1
|
Niu H, Zhu J, Qu Q, Zhou X, Huang X, Du Z. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target. Proteins 2021; 89:853-865. [PMID: 33583053 DOI: 10.1002/prot.26064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Inorganic pyrophosphatases (PPases) catalyze the hydrolysis of pyrophosphate to phosphates. PPases play essential roles in growth and development, and are found in all kingdoms of life. Human possess two PPases, PPA1 and PPA2. PPA1 is present in all tissues, acting largely as a housekeeping enzyme. Besides pyrophosphate hydrolysis, PPA1 can also directly dephosphorylate phosphorylated c-Jun N-terminal kinases 1 (JNK1). Upregulated expression of PPA1 has been linked to many human malignant tumors. PPA1 knockdown induces apoptosis and decreases proliferation. PPA1 is emerging as a potential prognostic biomarker and target for anti-cancer drug development. In spite of the biological and physiopathological importance of PPA1, there is no detailed study on the structure and catalytic mechanisms of mammalian origin PPases. Here we report the crystal structure of human PPA1 at a resolution of 2.4 Å. We also carried out modeling studies of PPA1 in complex with JNK1 derived phosphor-peptides. The monomeric protein fold of PPA1 is similar to those found in other family I PPases. PPA1 forms a dimeric structure that should be conserved in animal and fungal PPases. Analysis of the PPA1 structure and comparison with available structures of PPases from lower organisms suggest that PPA1 has a largely pre-organized and relatively rigid active site for pyrophosphate hydrolysis. Results from the modeling study indicate the active site of PPA1 has the potential to accommodate double-phosphorylated peptides from JNK1. In short, results from the study provides new insights into the mechanisms of human PPA1 and basis for structure-based anti-cancer drug developments using PPA1 as the target.
Collapse
Affiliation(s)
- Haiying Niu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, China.,Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Jiang Zhu
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College 16802, Pennsylvania, USA
| | - Quanxin Qu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, China
| | - Xia Zhou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| | - Xiaolan Huang
- Department of Computer Science, Southern Illinois University, Carbondale, Illinois, USA
| | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
2
|
Romanov RS, Mariasina SS, Efimov SV, Klochkov VV, Rodina EV, Polshakov VI. Backbone resonance assignment and dynamics of 110 kDa hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:281-287. [PMID: 32562252 DOI: 10.1007/s12104-020-09962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Family I soluble inorganic pyrophosphatases (PPases; EC 3.6.1.1) are enzymes essential for all organisms. They hydrolyze inorganic pyrophosphate, thus providing the driving force for numerous biosynthetic reactions. Soluble PPases retain enzymatic activity only in multimeric forms. PPases from various organisms are extensively studied by X-ray crystallography but until now there was no information on their structure and dynamics in solution. Hexameric 110 kDa (6 × 18.3 kDa) PPase from Mycobacterium tuberculosis (Mt-PPase) is a promising target for the rational design of potential anti-tuberculosis agents. In order to use NMR techniques in functional studies of Mt-PPase and rational design of the inhibitors for this enzyme, it is necessary to have information on the backbone 1H, 13C and 15N resonance assignments. Samples of Mt-PPase enriched with 99% of 13C and 15N isotopes, and 95% of 2H were obtained using recombinant protein expression in an isotopically-labeled medium and effective heat-shock protocol for the deuterium-to-hydrogen exchange of the amide groups. Backbone resonance assignment was achieved for more than 95% of the residues. It was found that the secondary structure of Mt-PPase in solution corresponds well to the crystal structure of this protein. Protein backbone dynamics were studied using 15N NMR relaxation experiments. Determined resonance assignments and dynamic properties provide the basis for the subsequent structure-based design of novel inhibitors of Mt-PPase-potential anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Roman S Romanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sofia S Mariasina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan, Russia, 420008
| | - Vladimir V Klochkov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan, Russia, 420008
| | - Elena V Rodina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
3
|
Crystal structures of plant inorganic pyrophosphatase, an enzyme with a moonlighting autoproteolytic activity. Biochem J 2019; 476:2297-2319. [PMID: 31371393 DOI: 10.1042/bcj20190427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31-Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.
Collapse
|
4
|
Serrano-Bueno G, Madroñal JM, Manzano-López J, Muñiz M, Pérez-Castiñeira JR, Hernández A, Serrano A. Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1019-1033. [DOI: 10.1016/j.bbamcr.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
5
|
Segami S, Tomoyama T, Sakamoto S, Gunji S, Fukuda M, Kinoshita S, Mitsuda N, Ferjani A, Maeshima M. Vacuolar H +-Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively Regulate Pyrophosphate Levels in Arabidopsis thaliana. THE PLANT CELL 2018; 30:1040-1061. [PMID: 29691313 PMCID: PMC6002195 DOI: 10.1105/tpc.17.00911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Inorganic pyrophosphate (PPi) is a phosphate donor and energy source. Many metabolic reactions that generate PPi are suppressed by high levels of PPi. Here, we investigated how proper levels of cytosolic PPi are maintained, focusing on soluble pyrophosphatases (AtPPa1 to AtPPa5; hereafter PPa1 to PPa5) and vacuolar H+-pyrophosphatase (H+-PPase, AtVHP1/FUGU5) in Arabidopsis thaliana In planta, five PPa isozymes tagged with GFP were detected in the cytosol and nuclei. Immunochemical analyses revealed a high abundance of PPa1 and the absence of PPa3 in vegetative tissue. In addition, the heterologous expression of each PPa restored growth in a soluble PPase-defective yeast strain. Although the quadruple knockout mutant plant ppa1 ppa2 ppa4 ppa5 showed no obvious phenotypes, H+-PPase and PPa1 double mutants (fugu5 ppa1) exhibited significant phenotypes, including dwarfism, high PPi concentrations, ectopic starch accumulation, decreased cellulose and callose levels, and structural cell wall defects. Altered cell arrangements and weakened cell walls in the root tip were particularly evident in fugu5 ppa1 and were more severe than in fugu5 Our results indicate that H+-PPase is essential for maintaining adequate PPi levels and that the cytosolic PPa isozymes, particularly PPa1, prevent increases in PPi concentrations to toxic levels. We discuss fugu5 ppa1 phenotypes in relation to metabolic reactions and PPi homeostasis.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Andersson M, Turesson H, Arrivault S, Zhang Y, Fält AS, Fernie AR, Hofvander P. Inhibition of plastid PPase and NTT leads to major changes in starch and tuber formation in potato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1913-1924. [PMID: 29538769 PMCID: PMC6018912 DOI: 10.1093/jxb/ery051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 05/18/2023]
Abstract
The importance of a plastidial soluble inorganic pyrophosphatase (psPPase) and an ATP/ADP translocator (NTT) for starch composition and tuber formation in potato (Solanum tuberosum) was evaluated by individual and simultaneous down-regulation of the corresponding endogenous genes. Starch and amylose content of the transgenic lines were considerably lower, and granule size substantially smaller, with down-regulation of StpsPPase generating the most pronounced effects. Single-gene down-regulation of either StpsPPase or StNTT resulted in increased tuber numbers per plant and higher fresh weight yield. In contrast, when both genes were inhibited simultaneously, some lines developed only a few, small and distorted tubers. Analysis of metabolites revealed altered amounts of sugar intermediates, and a substantial increase in ADP-glucose content of the StpsPPase lines. Increased amounts of intermediates of vitamin C biosynthesis were also observed. This study suggests that hydrolysis of pyrophosphate (PPi) by action of a psPPase is vital for functional starch accumulation in potato tubers and that no additional mechanism for consuming, hydrolysing, or exporting PPi exists in the studied tissue. Additionally, it demonstrates that functional PPi hydrolysis in combination with efficient ATP import is essential for tuber formation and development.
Collapse
Affiliation(s)
- Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Helle Turesson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Ann-Sofie Fält
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
7
|
Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R. Review: "Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism". PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:11-19. [PMID: 29362089 DOI: 10.1016/j.plantsci.2017.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | | | - Lilián Gabriela Valencia-Turcotte
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| | - Rogelio Rodríguez-Sotres
- FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, Ave. Universidad 3000, Cd. Universitaria, Del. Coyoacán, P.C. 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Ung H, Karia P, Ebine K, Ueda T, Yoshioka K, Moeder W. Triphosphate Tunnel Metalloenzyme Function in Senescence Highlights a Biological Diversification of This Protein Superfamily. PLANT PHYSIOLOGY 2017; 175:473-485. [PMID: 28733390 PMCID: PMC5580764 DOI: 10.1104/pp.17.00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/15/2017] [Indexed: 05/06/2023]
Abstract
The triphosphate tunnel metalloenzyme (TTM) superfamily comprises a group of enzymes that hydrolyze organophosphate substrates. They exist in all domains of life, yet the biological role of most family members is unclear. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes. We have previously reported that AtTTM2 displays pyrophosphatase activity and is involved in pathogen resistance. Here, we report the biochemical activity and biological function of AtTTM1 and diversification of the biological roles between AtTTM1 and 2 Biochemical analyses revealed that AtTTM1 displays pyrophosphatase activity similar to AtTTM2, making them the only TTMs characterized so far to act on a diphosphate substrate. However, knockout mutant analysis showed that AtTTM1 is not involved in pathogen resistance but rather in leaf senescence. AtTTM1 is transcriptionally up-regulated during leaf senescence, and knockout mutants of AtTTM1 exhibit delayed dark-induced and natural senescence. The double mutant of AtTTM1 and AtTTM2 did not show synergistic effects, further indicating the diversification of their biological function. However, promoter swap analyses revealed that they functionally can complement each other, and confocal microscopy revealed that both proteins are tail-anchored proteins that localize to the mitochondrial outer membrane. Additionally, transient overexpression of either gene in Nicotiana benthamiana induced senescence-like cell death upon dark treatment. Taken together, we show that two TTMs display the same biochemical properties but distinct biological functions that are governed by their transcriptional regulation. Moreover, this work reveals a possible connection of immunity-related programmed cell death and senescence through novel mitochondrial tail-anchored proteins.
Collapse
Affiliation(s)
- Huoi Ung
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Purva Karia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
9
|
Daouda MP, Bouchra EK, Roman PCJ, Aurelio SD, Abdelaziz S. Inorganic Pyrophosphatases: Study of Interest. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.810028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Gutiérrez-Luna FM, Navarro de la Sancha E, Valencia-Turcotte LG, Vázquez-Santana S, Rodríguez-Sotres R. Evidence for a non-overlapping subcellular localization of the family I isoforms of soluble inorganic pyrophosphatase in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:229-242. [PMID: 27968992 DOI: 10.1016/j.plantsci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Pyrophosphate is a byproduct of macromolecular biosynthesis and its degradation gives a thermodynamic impulse to cell growth. Soluble inorganic pyrophosphatases (PPa) are present in all living cells, but in plants and other Eukaryotes membrane-bound H+-pumping pyrophosphatases may compete with these soluble counterparts for the substrate. In Arabidopsis thaliana there are six genes encoding for classic family I PPa isoforms, five cytoplasmic, and one considered to be organellar. Here, six transgenic stable A. thaliana lines, each expressing one of the PPa isoforms from this same plant species in fusion with a fluorescent protein, were obtained and analyzed under confocal and immunogold transmission electron microscopy. The results confirmed the cytoplasmic localization for isoforms 1-5, and showed an exclusive chloroplastic localization for isoform 6. In contrast to previous reports, the data presented here revealed a differential distribution pattern for the isoforms 1 and 5, in comparison to isoforms 2 and 3, and also the presence of isoform 4 in the intercellular space and cell wall, in addition to its presence in cytoplasm. To the best of our knowledge, this is the first report of a PPa family I protein localized in the intercellular space in plants.
Collapse
Affiliation(s)
- Francisca Morayna Gutiérrez-Luna
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Ernesto Navarro de la Sancha
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Lilián Gabriela Valencia-Turcotte
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Sonia Vázquez-Santana
- Departamento De Biología Comparada, Facultad De Ciencias, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento De Bioquímica, Facultad De Química, UNAM, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico; Universidad Nacional Autónoma De México, Av. Universidad 3000, Col. Cd. Universitaria. C.p. 04510, Ciudad De Mexico, Mexico.
| |
Collapse
|
11
|
Costa EP, Façanha AR, Cruz CS, Silva JN, Machado JA, Carvalho GM, Fernandes MR, Martins R, Campos E, Romeiro NC, Githaka NW, Konnai S, Ohashi K, Vaz IS, Logullo C. A novel mechanism of functional cooperativity regulation by thiol redox status in a dimeric inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2016; 1861:2922-2933. [PMID: 27664315 DOI: 10.1016/j.bbagen.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.
Collapse
Affiliation(s)
- Evenilton P Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Arnoldo R Façanha
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Criscila S Cruz
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil; Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Jhenifer N Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Josias A Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Gabriel M Carvalho
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Mariana R Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Renato Martins
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Naftaly W Githaka
- Tick Unit, International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Itabajara S Vaz
- Faculdade de Veterinária e Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil.
| |
Collapse
|
12
|
A New Photoluminescent Co(II)-Diphosphate Cluster Templated by Fampridine Cation: Synthesis and Biophysicochemical Evaluation. J CLUST SCI 2016. [DOI: 10.1007/s10876-015-0966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Soner S, Ozbek P, Garzon JI, Ben-Tal N, Haliloglu T. DynaFace: Discrimination between Obligatory and Non-obligatory Protein-Protein Interactions Based on the Complex's Dynamics. PLoS Comput Biol 2015; 11:e1004461. [PMID: 26506003 PMCID: PMC4623975 DOI: 10.1371/journal.pcbi.1004461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Protein-protein interfaces have been evolutionarily-designed to enable transduction between the interacting proteins. Thus, we hypothesize that analysis of the dynamics of the complex can reveal details about the nature of the interaction, and in particular whether it is obligatory, i.e., persists throughout the entire lifetime of the proteins, or not. Indeed, normal mode analysis, using the Gaussian network model, shows that for the most part obligatory and non-obligatory complexes differ in their decomposition into dynamic domains, i.e., the mobile elements of the protein complex. The dynamic domains of obligatory complexes often mix segments from the interacting chains, and the hinges between them do not overlap with the interface between the chains. In contrast, in non-obligatory complexes the interface often hinges between dynamic domains, held together through few anchor residues on one side of the interface that interact with their counterpart grooves in the other end. In automatic analysis, 117 of 139 obligatory (84.2%) and 203 of 246 non-obligatory (82.5%) complexes are correctly classified by our method: DynaFace. We further use DynaFace to predict obligatory and non-obligatory interactions among a set of 300 putative protein complexes. DynaFace is available at: http://safir.prc.boun.edu.tr/dynaface.
Collapse
Affiliation(s)
- Seren Soner
- Department of Computer Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Jose Ignacio Garzon
- Departments of Biochemistry and Molecular Biophysics and Systems Biology and Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
14
|
Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Serrano-Bueno G, Hernández A, López-Lluch G, Pérez-Castiñeira JR, Navas P, Serrano A. Inorganic pyrophosphatase defects lead to cell cycle arrest and autophagic cell death through NAD+ depletion in fermenting yeast. J Biol Chem 2013; 288:13082-92. [PMID: 23479727 DOI: 10.1074/jbc.m112.439349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inorganic pyrophosphatases are required for anabolism to take place in all living organisms. Defects in genes encoding these hydrolytic enzymes are considered inviable, although their exact nature has not been studied at the cellular and molecular physiology levels. Using a conditional mutant in IPP1, the Saccharomyces cerevisiae gene encoding the cytosolic soluble pyrophosphatase, we show that respiring cells arrest in S phase upon Ipp1p deficiency, but they remain viable and resume growth if accumulated pyrophosphate is removed. However, fermenting cells arrest in G1/G0 phase and suffer massive vacuolization and eventual cell death by autophagy. Impaired NAD(+) metabolism is a major determinant of cell death in this scenario because demise can be avoided under conditions favoring accumulation of the oxidized pyridine coenzyme. These results posit that the mechanisms related to excess pyrophosphate toxicity in eukaryotes are dependent on the energy metabolism of the cell.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Seville, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Bhardwaj D, Lakhanpaul S, Tuteja N. Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:1-5. [PMID: 22750791 DOI: 10.1016/j.plaphy.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Climate change is a major concern especially in view of the increasing global population and food security. Plant scientists need to look for genetic tools whose appropriate usage can contribute to sustainable food availability. G-proteins have been identified as some of the potential genetic tools that could be useful for protecting plants from various stresses. Heterotrimeric G-proteins consisting of three subunits Gα, Gβ and Gγ are important components of a number of signalling pathways. Their structure and functions are already well studied in animals but their potential in plants is now gaining attention for their role in stress tolerance. Earlier we have reported that over expressing pea Gβ conferred heat tolerance in tobacco plants. Here we report the interacting partners (proteins) of Gβ subunit of Pisum sativum and their putative role in stress and development. Out of 90 transformants isolated from the yeast-two-hybrid (Y2H) screening, seven were chosen for further investigation due to their recurrence in multiple experiments. These interacting partners were confirmed using β-galactosidase colony filter lift and ONPG (O-nitrophenyl-β-D-galactopyranoside) assays. These partners include thioredoxin H, histidine-containing phosphotransfer protein 5-like, pathogenesis-related protein, glucan endo-beta-1, 3-glucosidase (acidic isoform), glycine rich RNA binding protein, cold and drought-regulated protein (corA gene) and soluble inorganic pyrophosphatase 1. This study suggests the role of pea Gβ subunit in stress signal transduction and development pathways owing to its capability to interact with a wide range of proteins of multiple functions.
Collapse
|
17
|
Benini S, Wilson K. Structure of the Mycobacterium tuberculosis soluble inorganic pyrophosphatase Rv3628 at pH 7.0. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:866-70. [PMID: 21821883 PMCID: PMC3151116 DOI: 10.1107/s1744309111023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/15/2011] [Indexed: 11/10/2022]
Abstract
The 1.5 Å resolution crystal structure of the Mycobacterium tuberculosis soluble inorganic pyrophosphatase Rv3628 at pH 7.0 is reported. The M. tuberculosis and M. leprae genomes include genes for the only two family I inorganic pyrophosphatases known to contain two histidines in the active site. The role of these two residues in catalysis is not fully understood. Mutational and functional studies of the M. tuberculosis enzyme showed that His21 and His86 are not essential for pyrophosphate hydrolysis, but are responsible for a shift in the optimal pH for the reaction compared with the Escherichia coli enzyme. Comparison with the structure previously reported at pH 5.0 provides further insight into the role of the two histidines. Two potassium-binding sites are found as a result of the high potassium concentration in the mother liquor.
Collapse
Affiliation(s)
- Stefano Benini
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy.
| | | |
Collapse
|
18
|
Ducruet JM, Serrano A, Roncel M, Ortega JM. Peculiar properties of chlorophyll thermoluminescence emission of autotrophically or mixotrophically grown Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:301-7. [PMID: 21402481 DOI: 10.1016/j.jphotobiol.2011.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The microalgae Chlamydomonas reinhardtii and Chlorella sp. CCAP 211/84 were grown autotrophically and mixotrophically and their thermoluminescence emissions were recorded above 0 °C after excitation by 1, 2 or 3 xenon flashes or by continuous far-red light. An oscillation of the B band intensity according to the number of flashes was always observed, with a maximum after 2 flashes, accompanied by a downshift of the B band temperature maximum in mixotrophic compared to autotrophic grown cells, indicative of a dark stable pH gradient. Moreover, new flash-induced bands emerged in mixotrophic Chlamydomonas grown cells, at temperatures higher than that of the B band. In contrast to the afterglow band observed in higher plants, in Chlamydomonas these bands were not inducible by far-red light, were fully suppressed by 2 μM antimycin A, and peaked at different temperatures depending on the flash number and growth stage, with higher temperature maxima in cells at a stationary compared to an exponential growth stage. These differences are discussed according to the particular properties of cyclic electron transfer pathways in C. reinhardtii.
Collapse
Affiliation(s)
- Jean-Marc Ducruet
- Groupe de Biospectroscopie Végétale, Ecophysiologie Végétale, ESE, Bât. 362, Université Paris-Sud-Orsay, 91400 Orsay, France.
| | | | | | | |
Collapse
|
19
|
Martínez-Castilla LP, Rodríguez-Sotres R. A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. PLoS One 2010; 5:e12483. [PMID: 20830209 PMCID: PMC2935356 DOI: 10.1371/journal.pone.0012483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. PRINCIPAL FINDINGS The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449-460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. CONCLUSION Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone.
Collapse
Affiliation(s)
- León P. Martínez-Castilla
- Departamento de Bioquímica–Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica–Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
- * E-mail:
| |
Collapse
|
20
|
George GM, van der Merwe MJ, Nunes-Nesi A, Bauer R, Fernie AR, Kossmann J, Lloyd JR. Virus-induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in Nicotiana benthamiana. PLANT PHYSIOLOGY 2010; 154:55-66. [PMID: 20605913 PMCID: PMC2938153 DOI: 10.1104/pp.110.157776] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/02/2010] [Indexed: 05/18/2023]
Abstract
The role of pyrophosphate in primary metabolism is poorly understood. Here, we report on the transient down-regulation of plastid-targeted soluble inorganic pyrophosphatase in Nicotiana benthamiana source leaves. Physiological and metabolic perturbations were particularly evident in chloroplastic central metabolism, which is reliant on fast and efficient pyrophosphate dissipation. Plants lacking plastidial soluble inorganic pyrophosphatase (psPPase) were characterized by increased pyrophosphate levels, decreased starch content, and alterations in chlorophyll and carotenoid biosynthesis, while constituents like amino acids (except for histidine, serine, and tryptophan) and soluble sugars and organic acids (except for malate and citrate) remained invariable from the control. Furthermore, translation of Rubisco was significantly affected, as observed for the amounts of the respective subunits as well as total soluble protein content. These changes were concurrent with the fact that plants with reduced psPPase were unable to assimilate carbon to the same extent as the controls. Furthermore, plants with lowered psPPase exposed to mild drought stress showed a moderate wilting phenotype and reduced vitality, which could be correlated to reduced abscisic acid levels limiting stomatal closure. Taken together, the results suggest that plastidial pyrophosphate dissipation through psPPase is indispensable for vital plant processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James R. Lloyd
- Institute of Plant Biotechnology, University of Stellenbosch, Matieland 7602, Stellenbosch, South Africa (G.M.G., M.J.v.d.M., R.B., J.K., J.R.L.); Max Planck Institute of Molecular Plant Physiology, D–14476 Potsdam-Golm, Germany (A.N.-N., A.R.F.)
| |
Collapse
|
21
|
Coordination complexes incorporating pyrophosphate: Structural overview and exploration of their diverse magnetic, catalytic and biological properties. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Pyrophosphate-bridged complexes with picomolar toxicity. J Inorg Biochem 2009; 103:1254-64. [PMID: 19666193 DOI: 10.1016/j.jinorgbio.2009.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022]
Abstract
Recently, we have observed the emergence of a new series of pyrophosphate-bridged coordination complexes. Such complexes have been prepared by overcoming the ready hydrolysis of the pyrophosphate moiety. To date, no exploration has been conducted on the cytotoxicity of such complexes. Three pyrophosphate-bridged complexes, namely {[Ni(phen)(2)](2)(mu-P(2)O(7))}.27H(2)O, {[Cu(phen)(H(2)O)](2)(mu-P(2)O(7))}.8H(2)O and {[Co(phen)(2)](2)(mu-P(2)O(7))}.6MeOH, (where phen is 1,10'-phenanthroline) were chosen for their comparative structural similarities and suitable aqueous solubility. Cytotoxicity studies in the adriamycin-resistant ovarian cancer cell line A2780/AD demonstrated highly significant efficacy, with values as low as 160pM for the cobalt complex at 72h. The underlying mechanism for such exceptional toxicity is investigated focusing on DNA interactions, topoisomerase I enzyme inhibition and oxidative stress (followed by intracellular glutathione levels). The role of hydrolysis in uptake and toxicity is also explored (followed by electronic absorption spectroscopy, (31)P NMR, and confocal microscopy) and the complexes are compared to cisplatin controls. Overall a clear picture of the extraordinary toxicity emerged. The results demonstrate a new class of prodrugs with significant potential for future development for the treatment of drug-resistant cancer cell lines.
Collapse
|
23
|
Marino N, Mastropietro TF, Armentano D, De Munno G, Doyle RP, Lloret F, Julve M. Spin canting in an unprecedented three-dimensional pyrophosphate- and 2,2′-bipyrimidine-bridged cobalt(ii) framework. Dalton Trans 2008:5152-4. [DOI: 10.1039/b813097n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ikotun OF, Armatus NG, Julve M, Kruger PE, Lloret F, Nieuwenhuyzen M, Doyle RP. Synthesis and Structural and Magnetic Characterization of {[(phen)2Ni]2(μ-P2O7)}·27H2O and {[(phen)2Mn]2(μ-P2O7)}·13H2O: Rare Examples of Coordination Complexes with the Pyrophosphate Ligand. Inorg Chem 2007; 46:6668-74. [PMID: 17636894 DOI: 10.1021/ic700439a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction in water of M(II) [M = Ni or Mn] with 1,10-phenanthroline (phen) and sodium pyrophosphate (Na4P2O7) in a 2:4:1 stoichiometry resulted in the crystallization of dinuclear complexes featuring the heretofore rare bridging pyrophosphate. Single-crystal X-ray diffraction studies revealed the complexes to be {[(phen)2Ni]2(micro-P2O7)} . 27H2O (1) and {[(phen)2Mn]2(micro-P2O7)} . 13H2O (2) where the asymmetric M(phen)2 units are bridged by bis-bidentate pyrophosphate, each metal ion exhibiting a distorted octahedral geometry. The bridging pyrophosphate places adjacent metal centers at 5.031 A in 1 and 4.700 A in 2, and its conformation also gives rise to an intramolecular pi-pi interaction between two adjacent phen ligands. Intermolecular pi-pi interactions between phen ligands from adjacent dinuclear complexes create an ornate 3D network in 1, whereas a 2D sheet results in 2. The hydrophilic nature of the pyrophosphate ligand leads to heavy hydration with the potential solvent-accessible area for 1 and 2 accounting for 45.7% and 26.4% of their unit cell volumes, respectively. Variable-temperature magnetic susceptibility measurements on polycrystalline samples of 1 and 2 revealed net weak intramolecular antiferromagnetic coupling between metal centers in both compounds with J = -3.77 cm(-1) in 1 and J = -0.88 cm(-1) in 2, the Hamiltonian being defined as H = -JSA.SB. The ability of the bis-bidentate pyrophosphate to mediate magnetic interactions between divalent first row transition metal ions is discussed bearing in mind the number and nature of the interacting magnetic orbitals.
Collapse
Affiliation(s)
- Oluwatayo F Ikotun
- Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Gómez-García MR, Losada M, Serrano A. Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteria. FEBS J 2007; 274:3948-59. [PMID: 17635582 DOI: 10.1111/j.1742-4658.2007.05927.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble inorganic pyrophosphatases (inorganic diphosphatases, EC 3.6.1.1) were isolated and characterized from three phylogenetically diverse cyanobacteria--Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Pseudanabaena sp. PCC 6903--and one anoxygenic photosynthetic bacterium, Rhodopseudomonas viridis (purple nonsulfur). These enzymes were found to be family I soluble inorganic pyrophosphatases with c. 20 kDa subunits with diverse oligomeric structures. The corresponding ppa genes were cloned and functionally validated by heterologous expression. Cyanobacterial family I soluble inorganic pyrophosphatases were strictly Mg(2+)-dependent enzymes. However, diverse cation cofactor dependence was observed for enzymes from other groups of photosynthetic bacteria. Immunochemical studies with antibodies to cyanobacterial soluble inorganic pyrophosphatases showed crossreaction with orthologs of other main groups of phototrophic prokaryotes and suggested a close relationship with the enzyme of heliobacteria, the nearest photosynthetic relatives of cyanobacteria. A slow-growing Escherichia coli JP5 mutant strain, containing a very low level of soluble inorganic pyrophosphatase activity, was functionally complemented up to wild-type growth rates with ppa genes from diverse photosynthetic prokaryotes expressed under their own promoters. Overall, these results suggest that the bacterial family I soluble inorganic pyrophosphatases described here have retained functional similarities despite their genealogies and their adaptations to diverse metabolic scenarios.
Collapse
Affiliation(s)
- María R Gómez-García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla Cartuja, CSIC-Universidad de Sevilla, Spain.
| | | | | |
Collapse
|