1
|
Hu H, Nie D, Fang M, He W, Zhang J, Liu X, Zhang G. Müller cells under hydrostatic pressure modulate retinal cell survival via TRPV1/PLCγ1 complex-mediated calcium influx in experimental glaucoma. FEBS J 2024; 291:2703-2714. [PMID: 38390745 DOI: 10.1111/febs.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1- and PLCG1-silenced Müller cells and P2X7-silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK-8 assays, EdU (5-ethynyl-2'-deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p-PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP-treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Danyao Nie
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Min Fang
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Wenling He
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Jing Zhang
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Xinhua Liu
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guoming Zhang
- Department of Fundus Disease, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| |
Collapse
|
2
|
Kusić D, Connolly J, Kainulainen H, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Ahmetov II, Britton SL, Koch LG, Burniston JG. Striated muscle-specific serine/threonine-protein kinase beta segregates with high versus low responsiveness to endurance exercise training. Physiol Genomics 2019; 52:35-46. [PMID: 31790338 DOI: 10.1152/physiolgenomics.00103.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bidirectional selection for either high or low responsiveness to endurance running has created divergent rat phenotypes of high-response trainers (HRT) and low-response trainers (LRT). We conducted proteome profiling of HRT and LRT gastrocnemius of 10 female rats (body weight 279 ± 35 g; n = 5 LRT and n = 5 HRT) from generation 8 of selection. Differential analysis of soluble proteins from gastrocnemius was conducted by label-free quantitation. Genetic association studies were conducted in 384 Russian international-level athletes (age 23.8 ± 3.4 yr; 202 men and 182 women) stratified to endurance or power disciplines. Proteomic analysis encompassed 1,024 proteins, 76 of which exhibited statistically significant (P < 0.05, false discovery rate <1%) differences between HRT and LRT muscle. There was significant enrichment of enzymes involved in glycolysis/gluconeogenesis in LRT muscle but no enrichment of gene ontology phrases in HRT muscle. Striated muscle-specific serine/threonine-protein kinase-beta (SPEG-β) exhibited the greatest difference in abundance and was 2.64-fold greater (P = 0.0014) in HRT muscle. Coimmunoprecipitation identified 24 potential binding partners of SPEG-β in HRT muscle. The frequency of the G variant of the rs7564856 polymorphism that increases SPEG gene expression was significantly greater (32.9 vs. 23.8%; OR = 1.6, P = 0.009) in international-level endurance athletes (n = 258) compared with power athletes (n = 126) and was significantly associated (β = 8.345, P = 0.0048) with a greater proportion of slow-twitch fibers in vastus lateralis of female endurance athletes. Coimmunoprecipitation of SPEG-β in HRT muscle discovered putative interacting proteins that link with previously reported differences in transforming growth factor-β signaling in exercised muscle.
Collapse
Affiliation(s)
- Denis Kusić
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Steven L Britton
- Department of Anaesthesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, Ohio
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
3
|
Ali ES, Rychkov GY, Barritt GJ. Deranged hepatocyte intracellular Ca 2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 2019; 82:102057. [PMID: 31401389 DOI: 10.1016/j.ceca.2019.102057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in men, and the sixth in women. Non-alcoholic fatty liver disease (NAFLD) is now one of the major risk factors for HCC. NAFLD, which involves the accumulation of excess lipid in cytoplasmic lipid droplets in hepatocytes, can progress to non-alcoholic steatosis, fibrosis, and HCC. Changes in intracellular Ca2+ constitute important signaling pathways for the regulation of lipid and carbohydrate metabolism in normal hepatocytes. Recent studies of steatotic hepatocytes have identified lipid-induced changes in intracellular Ca2+, and have provided evidence that altered Ca2+ signaling exacerbates lipid accumulation and may promote HCC. The aims of this review are to summarise current knowledge of the lipid-induced changes in hepatocyte Ca2+ homeostasis, to comment on the mechanisms involved, and discuss the pathways leading from altered Ca2+ homeostasis to enhanced lipid accumulation and the potential promotion of HCC. In steatotic hepatocytes, lipid inhibits store-operated Ca2+ entry and SERCA2b, and activates Ca2+ efflux from the endoplasmic reticulum (ER) and its transfer to mitochondria. These changes are associated with changes in Ca2+ concentrations in the ER (decreased), cytoplasmic space (increased) and mitochondria (likely increased). They lead to: inhibition of lipolysis, lipid autophagy, lipid oxidation, and lipid secretion; activation of lipogenesis; increased lipid; ER stress, generation of reactive oxygen species (ROS), activation of Ca2+/calmodulin-dependent kinases and activation of transcription factor Nrf2. These all can potentially mediate the transition of NAFLD to HCC. It is concluded that lipid-induced changes in hepatocyte Ca2+ homeostasis are important in the initiation and progression of HCC. Further research is desirable to better understand the cause and effect relationships, the time courses and mechanisms involved, and the potential of Ca2+ transporters, channels, and binding proteins as targets for pharmacological intervention.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Grigori Y Rychkov
- School of Medicine, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia, 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
4
|
Tam KC, Ali E, Hua J, Chataway T, Barritt GJ. Evidence for the interaction of peroxiredoxin-4 with the store-operated calcium channel activator STIM1 in liver cells. Cell Calcium 2018; 74:14-28. [PMID: 29804005 DOI: 10.1016/j.ceca.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ entry through store-operated Ca2+ channels (SOCs) in the plasma membrane (PM) of hepatocytes plays a central role in the hormonal regulation of liver metabolism. SOCs are composed of Orai1, the channel pore protein, and STIM1, the activator protein, and are regulated by hormones and reactive oxygen species (ROS). In addition to Orai1, STIM1 also interacts with several other intracellular proteins. Most previous studies of the cellular functions of Orai1 and STIM1 have employed immortalised cells in culture expressing ectopic proteins tagged with a fluorescent polypeptide such as GFP. Little is known about the intracellular distributions of endogenous Orai1 and STIM1. The aims are to determine the intracellular distribution of endogenous Orai1 and STIM1 in hepatocytes and to identify novel STIM1 binding proteins. Subcellular fractions of rat liver were prepared by homogenisation and differential centrifugation. Orai1 and STIM1 were identified and quantified by western blot. Orai1 was found in the PM (0.03%), heavy (44%) and light (27%) microsomal fractions, and STIM1 in the PM (0.09%), and heavy (85%) and light (13%) microsomal fractions. Immunoprecipitation of STIM1 followed by LC/MS or western blot identified peroxiredoxin-4 (Prx-4) as a potential STIM1 binding protein. Prx-4 was found principally in the heavy microsomal fraction. Knockdown of Prx-4 using siRNA, or inhibition of Prx-4 using conoidin A, did not affect Ca2+ entry through SOCs but rendered SOCs susceptible to inhibition by H2O2. It is concluded that, in hepatocytes, a considerable proportion of endogenous Orai1 and STIM1 is located in the rough ER. In the rough ER, STIM1 interacts with Prx-4, and this interaction may contribute to the regulation by ROS of STIM1 and SOCs.
Collapse
Affiliation(s)
- Ka Cheung Tam
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Eunus Ali
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Tim Chataway
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
5
|
Fine-tuning of store-operated calcium entry by fast and slow Ca 2+-dependent inactivation: Involvement of SARAF. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:463-469. [PMID: 29223474 DOI: 10.1016/j.bbamcr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.
Collapse
|
6
|
Wang PY, Wang SR, Xiao L, Chen J, Wang JY, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Physiol Cell Physiol 2017; 312:C367-C375. [PMID: 28100486 DOI: 10.1152/ajpcell.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
c-Jun is an activating protein 1 (AP-1) transcription factor and implicated in many aspects of cellular functions, but its exact role in the regulation of early intestinal epithelial restitution after injury remains largely unknown. Phospholipase C-γ1 (PLCγ1) catalyzes hydrolysis of phosphatidylinositol 4,5 biphosphate into the second messenger diacylglycerol and inositol 1,4,5 triphosphate, coordinates Ca2+ store mobilization, and regulates cell migration and proliferation in response to stress. Here we reported that c-Jun upregulates PLCγ1 expression and enhances PLCγ1-induced Ca2+ signaling, thus promoting intestinal epithelial restitution after wounding. Ectopically expressed c-Jun increased PLCγ1 expression at the transcription level, and this stimulation is mediated by directly interacting with AP-1 and CCAAT-enhancer-binding protein (C/EBP) binding sites that are located at the proximal region of the rat PLCγ1 promoter. Increased levels of PLCγ1 by c-Jun elevated cytosolic free Ca2+ concentration and stimulated intestinal epithelial cell migration over the denuded area after wounding. The c-Jun-mediated PLCγ1/Ca2+ signal also plays an important role in polyamine-induced cell migration after wounding because increased c-Jun rescued Ca2+ influx and cell migration in polyamine-deficient cells. These findings indicate that c-Jun induces PLCγ1 expression transcriptionally and enhances rapid epithelial restitution after injury by activating Ca2+ signal.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
7
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3062765. [PMID: 27340655 PMCID: PMC4909930 DOI: 10.1155/2016/3062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.
Collapse
|
9
|
Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J 2015; 30:702-15. [PMID: 26467792 PMCID: PMC4714548 DOI: 10.1096/fj.15-280271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
Abstract
Depletion of sarcoplasmic reticulum (SR) Ca2+ stores activates store-operated channels (SOCs) composed of canonical transient receptor potential (TRPC) 1 proteins in vascular smooth muscle cells (VSMCs), which contribute to important cellular functions. We have previously shown that PKC is obligatory for activation of TRPC1 SOCs in VSMCs, and the present study investigates if the classic phosphoinositol signaling pathway involving Gαq-mediated PLC activity is responsible for driving PKC-dependent channel gating. The G-protein inhibitor GDP-β-S, anti-Gαq antibodies, the PLC inhibitor U73122, and the PKC inhibitor GF109203X all inhibited activation of TRPC1 SOCs, and U73122 and GF109203X also reduced store-operated PKC-dependent phosphorylation of TRPC1 proteins. Three distinct SR Ca2+ store-depleting agents, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, cyclopiazonic acid, and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethane-1,2-diamineed, induced translocations of the fluorescent biosensor GFP-PLCδ1-PH from the cell membrane to the cytosol, which were inhibited by U73122. Knockdown of PLCβ1 with small hairpin RNA reduced both store-operated PLC activity and stimulation of TRPC1 SOCs. Immunoprecipitation studies and proximity ligation assays revealed that store depletion induced interactions between TRPC1 and Gαq, and TRPC1 and PLCβ1. We propose a novel activation mechanism for TRPC1 SOCs in VSMCs, in which store depletion induces formation of TRPC1-Gαq-PLCβ1 complexes that lead to PKC stimulation and channel gating.—Shi, J., Miralles, F., Birnbaumer, L., Large, W. A., Albert, A. P. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Jian Shi
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Francesc Miralles
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lutz Birnbaumer
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - William A Large
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Anthony P Albert
- *Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, and Institute of Medical and Biomedical Education, St. George's, University of London, London, United Kingdom; and Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Steatosis inhibits liver cell store-operated Ca²⁺ entry and reduces ER Ca²⁺ through a protein kinase C-dependent mechanism. Biochem J 2015; 466:379-90. [PMID: 25422863 DOI: 10.1042/bj20140881] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid accumulation in hepatocytes can lead to non-alcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis (NASH) and Type 2 diabetes (T2D). Hormone-initiated release of Ca²⁺ from the endoplasmic reticulum (ER) stores and subsequent replenishment of these stores by Ca²⁺ entry through SOCs (store-operated Ca²⁺ channels; SOCE) plays a critical role in the regulation of liver metabolism. ER Ca²⁺ homoeostasis is known to be altered in steatotic hepatocytes. Whether store-operated Ca²⁺ entry is altered in steatotic hepatocytes and the mechanisms involved were investigated. Lipid accumulation in vitro was induced in cultured liver cells by amiodarone or palmitate and in vivo in hepatocytes isolated from obese Zucker rats. Rates of Ca²⁺ entry and release were substantially reduced in lipid-loaded cells. Inhibition of Ca²⁺ entry was associated with reduced hormone-initiated intracellular Ca²⁺ signalling and enhanced lipid accumulation. Impaired Ca²⁺ entry was not associated with altered expression of stromal interaction molecule 1 (STIM1) or Orai1. Inhibition of protein kinase C (PKC) reversed the impairment of Ca²⁺ entry in lipid-loaded cells. It is concluded that steatosis leads to a substantial inhibition of SOCE through a PKC-dependent mechanism. This enhances lipid accumulation by positive feedback and may contribute to the development of NASH and insulin resistance.
Collapse
|
11
|
Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol Cell Biol 2014; 34:4285-300. [PMID: 25246632 DOI: 10.1128/mcb.00983-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved.
Collapse
|
12
|
Scrimgeour NR, Wilson DP, Barritt GJ, Rychkov GY. Structural and stoichiometric determinants of Ca2+ release-activated Ca2+ (CRAC) channel Ca2+-dependent inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1281-7. [PMID: 24472513 DOI: 10.1016/j.bbamem.2014.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Depletion of intracellular Ca(2+) stores in mammalian cells results in Ca(2+) entry across the plasma membrane mediated primarily by Ca(2+) release-activated Ca(2+) (CRAC) channels. Ca(2+) influx through these channels is required for the maintenance of homeostasis and Ca(2+) signaling in most cell types. One of the main features of native CRAC channels is fast Ca(2+)-dependent inactivation (FCDI), where Ca(2+) entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca(2+) entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca(2+) influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.
Collapse
Affiliation(s)
- Nathan R Scrimgeour
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David P Wilson
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Greg J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia
| | - Grigori Y Rychkov
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
13
|
Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes. Cell Calcium 2012; 52:445-56. [DOI: 10.1016/j.ceca.2012.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/16/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022]
|
14
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Grimm MOW, Rothhaar TL, Grösgen S, Burg VK, Hundsdörfer B, Haupenthal VJ, Friess P, Kins S, Grimm HS, Hartmann T. Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 2011; 23:1214-23. [PMID: 22209004 DOI: 10.1016/j.jnutbio.2011.06.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/22/2011] [Accepted: 06/29/2011] [Indexed: 01/20/2023]
Abstract
Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Deutsches Institut für DemenzPrävention (DIDP), Neurodegeneration and Neurobiology, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brierley SM, Castro J, Harrington AM, Hughes PA, Page AJ, Rychkov GY, Blackshaw LA. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 2011; 589:3575-93. [PMID: 21558163 DOI: 10.1113/jphysiol.2011.206789] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanosensory role of TRPA1 and its contribution to mechanical hypersensitivity in sensory neurons remains enigmatic. We elucidated this role by recording mechanically activated currents in conjunction with TRPA1 over- and under-expression and selective pharmacology. First, we established that TRPA1 transcript, protein and functional expression are more abundant in smaller-diameter neurons than larger-diameter neurons, allowing comparison of two different neuronal populations. Utilising whole cell patch clamping, we applied calibrated displacements to neurites of dorsal root ganglion (DRG) neurons in short-term culture and recorded mechanically activated currents termed intermediately (IAMCs), rapidly (RAMCs) or slowly adapting (SAMCs). Trpa1 deletion (–/–) significantly reduced maximum IAMC amplitude by 43% in small-diameter neurons compared with wild-type (+/+) neurons. All other mechanically activated currents in small- and large-diameter Trpa1−/− neurons were unaltered. Seventy-three per cent of Trpa1+/+ small-diameter neurons responding to the TRPA1 agonist allyl-isothiocyanate (AITC) displayed IAMCs to neurite displacement, which were significantly enhanced after AITC addition. The TRPA1 antagonist HC-030031 significantly decreased Trpa1+/+ IAMC amplitudes, but only in AITC responsive neurons. Using a transfection system we also showed TRPA1 over-expression in Trpa1+/+ small-diameter neurons increases IAMC amplitude, an effect reversed by HC-030031. Furthermore, TRPA1 introduction into Trpa1−/− small-diameter neurons restored IAMC amplitudes to Trpa1+/+ levels, which was subsequently reversed by HC-030031. In summary our data demonstrate TRPA1 makes a contribution to normal mechanosensation in a specific subset of DRG neurons. Furthermore, they also provide new evidence illustrating mechanisms by which sensitisation or over-expression of TRPA1 enhances nociceptor mechanosensitivity. Overall, these findings suggest TRPA1 has the capacity to tune neuronal mechanosensitivity depending on its degree of activation or expression.
Collapse
Affiliation(s)
- Stuart M Brierley
- Nerve-Gut Research Laboratory, Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia 5000.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jones L, Ma L, Castro J, Litjens T, Barritt G, Rychkov G. The predominant role of IP3 type 1 receptors in activation of store-operated Ca2+ entry in liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:745-51. [DOI: 10.1016/j.bbamem.2010.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
18
|
Expression and function of TRP channels in liver cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:667-86. [PMID: 21290321 DOI: 10.1007/978-94-007-0265-3_35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The liver plays a central role in whole body homeostasis by mediating the metabolism of carbohydrates, fats, proteins, drugs and xenobiotic compounds, and bile acid and protein secretion. Hepatocytes together with endothelial cells, Kupffer cells, smooth muscle cells, stellate and oval cells comprise the functioning liver. Many members of the TRP family of proteins are expressed in hepatocytes. However, knowledge of their cellular functions is limited. There is some evidence which suggests the involvement of TRPC1 in volume control, TRPV1 and V4 in cell migration, TRPC6 and TRPM7 in cell proliferation, and TRPPM in lysosomal Ca(2+) release. Altered expression of some TRP proteins, including TRPC6, TRPM2 and TRPV1, in tumorigenic cell lines may play roles in the development and progression of hepatocellular carcinoma and metastatic liver cancers. It is likely that future experiments will define important roles for other TRP proteins in the cellular functions of hepatocytes and other cell types of which the liver is composed.
Collapse
|
19
|
Antigny F, Jousset H, König S, Frieden M. Thapsigargin activates Ca²+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 2010; 49:115-27. [PMID: 21193229 DOI: 10.1016/j.ceca.2010.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
The ER Ca²+ sensor STIM1 and the Ca²+ channel Orai1 are key players in store-operated Ca²+ entry (SOCE). In addition, channels from the TRPC family were also shown to be engaged during SOCE, while their precise implication remains controversial. In this study, we investigated the molecular players involved in SOCE triggered by the SERCA pump inhibitor thapsigargin in an endothelial cell line, the EA.hy926. siRNA directed against STIM1 or Orai1 reduced Ca²+ entry by about 50-60%, showing that a large part of the entry is independent from these proteins. Blocking the PLC or the PKC pathway completely abolished thapsigargin-induced Ca²+ entry in cells depleted from STIM1 and/or Orai1. The phorbol ester PMA or the DAG analog OAG restored the Ca²+ entry inhibited by PLC blockers, showing an involvement of PLC/PKC pathway in SOCE. Using pharmacological inhibitors or siRNA revealed that the PKCeta is required for Ca²+ entry, and pharmacological inhibition of the tyrosine kinase Src also reduced Ca²+ entry. TRPC3 silencing diminished the entry by 45%, while the double STIM1/TRPC3 invalidation reduced Ca²+ entry by more than 85%. Hence, in EA.hy926 cells, TG-induced Ca²+ entry results from the activation of the STIM1/Orai1 machinery, and from the activation of TRPC3.
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
20
|
Hull JJ, Lee JM, Matsumoto S. Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade. INSECT MOLECULAR BIOLOGY 2010; 19:553-566. [PMID: 20546038 DOI: 10.1111/j.1365-2583.2010.01013.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca(2+) channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of (3)H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLCbeta1, PLCbeta4, PLCgamma and two G protein alpha subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLCbeta1, BmGq1, and unexpectedly, BmPLCgamma, are part of the PBAN signal transduction cascade.
Collapse
Affiliation(s)
- J J Hull
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
21
|
To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY. Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch Biochem Biophys 2010; 495:152-8. [DOI: 10.1016/j.abb.2010.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/27/2022]
|
22
|
Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P. Ca(2+) transfer from the ER to mitochondria: when, how and why. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1342-51. [PMID: 19341702 PMCID: PMC2730423 DOI: 10.1016/j.bbabio.2009.03.015] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/21/2009] [Accepted: 03/24/2009] [Indexed: 10/25/2022]
Abstract
The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca(2+)] in the mitochondrial matrix ([Ca(2+)]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca(2+) transporters, the close proximity to the endoplasmic reticulum (ER) Ca(2+)-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca(2+) channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca(2+)]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca(2+) homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca(2+) signaling machinery.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Dept. Biomedical Sciences, University of Padua, Via Colombo 3, Padua 35121, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Calcium influx through plasma membrane store-operated Ca(2+) (SOC) channels is triggered when the endoplasmic reticulum (ER) Ca(2+) store is depleted - a homeostatic Ca(2+) signalling mechanism that remained enigmatic for more than two decades. RNA-interference (RNAi) screening and molecular and cellular physiological analysis recently identified STIM1 as the mechanistic 'missing link' between the ER and the plasma membrane. STIM proteins sense the depletion of Ca(2+) from the ER, oligomerize, translocate to junctions adjacent to the plasma membrane, organize Orai or TRPC (transient receptor potential cation) channels into clusters and open these channels to bring about SOC entry.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics and Institute for Immunology, University of California, Irvine, CA 92697-4561, USA.
| |
Collapse
|
24
|
Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY. Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 2009; 36:77-83. [PMID: 19196257 DOI: 10.1111/j.1440-1681.2008.05095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Oscillatory increases in the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) play essential roles in the hormonal regulation of liver cells. Increases in [Ca(2+)](cyt) require Ca(2+) release from the endoplasmic reticulum (ER) and Ca(2+) entry across the plasma membrane. 2. Store-operated Ca(2+) channels (SOCs), activated by a decrease in Ca(2+) in the ER lumen, are responsible for maintaining adequate ER Ca(2+). Experiments using patch-clamp recording and the fluorescent Ca(2+) reporter fura-2 indicate there is only one type of SOC in rat liver cells. These SOCs have a high selectivity for Ca(2+) and properties essentially indistinguishable from those of Ca(2+) release-activated Ca(2+) (CRAC) channels. 3. Although Orai1, a CRAC channel pore protein, and stromal interaction molecule 1 (STIM1), a CRAC channel Ca(2+) sensor, are components of liver cell SOCs, the mechanism of activation of SOCs, and in particular the role of subregions of the ER, are not well understood. 4. Recent experiments have used the transient receptor potential vanilloid 1 (TRPV1) non-selective cation channel, ectopically expressed in liver cells, and a choleretic bile acid to deplete Ca(2+) from different ER subregions. The results of these studies have provided evidence that only a small component of the ER is required for STIM1 redistribution and the activation of SOCs. 5. It is concluded that different Ca(2+) microdomains in the ER and cytoplasmic space are important in both the activation of SOCs and in the signalling actions of Ca(2+) in liver cells. Future experiments will investigate the nature of these microdomains further.
Collapse
Affiliation(s)
- Greg J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
25
|
Scrimgeour N, Litjens T, Ma L, Barritt GJ, Rychkov GY. Properties of Orai1 mediated store-operated current depend on the expression levels of STIM1 and Orai1 proteins. J Physiol 2009; 587:2903-18. [PMID: 19403622 DOI: 10.1113/jphysiol.2009.170662] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two cellular proteins, stromal interaction molecule 1 (STIM1) and Orai1, are recently discovered essential components of the Ca2+ release activated Ca2+ (CRAC) channel. Orai1 polypeptides form the pore of the CRAC channel, while STIM1 plays the role of the endoplasmic reticulum Ca2+ sensor required for activation of CRAC current (I(CRAC)) by store depletion. It is not known, however, if the role of STIM1 is limited exclusively to Ca2+ sensing, or whether interaction between Orai1 and STIM1, either direct or indirect, also defines the properties of I(CRAC). In this study we investigated how the relative expression levels of ectopic Orai1 and STIM1 affect the properties of I(CRAC). The results show that cells expressing low Orai1 : STIM1 ratios produce I(CRAC) with strong fast Ca2+-dependent inactivation, while cells expressing high Orai1 : STIM1 ratios produce I(CRAC) with strong activation at negative potentials. Moreover, the expression ratio of Orai1 and STIM1 affects Ca2+, Ba2+ and Sr2+ conductance, but has no effect on the current in the absence of divalent cations. The results suggest that several key properties of Ca2+ channels formed by Orai1 depend on its interaction with STIM1, and that the stoichiometry of this interaction may vary depending on the relative expression levels of these proteins.
Collapse
Affiliation(s)
- N Scrimgeour
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
26
|
A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid. Biochem J 2009; 418:553-66. [PMID: 19007332 DOI: 10.1042/bj20081052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The question of whether the activation of SOCs (store-operated Ca(2+) channels) requires the whole or part of the ER (endoplasmic reticulum) has not been fully resolved. The role of a putative sub-compartment of the ER in SOC activation in liver cells was investigated using ectopically expressed TRPV1 (transient receptor potential vanilloid 1), a non-selective cation channel, and TDCA (taurodeoxycholic acid), an activator of SOCs, to release Ca(2+) from different regions of the ER. TRPV1 was expressed in the ER and in the plasma membrane. The amount of Ca(2+) released from the ER by a TRPV1 agonist, measured using fura-2, was the same as that released by a SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase) inhibitor, indicating that TRPV1 agonist-sensitive stores substantially overlap with SERCA inhibitor-sensitive stores. In contrast with SERCA inhibitors, TRPV1 agonists did not activate store-operated Ca(2+) entry. These findings were confirmed by patch-clamp recording. Using FFP-18, it was shown that SERCA inhibitors release Ca(2+) from the ER located closer to the plasma membrane than the region from which TRPV1 agonists release Ca(2+). In contrast with SERCA inhibitors, TRPV1 agonists did not induce a redistribution of STIM1 (stromal interaction molecule 1). TDCA caused the release of Ca(2+) from the ER, which was detected by FFP-18 but not by fura-2, and a redistribution of STIM1 to puncta similar to that caused by SERCA inhibitors. It is concluded that in liver cells, Ca(2+) release from a small component of the ER located near the plasma membrane is required to induce STIM1 redistribution and SOC activation.
Collapse
|
27
|
Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Ohsawa I, Ohta S, Hattori S. Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1. J Biol Chem 2009; 284:8951-62. [PMID: 19179337 DOI: 10.1074/jbc.m806851200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A specialized intercellular junction between podocytes, known as the slit diaphragm (SD), forms the essential structural frame-work for glomerular filtration in the kidney. In addition, mounting evidence demonstrates that the SD also plays a crucial role as a signaling platform in physiological and pathological states. Nephrin, the major component of the SD, is tyrosine-phosphorylated by a Src family tyrosine kinase, Fyn, in developing or injured podocytes, recruiting Nck to Nephrin via its Src homology 2 domain to regulate dynamic actin remodeling. Dysregulated Ca(2+) homeostasis has also been implicated in podocyte damage, but the mechanism of how podocytes respond to injury is largely unknown. Here we have identified phospholipase C-gamma1 (PLC-gamma1) as a novel phospho-Nephrin-binding protein. When HEK293T cells expressing a chimeric protein consisting of CD8 and Nephrin cytoplasmic domain (CD) were treated with anti-CD8 and anti-mouse antibodies, clustering of Nephrin and phosphorylation of Nephrin-CD were induced. Upon this clustering, PLC-gamma1 was bound to phosphorylated Nephrin Tyr-1204, which induced translocation of PLC-gamma1 from cytoplasm to the CD8/Nephrin cluster on the plasma membrane. The recruitment of PLC-gamma1 to Nephrin activated PLC-gamma1, as detected by phosphorylation of PLC-gamma1 Tyr-783 and increase in inositol 1,4,5-trisphosphate level. We also found that Nephrin Tyr-1204 phosphorylation triggers the Ca(2+) response in a PLC-gamma1-dependent fashion. Furthermore, PLC-gamma1 is significantly phosphorylated in injured podocytes in vivo. Given the profound effect of PLC-gamma in diverse cellular functions, regulation of the Ca(2+) signaling by Nephrin may be important in modulating the glomerular filtration barrier function.
Collapse
Affiliation(s)
- Yutaka Harita
- Division of Cellular Proteomics (BML) and Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD. Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell 2009; 20:1695-704. [PMID: 19158393 DOI: 10.1091/mbc.e08-07-0756] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular calcium (Cao) is a major regulator of keratinocyte differentiation, but the mechanism is unclear. Phosphatidylinositol-4-phosphate 5-kinase 1alpha (PIP5K1alpha) is critical in synthesizing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In this study, we sought to determine whether PIP5K1alpha plays a role in mediating the ability of Cao to induce keratinocyte differentiation. We found that treatment of human keratinocytes in culture with Cao resulted in increased PIP5K1alpha level and activity, as well as PI(4,5)P2 level, binding of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] to and activation of phospholipase C-gamma1 (PLC-gamma1), with the resultant increase in inositol 1,4,5-trisphosphate (IP3) and intracellular calcium (Cai). Knockdown of PIP5K1alpha in human keratinocytes blocked Cao-induced increases in the binding of PI(3,4,5)P3 to PLC-gamma1; PLC-gamma1 activity; levels of PI(4,5)P2, IP3, and Cai; and induction of keratinocyte differentiation markers. Coimmunoprecipitation and confocal studies revealed that Cao stimulated PIP5K1alpha recruitment to the E-cadherin-catenin complex in the plasma membrane. Knockdown of E-cadherin or beta-catenin blocked Cao-induced activation of PIP5K1alpha. These results indicate that after Cao stimulation PIP5K1alpha is recruited by the E-cadherin-catenin complex to the plasma membrane where it provides the substrate PI(4,5)P2 for both PI3K and PLC-gamma1. This signaling pathway is critical for Cao-induced generation of the second messengers IP3 and Cai and keratinocyte differentiation.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California at San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
29
|
Jones BF, Boyles RR, Hwang SY, Bird GS, Putney JW. Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 2008; 48:1273-81. [PMID: 18802964 PMCID: PMC2808042 DOI: 10.1002/hep.22461] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED The process of capacitative or store-operated Ca(2+) entry has been extensively investigated, and recently two major molecular players in this process have been described. Stromal interacting molecule (STIM) 1 acts as a sensor for the level of Ca(2+) stored in the endoplasmic reticulum, and Orai proteins constitute pore-forming subunits of the store-operated channels. Store-operated Ca(2+) entry is readily demonstrated with protocols that provide extensive Ca(2+) store depletion; however, the role of store-operated entry with modest and more physiological cell stimuli is less certain. Recent studies have addressed this question in cell lines; however, the role of store-operated entry during physiological activation of primary cells has not been extensively investigated, and there is little or no information on the roles of STIM and Orai proteins in primary cells. Also, the nature of the Ca(2+) influx mechanism with hormone activation of hepatocytes is controversial. Hepatocytes respond to physiological levels of glycogenolytic hormones with well-characterized intracellular Ca(2+) oscillations. In the current study, we have used both pharmacological tools and RNA interference (RNAi)-based techniques to investigate the role of store-operated channels in the maintenance of hormone-induced Ca(2+) oscillations in rat hepatocytes. Pharmacological inhibitors of store-operated channels blocked thapsigargin-induced Ca(2+) entry but only partially reduced the frequency of Ca(2+) oscillations. Similarly, RNAi knockdown of STIM1 or Orai1 substantially reduced thapsigargin-induced calcium entry, and more modestly diminished the frequency of vasopressin-induced oscillations. CONCLUSION Our findings establish that store-operated Ca(2+) entry plays a role in the maintenance of agonist-induced oscillations in primary rat hepatocytes but indicate that other agonist-induced entry mechanisms must be involved to a significant extent.
Collapse
Affiliation(s)
- Bertina F Jones
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
30
|
Aromataris EC, Castro J, Rychkov GY, Barritt GJ. Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:874-85. [PMID: 18342630 DOI: 10.1016/j.bbamcr.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 12/18/2022]
Abstract
Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.
Collapse
Affiliation(s)
- Edoardo C Aromataris
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
31
|
Ca(2+) -permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:651-72. [PMID: 18291110 DOI: 10.1016/j.bbamcr.2008.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 01/24/2023]
Abstract
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.
Collapse
|