis assays constitute an important tool for studying the mechanisms of angiogenesis and for identification of pro- and anti-angiogenic substances. Therefore, endothelial cell and media systems used for in vitro angiogenesis assays are required to mimic the angiogenic process in vivo including endothelial capability to express collagen type IV as a component of the basement membrane. In this study, the expression of collagen type IV and its α chains (α1-6) was investigated in different endothelial cell culture systems in vitro qualitatively and quantitatively. These systems included four different batches of microvascular endothelial cells derived from the human skin, heart and lung, from which only two batches were found to be angiogenic and two batches were classified as non-angiogenic. Distribution of the transcripts of the α chains of collagen type IV was similar in all cell and media systems investigated. However, secretion and deposition of a stable extracellular network of collagen type IV could only be observed in the angiogenic cultures. In conclusion, the consecutive steps of the angiogenic cascade in vivo as well as in vitro depend on an increasing secretion and subsequent extracellular deposition of collagen type IV.
Collapse
Affiliation(s)
- M Bahramsoltani
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, University of Leipzig, An den Tierkliniken 43, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
13
|
Kuo C, Lim S, King NJC, Johnston SL, Burgess JK, Black JL, Oliver BG. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L951-7. [DOI: 10.1152/ajplung.00411.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.
Collapse
Affiliation(s)
- Curtis Kuo
- Discipline of Pharmacology, University of Sydney, Camperdown,
| | - Sam Lim
- Office of Clinical Science, Duke-National University of Singapore, Singapore; and
| | | | - Sebastian L. Johnston
- Department of Respiratory Medicine, National Heart and Lung Institute, Medical Research Council, and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Janette K. Burgess
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Judith L. Black
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Brian G. Oliver
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| |
Collapse
|
14
|
Lv Z, Song Y, Xue D, Zhang W, Cheng Y, Xu L. Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-β1 in activated rat hepatic stellate cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:384-392. [PMID: 20599490 DOI: 10.1016/j.jep.2010.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/28/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Salvianolic-acid B (SA-B) is an effective component of Radix Salviae miltiorrhizae for anti-hepatic fibrotic herbs. MAPK signaling pathway has been implicated in hepatic stellate cells (HSC) stimulated by TGF-(1. We have investigated the effect of SA-B on MAPK pathway in rat HSC. MATERIALS AND METHODS To observe the pharmacological effect of SA-B on HSC, SA-B was added into the medium of primary HSC. TGF-(1 was added during last 2h, and PD98059 (ERK inhibitor) and SB203580 (p38 inhibitor) were added just 30 min before adding TGF-(1. MEF2 and Col. I were measured by luciferase reporter gene assay and Western blot. (-SMA, MEF2, Raf, ERK, p-ERK, MEK, p-MEK, p38, p-p38, MKK3 and p-MKK3/6 were assayed by Western blot. Activity of MMP-2 and MMP-9 was analyzed by zymography. Each experiment was repeated for three times. RESULTS The expression of (-SMA and Col. I in HSC was inhibited by SA-B. There was no effect of SA-B on the activity of MMP-2 or MMP-9 in the media of cultured HSC. Phosphorylation of ERK1/2 in HSC stimulated with or without TGF-(1 was inhibited by SA-B. Specifically, phosphorylation of MEK (upstream kinase of ERK pathway) was inhibited by SA-B. SA-B also inhibited phosphorylation of MKK3/6 (upstream kinases of p38 pathway) and inhibited the synthesis of MEF2. CONCLUSIONS SA-B performs anti-hepatic fibrosis through inhibiting ERK and p38 MAPK pathway in HSC. SA-B inhibits ERK pathway via inhibiting phosphorylation of MEK and inhibits p38 MAPK pathway via blocking phosphorylation of MKK3/6 and inhibiting expression of MEF2 in HSC with or without TGF-(1 stimulation.
Collapse
|
15
|
Tveita AA, Ninomiya Y, Sado Y, Rekvig OP, Zykova SN. Development of lupus nephritis is associated with qualitative changes in the glomerular collagen IV matrix composition. Lupus 2009; 18:355-60. [PMID: 19276304 DOI: 10.1177/0961203308100842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lupus nephritis is associated with thickening of the glomerular extracellular membranes. Distribution of collagen IV alpha-chains in the glomerular basement membrane in kidneys of lupus-prone B/W mice has been examined in this study. The results are indicative of a qualitative change in the collagen IV matrix occurring around the time of development of proteinuria, with an embryonic alpha1/alpha2 isoform replacing the normal glomerular basement membrane (GBM). These changes mimic alterations seen in Alport syndrome and coincide with an increase in collagenolytic activity within the glomerulus. It has been hypothesized that alterations in collagen matrix synthesis represent compensatory responses to an increase in GBM proteolysis and could represent an important step in the pathogenesis of nephritis through the formation of a dysfunctional glomerular filter. Also, aberrations in the collagen matrix composition could contribute to the deposition of autoantibodies within the glomerulus.
Collapse
Affiliation(s)
- A A Tveita
- Department of Biochemistry, University of Tromsø, Norway.
| | | | | | | | | |
Collapse
|
16
|
Wang Q, Wan L, Li D, Zhu L, Qian M, Deng M. Searching for bidirectional promoters in Arabidopsis thaliana. BMC Bioinformatics 2009; 10 Suppl 1:S29. [PMID: 19208129 DOI: 10.1186/1471-2105-10si-s29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND A "bidirectional gene pair" is defined as two adjacent genes which are located on opposite strands of DNA with transcription start sites (TSSs) not more than 1000 base pairs apart and the intergenic region between two TSSs is commonly designated as a putative "bidirectional promoter". Individual examples of bidirectional gene pairs have been reported for years, as well as a few genome-wide analyses have been studied in mammalian and human genomes. However, no genome-wide analysis of bidirectional genes for plants has been done. Furthermore, the exact mechanism of this gene organization is still less understood. RESULTS We conducted comprehensive analysis of bidirectional gene pairs through the whole Arabidopsis thaliana genome and identified 2471 bidirectional gene pairs. The analysis shows that bidirectional genes are often coexpressed and tend to be involved in the same biological function. Furthermore, bidirectional gene pairs associated with similar functions seem to have stronger expression correlation. We pay more attention to the regulatory analysis on the intergenic regions between bidirectional genes. Using a hierarchical stochastic language model (HSL) (which is developed by ourselves), we can identify intergenic regions enriched of regulatory elements which are essential for the initiation of transcription. Finally, we picked 27 functionally associated bidirectional gene pairs with their intergenic regions enriched of regulatory elements and hypothesized them to be regulated by bidirectional promoters, some of which have the same orthologs in ancient organisms. More than half of these bidirectional gene pairs are further supported by sharing similar functional categories as these of handful experimental verified bidirectional genes. CONCLUSION Bidirectional gene pairs are concluded also prevalent in plant genome. Promoter analyses of the intergenic regions between bidirectional genes could be a new way to study the bidirectional gene structure, which may provide a important clue for further analysis. Such a method could be applied to other genomes.
Collapse
Affiliation(s)
- Quan Wang
- Center for Theoretical Biology, Peking University, Beijing100871, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Wang Q, Wan L, Li D, Zhu L, Qian M, Deng M. Searching for bidirectional promoters in Arabidopsis thaliana. BMC Bioinformatics 2009; 10 Suppl 1:S29. [PMID: 19208129 PMCID: PMC2648788 DOI: 10.1186/1471-2105-10-s1-s29] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background A "bidirectional gene pair" is defined as two adjacent genes which are located on opposite strands of DNA with transcription start sites (TSSs) not more than 1000 base pairs apart and the intergenic region between two TSSs is commonly designated as a putative "bidirectional promoter". Individual examples of bidirectional gene pairs have been reported for years, as well as a few genome-wide analyses have been studied in mammalian and human genomes. However, no genome-wide analysis of bidirectional genes for plants has been done. Furthermore, the exact mechanism of this gene organization is still less understood. Results We conducted comprehensive analysis of bidirectional gene pairs through the whole Arabidopsis thaliana genome and identified 2471 bidirectional gene pairs. The analysis shows that bidirectional genes are often coexpressed and tend to be involved in the same biological function. Furthermore, bidirectional gene pairs associated with similar functions seem to have stronger expression correlation. We pay more attention to the regulatory analysis on the intergenic regions between bidirectional genes. Using a hierarchical stochastic language model (HSL) (which is developed by ourselves), we can identify intergenic regions enriched of regulatory elements which are essential for the initiation of transcription. Finally, we picked 27 functionally associated bidirectional gene pairs with their intergenic regions enriched of regulatory elements and hypothesized them to be regulated by bidirectional promoters, some of which have the same orthologs in ancient organisms. More than half of these bidirectional gene pairs are further supported by sharing similar functional categories as these of handful experimental verified bidirectional genes. Conclusion Bidirectional gene pairs are concluded also prevalent in plant genome. Promoter analyses of the intergenic regions between bidirectional genes could be a new way to study the bidirectional gene structure, which may provide a important clue for further analysis. Such a method could be applied to other genomes.
Collapse
Affiliation(s)
- Quan Wang
- Center for Theoretical Biology, Peking University, Beijing100871, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Ikeda K, Iyama KI, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H. Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:856-65. [PMID: 16507901 PMCID: PMC1606532 DOI: 10.2353/ajpath.2006.050384] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type IV collagen, a major component of the basement membrane (BM), is composed of six genetically distinct alpha(IV) chains, alpha1(IV) to alpha6(IV). Their genes are paired on three different chromosomes in a head-to-head arrangement. The alpha5(IV) gene (COL4A5) and the alpha6(IV) gene (COL4A6) are on chromosome Xq22 and are regulated by a bidirectional promoter. Loss of the alpha5(IV)/alpha6(IV) chains in epithelial BM occur in the early stage of cancer invasion. However, the regulatory mechanism of the specific loss of the alpha5(IV)/alpha6(IV) chains during cancer cell invasion is still undetermined. In the present study, we examined the expression of the alpha5(IV)/alpha6(IV) chains and the methylation profiles of the bidirectional promoter region of COL4A5/COL4A6 in colon cancer cell lines and colorectal tumor tissues. The expression of the alpha5(IV)/alpha6(IV) chains was down-regulated in colorectal cancer, and the loss of expression of the alpha5(IV)/alpha6(IV) chains was associated with the hypermethylation of their promoter region. In conclusion, the hypermethylation of the bidirectional promoter region of COL4A5/COL4A6 is one of the events that is responsible for the loss of expression of the alpha5(IV)/alpha6(IV) chains and the remodeling of the epithelial BM during cancer cell invasion.
Collapse
Affiliation(s)
- Koei Ikeda
- Department of Surgical Pathology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanjore H, Kalluri R. The role of type IV collagen and basement membranes in cancer progression and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:715-7. [PMID: 16507886 PMCID: PMC1606530 DOI: 10.2353/ajpath.2006.051321] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Harikrishna Tanjore
- Department of Medicine, Center for Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
20
|
Alexakis C, Maxwell P, Bou-Gharios G. Organ-specific collagen expression: implications for renal disease. Nephron Clin Pract 2005; 102:e71-5. [PMID: 16286786 DOI: 10.1159/000089684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease is characterized by progressive accumulation of extracellular matrix and scarring, leading to the loss of kidney function. Excess deposition of the collagen family of proteins is the hallmark of kidney fibrosis. In this review, we survey the collagens that are associated with renal disease and we highlight the use of a transgenic approach to identify cis-acting sequences in the collagen type I promoter which are capable of directing collagen type I expression specifically in the kidney. Ultimately it may be possible to use this approach to halt the accumulation of collagen selectively in this organ.
Collapse
Affiliation(s)
- Catherine Alexakis
- Renal Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | |
Collapse
|