1
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Hau RK, Wright SH, Cherrington NJ. Drug Transporters at the Human Blood-Testis Barrier. Drug Metab Dispos 2023; 51:560-571. [PMID: 36732077 PMCID: PMC10158500 DOI: 10.1124/dmd.122.001186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
5
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
6
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
7
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
8
|
Zhang L, Huang P, Huang C, Jiang L, Lu Z, Wang P. Varied clinical significance of ATP-binding cassette C sub-family members for lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e25246. [PMID: 33879658 PMCID: PMC8078454 DOI: 10.1097/md.0000000000025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a lethal malignancy worldwide and a major public health concern. We explored the potential clinical significance for LUAD of ATP-binding cassette (ABC), sub-family C, consisting of ABCC1-6, 8-12, and cystic fibrosis transmembrane conductance regulator (CFTR).Five hundred LUAD patients from The Cancer Genome Atlas database were used for analysis, including differential expression and diagnostic and prognostic significance. Oncomine and MERAV databases were used to validate differential expression and diagnostic significance. A risk score model was constructed using prognosis-related ABCC members. Prognosis-related genes were further explored to correlate their expression with tumor stage progression. Interaction networks, including biological processes and metabolic pathways, were constructed using Cytoscape software and STRING website.ABCC1-3 consistently showed high expression in tumor tissues (all P ≤ 0.05). Most datasets indicated that ABCC5, 10, and 11 were highly expressed in tumor tissues whereas ABCC6, 9, and CFTR were highly expressed in nontumor tissues (all P ≤ 0.05). Diagnostic significance of ABCC3 and ABCC5 was consistently assessed and validated in three datasets (all area under the curve > 0.700) whereas ABCC6, 8, 10, 11, and CFTR were assessed in The Cancer Genome Atlas dataset and validated in one dataset (all area under the curve > 0.700). Prognostic analysis indicated that ABCC2, 6, and 8 mRNA expression was associated with survival of LUAD (all adjusted P ≤ .037). The risk score model constructed using ABCC2, 6, and 8 suggested prognostic significance for survival predictions. ABCC2 expression was associated with tumor stage, whereas ABCC6 and 8 were not. Interaction networks indicated that they were involved in establishment of localization, ion transport, plasma membrane, apical plasma membrane, adenylyl nucleotide binding, ABC transporters, ABC transporter disorders, ABC-family-protein-mediated transport, and bile secretion.Differentially expressed ABCC2 and ABCC5 might be diagnostic whereas ABCC2, 6, and 8 may be prognostic biomarkers for LUAD, possibly through ABC-family-mediated transporter disorders.
Collapse
|
9
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
10
|
Miyagi-Shiohira C, Saitoh I, Watanabe M, Noguchi H. Kyoto probe-1 reveals phenotypic differences between mouse ES cells and iTS-P cells. Sci Rep 2020; 10:18084. [PMID: 33093580 PMCID: PMC7582910 DOI: 10.1038/s41598-020-75016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
Kyoto probe 1 (KP-1) rapidly distinguishes between human ES/iPS (hES/iPS) cells and their differentiated cells. Recently, we generated induced tissue-specific stem cells from pancreas (iTS-P cells) using reprogramming factors and tissue-specific selection. The iTS-P cells have self-renewal potential, and subcutaneously transplanting them into immunodeficient mice did not generate teratomas. In this study, we applied KP-1 to analyze mouse ES (mES) cells and mouse iTS-P (miTS-P) cells. KP-1 completely stained mES cells in colonies, but only miTS-P cells at the edge of a colony. This difference was caused by cell type-specific expression of different ABC transporters. These finding suggest that KP-1 will be useful for distinguishing between iPS and iTS-P cells.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
11
|
Mao X, He Z, Zhou F, Huang Y, Zhu G. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer. Medicine (Baltimore) 2019; 98:e18347. [PMID: 31852133 PMCID: PMC6922578 DOI: 10.1097/md.0000000000018347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major leading causes of tumor-related deaths worldwide. Adenosine triphosphate-binding cassette subfamily C (ABCC) consists of 13 members, ABCC1 to 13, which were examined for their associations with GC.The online Kaplan-Meier Plotter database was used to determine the prognostic significance of ABCC subfamily members in GC. Stratified analyses were performed using gender, disease stage, degree of tumor differentiation, expression of human epidermal growth factor receptor 2 (HER2), and Lauren classification. Molecular mechanisms were examined using the database for annotation, visualization, and integrated discovery database.ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance in the whole population and in male and female subpopulations (all P ≤ .05). Furthermore, high expression of most ABCC family members always suggested a poor prognosis, except for ABCC7 (P > .05). Stratified analyses revealed that ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance for the whole population, as well as male and female populations. ABCC2 and ABCC9 were significantly correlated with all disease stages, while ABCC2 and ABCC6 were significantly correlated with all Lauren classifications. Expression of ABCC1, ABCC3, ABCC5, ABCC7, ABCC8, ABCC9, and ABCC10 was significantly correlated with either negative or positive of HER2 status (all P ≤ .05). Enrichment analysis indicated that these genes were involved in ATPase activity, transmembrane transport, or were ABC transporters (all P ≤ .05).ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 may be potential prognosis biomarkers for GC, acting as ABC transporters and via ATPase activity.
Collapse
Affiliation(s)
- Xianshuang Mao
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Zhenhua He
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Fengsheng Zhou
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Yongchu Huang
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
12
|
Abdelmoneim A, Abdu A, Chen S, Sepúlveda MS. Molecular signaling pathways elicited by 17α-ethinylestradiol in Japanese medaka male larvae undergoing gonadal differentiation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:187-195. [PMID: 30682621 DOI: 10.1016/j.aquatox.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic contaminants released into water bodies are potentially affecting the reproduction of aquatic organisms. Exposure to 17α-ethinylestradiol (EE2), a synthetic estrogen agonist commonly found in sewage effluents, has been shown to cause gonadal changes in male gonochoristic fish ranging from gonadal intersex to complete sex reversal. Although these gonadal changes have been well studied in Japanese medaka Oryzias latipes, the molecular mechanisms behind them are poorly understood. Our objective was to study the signaling pathways elicited by exposure to different concentrations of EE2 in this species. Embryos and larvae were sexed by the presence of leucophores and dmy expression (only in males). Male medaka were exposed to two EE2 concentrations (30 and 300 ng/L) during their gonadal differentiation period (7-22 dpf). The transcriptome of larvae was analyzed using RNA sequencing followed by pathway analysis. Genes involved in sex differentiation and gonadal development (e.g., cldn19, ctbp1, hsd17b4) showed a female-like expression pattern in EE2-exposed males with some genes changing in expression in an EE2 concentration-dependent manner. However, not all genes known to be involved in sex differentiation and gonadal development (e.g., wnt4b) were altered by EE2. Several of the prominently affected signaling pathways involved genes associated with steroidogenesis, steroid receptor signaling and steroid metabolism, such as cyp2b3, cyp3b40, cyp1a, hsd17b4. We also report on novel genes and pathways affected that might play a role in gonadal changes, including several genes associated with FXR/RXR and LXR/RXR activation networks. This study is the first to examine the transcriptomic changes in male fish resulting from exposure to EE2 during the gonadal differentiation period, providing new insights on the signaling pathways involved in the development of gonadal changes in gonochoristic fish.
Collapse
Affiliation(s)
- Ahmed Abdelmoneim
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Veterinary Forensic Medicine & Toxicology, Assiut University, Assiut, Egypt
| | - Amira Abdu
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA; Department of Parasitology, Assiut University, Assiut, Egypt
| | - Shuai Chen
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
13
|
Li Q, Huang W, Yang J, Wang J, Hu M, Mo J, Cheng Y, Ou Z, Zhang ZJ, Guan S. Gastric retention pellets of edaravone with enhanced oral bioavailability: Absorption mechanism, development, and in vitro/in vivo evaluation. Eur J Pharm Sci 2018; 119:62-69. [PMID: 29630939 DOI: 10.1016/j.ejps.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/11/2018] [Accepted: 04/01/2018] [Indexed: 12/12/2022]
Abstract
Absorption mechanism of edaravone (EDR) was studied to inform the preparation of gastric retention pellets with the aim to enhance its oral bioavailability. Three different models, namely, Caco-2 cells model, in situ single-pass intestinal perfusion model, and everted gut sac model in rats, were employed to characterize the gastrointestinal absorption kinetics of EDR. And it was found that passive transfer plays a vital role for the transport of EDR, and acidic condition is preferable for EDR absorption. Further, it is likely that EDR acts as a substrate for P-glycoprotein and multidrug-resistance protein. And hence, an orally available gastric retention pellets were developed accordingly. Pharmacokinetic experiments performed with rats and beagles showed that the absolute bioavailability of EDR solution and enteric-coated pellets following oral administration were 33.85% ± 2.45% and 7.64% ± 1.03%, indicating that stomach absorption is better than intestinal adsorption for EDR. However, the gastric retention pellets resulted in 68.96% absolute bioavailability and about 200% relative bioavailability in comparison to EDR solution, which was 9 times that of enteric-coated pellets. The present work demonstrates that gastric retention pellets has excellent potential as oral administration route for EDR.
Collapse
Affiliation(s)
- Qingguo Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wenhai Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Juan Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jianfeng Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Min Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jianmei Mo
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yuzhu Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhanlun Ou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shixia Guan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Luckenbach T, Fischer S, Sturm A. Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:28-52. [PMID: 24858718 DOI: 10.1016/j.cbpc.2014.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023]
Abstract
Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters.
Collapse
Affiliation(s)
- Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Stephan Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Sciences, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
16
|
Korolnek T, Zhang J, Beardsley S, Scheffer GL, Hamza I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metab 2014; 19:1008-19. [PMID: 24836561 PMCID: PMC4052561 DOI: 10.1016/j.cmet.2014.03.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 01/30/2023]
Abstract
Several lines of evidence predict that specific pathways must exist in metazoans for the escorted movement of heme, an essential but cytotoxic iron-containing organic ring, within and between cells and tissues, but these pathways remain obscure. In Caenorhabditis elegans, embryonic development is inextricably dependent on both maternally derived heme and environmentally acquired heme. Here, we show that the multidrug resistance protein MRP-5/ABCC5 likely acts as a heme exporter, and targeted depletion of mrp-5 in the intestine causes embryonic lethality. Transient knockdown of mrp5 in zebrafish leads to morphological defects and failure to hemoglobinize red blood cells. MRP5 resides on the plasma membrane and endosomal compartments and regulates export of cytosolic heme. Together, our genetic studies in worms, yeast, zebrafish, and mammalian cells identify a conserved, physiological role for a multidrug resistance protein in regulating systemic heme homeostasis. We envision other MRP family members may play similar unanticipated physiological roles in animal development.
Collapse
Affiliation(s)
- Tamara Korolnek
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jianbing Zhang
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Simon Beardsley
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Maciejewska K, Parczewski M. ABCC protein function and genetic variability in HIV infection. HIV & AIDS REVIEW 2014. [DOI: 10.1016/j.hivar.2014.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Ishikawa T, Toyoda Y, Yoshiura KI, Niikawa N. Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion. Front Genet 2013; 3:306. [PMID: 23316210 PMCID: PMC3539816 DOI: 10.3389/fgene.2012.00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients’ response to nucleoside-based chemotherapy.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; Omics Science Center, RIKEN Yokohama Institute Yokohama, Japan
| | | | | | | |
Collapse
|
19
|
Caballero J, Frenette G, D'Amours O, Dufour M, Oko R, Sullivan R. ATP-binding cassette transporter G2 activity in the bovine spermatozoa is modulated along the epididymal duct and at ejaculation. Biol Reprod 2012; 86:181. [PMID: 22441796 DOI: 10.1095/biolreprod.111.097477] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During their epididymal maturation, stabilizing factors such as cholesterol sulfate are associated with the sperm plasma membrane. Cholesterol is sulfated in epididymal spermatozoa by the enzyme estrogen sulfotransferase. Because of its role in the efflux of sulfate conjugates formed intracellularly by sulfotransferases, the ATP-binding cassette membrane transporter G2 (ABCG2) might have a role in the translocation of this compound across the plasma membrane. In the present study we showed that ABCG2 is present in the plasma membrane overlaying the acrosomal region of spermatozoa recovered from testis, epididymis, and after ejaculation. Although ABCG2 is also present in epididymosomes, the transporter is not transferred to spermatozoa via this mechanism. Furthermore, although epididymal sperm ABCG2 was shown to be functional, as determined by its ability to extrude Hoechst 33342 in the presence of the specific inhibitor Fumitremorgin C, ABCG2 present in ejaculated sperm was found to be nonfunctional. Additional experiments demonstrated that phosphorylation of ABCG2 tyrosyl residues, but not its localization in lipid rafts, is the mechanism responsible for its functionality. Dephosphorylation of ABCG2 in ejaculated spermatozoa is proposed to cause a partial protein relocalization to other intracellular compartments. Prostasomes are proposed to have a role in this process because incubation with this fraction of seminal plasma induces a decrease in the amount of ABCG2 in the associated sperm membrane fraction. These results demonstrate that ABCG2 plays a role in epididymal sperm maturation, but not after ejaculation. The loss of ABCG2 function after ejaculation is proposed to be regulated by prostasomes.
Collapse
Affiliation(s)
- Julieta Caballero
- Centre de Recherche du Centre Hospitalier de l'Université Laval, CHUQ-CHUL, Laval, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.
Collapse
|
21
|
Sodani K, Patel A, Kathawala RJ, Chen ZS. Multidrug resistance associated proteins in multidrug resistance. CHINESE JOURNAL OF CANCER 2011; 31:58-72. [PMID: 22098952 PMCID: PMC3777468 DOI: 10.5732/cjc.011.10329] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.
Collapse
Affiliation(s)
- Kamlesh Sodani
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
22
|
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
23
|
Abstract
The blood-testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a 'gatekeeper' to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs 'in' and/or 'out' via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from 'harmful' environmental toxicants and xenobiotics and/or from 'therapeutic' substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | |
Collapse
|
24
|
Bierman WFW, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother 2010; 65:1672-80. [PMID: 20551216 DOI: 10.1093/jac/dkq209] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A possible mechanism for HIV therapy failure is the efflux of HIV drugs from viral target cells or certain body compartments by ATP-binding cassette (ABC) transporters, allowing ongoing viral replication. Here, we investigated the interaction between protease inhibitors (PIs) and ABC transporters. METHODS To explore the potential blocking capacity of PIs, we exposed cells overexpressing multidrug resistance 1 P-glycoprotein (MDR1 P-gp), multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP) to established cytotoxic substrates with or without one of the PIs atazanavir, lopinavir or ritonavir. Furthermore, to assess whether PIs serve as substrates, cell growth-inhibitory effects of these PIs were evaluated on cells overexpressing 1 of 11 ABC transporters and their parental counterparts. RESULTS Atazanavir, lopinavir and ritonavir were highly effective in reversing resistance against established substrates in cells overexpressing MDR1 P-gp and MRP1, and, to a lesser extent, BCRP. Concurrently, however, PIs appeared to be relatively poor substrates for ABC transporters. Only a moderate level of resistance to atazanavir was observed in cells overexpressing MRP6 and MRP9 [resistance factor (RF): 2.0-2.6]. Cells overexpressing MDR1 P-gp, MRP3, MRP4 and MRP5 displayed low levels of resistance to atazanavir (RF: 1.3-1.7); MRP7- and MRP9-overexpressing cells to lopinavir (RF: 1.4-1.5); and MRP9-overexpressing cells to ritonavir (RF: 1.4). CONCLUSIONS PIs can act as potent blockers of MDR1 P-gp, MRP1 and BCRP, but they are poor substrates for 11 ABC transporters. Consequently, ABC transporters are unlikely to play a major role in PI failure, but still may contribute to drug-specific adverse events and drug-drug interactions.
Collapse
Affiliation(s)
- Wouter F W Bierman
- Department of Internal Medicine, VU University Medical Center, Secretariaat Inwendige Geneeskunde, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
26
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
27
|
Su L, Cheng CY, Mruk DD. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41:2578-87. [PMID: 19720156 PMCID: PMC2783494 DOI: 10.1016/j.biocel.2009.08.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/09/2009] [Accepted: 08/21/2009] [Indexed: 12/11/2022]
Abstract
Throughout spermatogenesis, leptotene spermatocytes traverse the blood-testis barrier (BTB) to enter the adluminal compartment of the seminiferous epithelium for continued development. At the same time, the integrity of the BTB, which is constituted by co-existing tight junctions (TJ), basal ectoplasmic specializations (basal ES) and desmosome-like junctions, must be maintained since a breach in barrier function can result in spermatogenic arrest and even infertility. There is evidence to suggest that drug transporters may function at the BTB, but little is known about how they contribute to spermatogenesis. In this study, we investigate the role of P-glycoprotein (P-gp), a drug efflux pump, in BTB dynamics. A survey by RT-PCR revealed several transporter genes to be expressed by the testis, including Mdr1 (gene symbol for P-gp), Mrp1, Abcc5 and Slc15a1. It was also demonstrated that P-gp localizes to the BTB in all stages of the seminiferous epithelial cycle in the adult rat testis, as well as to the Sertoli cell-elongated spermatid interface in stages VII and VIII. We continued our study by examining the levels of several transporters in the testis following oral administration of Adjudin, a compound known to affect Sertoli-germ cell adhesion. In this experiment, the steady-state levels of P-gp, MRP1, ABCG1 and SLC15A1 were all found to increase by several-fold within hours of Adjudin treatment during junction restructuring. More importantly, an increase in P-gp association with TJ proteins (e.g., occludin, claudin-11 and JAM-A) was noted when testis lysates from Adjudin-treated rats were used for co-immunoprecipitation experiments, suggesting that P-gp may enhance BTB function during Sertoli-germ cell junction restructuring.
Collapse
Affiliation(s)
- Linlin Su
- Population Council, Center for Biomedical Research, 1230 York Avenue, NY 10065, USA
| | | | | |
Collapse
|
28
|
Toyoda Y, Sakurai A, Mitani Y, Nakashima M, Yoshiura KI, Nakagawa H, Sakai Y, Ota I, Lezhava A, Hayashizaki Y, Niikawa N, Ishikawa T. Earwax, osmidrosis, and breast cancer: why does one SNP (538G>A) in the human ABC transporter
ABCC11
gene determine earwax type? FASEB J 2009; 23:2001-13. [DOI: 10.1096/fj.09-129098] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Toyoda
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Aki Sakurai
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
| | - Yasumasa Mitani
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
- Tissue and Histopathology SectionAtomic Bomb Disease InstituteNagasakiJapan
| | - Masahiro Nakashima
- Department of Human GeneticsNagasaki University GraduateSchool of Biomedical SciencesNagasakiJapan
| | - Koh-ichiro Yoshiura
- Department of Human GeneticsNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Nakagawa
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yasuo Sakai
- Department of Plastic and Reconstructive SurgeryFujita Health UniversityToyoakeJapan
| | - Ikuko Ota
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | | | | | - Norio Niikawa
- Department of Human GeneticsNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Research Institute of Personalized Health SciencesHealth Sciences University of HokkaidoHokkaidoJapan
| | - Toshihisa Ishikawa
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
| |
Collapse
|
29
|
Identification of the efflux transporter of the fluoroquinolone antibiotic ciprofloxacin in murine macrophages: studies with ciprofloxacin-resistant cells. Antimicrob Agents Chemother 2009; 53:2410-6. [PMID: 19307362 DOI: 10.1128/aac.01428-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ciprofloxacin, the most widely used totally synthetic antibiotic, is subject to active efflux mediated by a MRP-like transporter in wild-type murine J774 macrophages. To identify the transporter among the seven potential Mrps, we used cells made resistant to ciprofloxacin obtained by long-term exposure to increasing drug concentrations (these cells show less ciprofloxacin accumulation and provide a protected niche for ciprofloxacin-sensitive intracellular Listeria monocytogenes). In the present paper, we first show that ciprofloxacin-resistant cells display a faster efflux of ciprofloxacin which is inhibited by gemfibrozil (an unspecific MRP inhibitor). Elacridar, at a concentration known to inhibit P-glycoprotein and breast cancer resistance protein (BCRP), only slightly increased ciprofloxacin accumulation, with no difference between resistant and wild-type cells. Analysis at the mRNA (real-time PCR) and protein (Western blotting) levels revealed an overexpression of Mrp2 and Mrp4. Mrp4 transcripts, however, were overwhelmingly predominant (45% [wild-type cells] to 95% [ciprofloxacin-resistant cells] of all Mrp transcripts tested [Mrp1 to Mrp7]). Silencing of Mrp2 and Mrp4 with specific small interfering RNAs showed that only Mrp4 is involved in ciprofloxacin transport in both ciprofloxacin-resistant and wild-type cells. The study therefore identifies Mrp4 as the most likely transporter of ciprofloxacin in murine macrophages but leaves open a possible common upregulation mechanism for both Mrp4 and Mrp2 upon chronic exposure of eukaryotic cells to this widely used antibiotic.
Collapse
|
30
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/18/2008] [Accepted: 06/21/2008] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
31
|
Zhou Y, Hopper-Borge E, Shen T, Huang XC, Shi Z, Kuang YH, Furukawa T, Akiyama SI, Peng XX, Ashby CR, Chen X, Kruh GD, Chen ZS. Cepharanthine is a potent reversal agent for MRP7(ABCC10)-mediated multidrug resistance. Biochem Pharmacol 2008; 77:993-1001. [PMID: 19150344 DOI: 10.1016/j.bcp.2008.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 02/02/2023]
Abstract
Multidrug resistance protein 7 (MRP7; ABCC10) is an ABC transporter that confers resistance to anticancer agents such as the taxanes. We previously reported that several inhibitors of P-gp and MRP1 were able to inhibit the in vitro transport of E(2)17betaG by MRP7 in membrane vesicles transport assays. However, compounds that are able to reverse MRP7-mediated cellular resistance have not been identified. In this study, we examined the effects of cepharanthine (6',12'-dimethoxy-2,2'-dimethyl-6,7-[methylenebis(oxy)]oxyacanthan), an herbal extract isolated from Stephania cepharantha Hayata, to reverse paclitaxel resistance in MRP7-transfected HEK293 cells. Cepharanthine, at 2microM, completely reversed paclitaxel resistance in MRP7-transfected cells. In contrast, the effect of cepharanthine on the parental transfected cells was significantly less than that on the MRP7-transfected cells. In addition, cepharanthine significantly increased the accumulation of paclitaxel in MRP7-transfected cells almost to the level of control cells in the absence of cepharanthine. The efflux of paclitaxel from MRP7-transfected cells was also significantly inhibited by cepharanthine. The ability of cepharanthine to inhibit MRP7 was analyzed in membrane vesicle assays using E(2)17betaG, an established substrate of MRP7, as a probe. E(2)17betaG transport was competitively inhibited by cepharanthine with a K(i) value of 4.86microM. These findings indicate that cepharanthine reverses MRP7-mediated resistance to paclitaxel in a competitive manner.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38:833-62. [DOI: 10.1080/00498250701883514] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|