1
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Tyczyńska M, Gędek M, Brachet A, Stręk W, Flieger J, Teresiński G, Baj J. Trace Elements in Alzheimer's Disease and Dementia: The Current State of Knowledge. J Clin Med 2024; 13:2381. [PMID: 38673657 PMCID: PMC11050856 DOI: 10.3390/jcm13082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by β-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Marta Gędek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Adam Brachet
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Wojciech Stręk
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| |
Collapse
|
3
|
Hou C, Wen X, Yan S, Gu X, Jiang Y, Chen F, Liu Y, Zhu Y, Liu X. Network-based pharmacology-based research on the effect and mechanism of the Hedyotis diffusa-Scutellaria Barbata pair in the treatment of hepatocellular carcinoma. Sci Rep 2024; 14:963. [PMID: 38200019 PMCID: PMC10781672 DOI: 10.1038/s41598-023-50696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedyotis diffusa-Scutellaria officinalis pair (HD-SB) has therapeutic effects on a variety of cancers. Our study was to explore the mechanism of HD-SB in the treatment of hepatocellular carcinoma (HCC). A total of 217 active ingredients of HD-SB and 1196 HCC-related targets were reserved from the TCMSP and the SwissTarget Prediction database, and we got 63 intersection targets from GeneCards. We used a Venn diagram, and Cytoscape found that the three core ingredients were quercetin, luteolin, and baicalein. The PPI analysis showed that the core targets were TP53, CDK2, XPO1, and APP. Molecular docking results showed that these core ingredients had good binding potential with the core targets. HD-SB acts simultaneously on various HCC-related signaling pathways, including proteoglycans in cancer and the P53 signaling pathway. In vitro experiments confirmed that HD-SB can inhibit HepG2 cell proliferation by increasing TP53 and APP levels and decreasing XPO1 and CDK2 levels. This study analyzed active ingredients, core targets, and central mechanisms of HD-SB in the treatment of HCC. It reveals the role of HD-SB in targeting the P53 signaling pathway in the treatment of HCC. We hope that our research could provide a new perspective to the therapy of HCC and find new anticancer drugs.
Collapse
Affiliation(s)
- Changmiao Hou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiao Wen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shifan Yan
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaoxiao Gu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yanjuan Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yimin Zhu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
| | - Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| |
Collapse
|
4
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
6
|
Sultan F, Parkin ET. The Amyloid Precursor Protein Plays Differential Roles in the UVA
Resistance and Proliferation of Human Retinal Pigment Epithelial Cells. Protein Pept Lett 2022; 29:313-327. [DOI: 10.2174/0929866529666220217124152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
Age-related macular degeneration (AMD) can be characterised by
degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen
deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor
protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.
Objectives:
In the current study, we investigated whether APP and/or its proteolysis are linked to the
UVA resistance or proliferation of ARPE-19 human RPE cells.
Methods:
Cell viability was determined, following UVA exposure, with prior small interfering
RNA-mediated APP depletion or secretase inhibitor treatments. APP levels/proteolysis were
analysed by immunoblotting. Cells were also grown in the presence/absence of secretase inhibitors
to assess their effects on longer-term culture growth. Finally, the effects of APP proteolytic
fragments on ARPE-19 cell proliferation were monitored following co-culture with human
embryonic kidney cells stably over-expressing these fragments.
Results:
Endogenous APP was depleted following UVA irradiation and β-secretase, but not α-
secretase, and the processing of the protein was reduced. Experimental APP depletion or γ-secretase
(but not α- or β-secretase) inhibition ablated the detrimental effect of UVA on cell viability. In
contrast, α-secretase, and possibly γ-secretase but not β-secretase activity, appeared to promote the
longer-term proliferation of ARPE-19 cells in the absence of UVA irradiation.
Conclusions:
There are clear but differential links between APP expression/proteolysis and the
proliferation and UVA resistance of ARPE-19 cells indicating that the protein should be
investigated further in relation to the identification of possible drug targets for the treatment of
AMD.
Collapse
Affiliation(s)
- Fatima Sultan
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| | - Edward T. Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| |
Collapse
|
7
|
APP deficiency and HTRA2 modulates PrPc proteostasis in human cancer cells. BBA ADVANCES 2022; 2:100035. [PMID: 37082595 PMCID: PMC10074928 DOI: 10.1016/j.bbadva.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNPKD, APPKD and PRNPKD/APPKD HeLa cells encountered major difficulties to grow in a 3D tissue-like environment. Unexpectedly, we found a cytoplasmic accumulation of the PrPc protein without PRNP gene up regulation, in both APPKD and APPKO HeLa cells. Interestingly, APP and/or PRNP gene ablation enhanced the chaperone/serine protease HTRA2 gene expression, which is a protein processing quality factor involved in Alzheimer's disease. Importantly, HTRA2 gene silencing decreased PRNP mRNA level and lowered PrPc protein amounts, and conversely, HTRA2 overexpression increased PRNP gene regulation and enhanced membrane-anchored and cytoplasmic PrPc fractions. PrPc, APP and HTRA2 destabilized membrane-associated CD24 protein, suggesting changes in the lipid raft structure. Our data show for the first time that APP and the dual chaperone/serine protease HTRA2 protein could modulate PrPc proteostasis hampering cancer cell behavior.
Collapse
|
8
|
Maitra S, Sornjai W, Smith DR, Vincent B. Phenanthroline impairs βAPP processing and expression, increases p53 protein levels and induces cell cycle arrest in human neuroblastoma cells. Brain Res Bull 2021; 170:29-38. [PMID: 33556560 DOI: 10.1016/j.brainresbull.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
Mis-functional βAPP processing is deemed to be the major phenomenon resulting in increased neuronal cell death, impaired neurogenesis and the loss of synapses, which eventually manifest as the complex symptoms of Alzheimer's disease. Despite of several milestones having been achieved in the field of drug development, the stigma of the disorder as an incurable disease still remains. Some ADAM proteases mediate the physiological non-amyloidogenic α-secretase processing of βAPP that generates neuroprotective sAPPα production. Earlier studies have also pointed out the role of p53 in Alzheimer's disease neuropathology, although a direct link with metalloprotease activities remains to be established. In this study, we explored the consequences of α-secretase inhibition on p53 status in cultured human neuroblastoma SH-SY5Y cells by means of specific inhibitors of ADAM10 and ADAM17 and the metal chelator and general metalloprotease inhibitor phenanthroline. We establish that, beyond the ability of all inhibitors to affect sAPPα production to varying degrees, phenanthroline specifically and dose-dependently lessened βAPP expression, a phenomenon that correlated with a strong increase in p53 protein levels and a concomitant decrease of the p53-degrading calpain protease. Furthermore, treatment of cells at concentrations of phenanthroline similar to those inducing increased levels of p53 induced cell cycle arrest leading to apoptosis. Altogether, our results identify new roles of phenanthroline in perturbing βAPP, p53 and calpain biology, and suggest that the use of this compound and its derivatives as antimicrobial and anti-cancer therapies might trigger Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Subhamita Maitra
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 rue Michel Ange, Paris, 75016, France.
| |
Collapse
|
9
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
10
|
Nyhus C, Pihl M, Hyttel P, Hall VJ. Evidence for nucleolar dysfunction in Alzheimer's disease. Rev Neurosci 2019; 30:685-700. [PMID: 30849050 DOI: 10.1515/revneuro-2018-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Caitlin Nyhus
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| |
Collapse
|
11
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
12
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
13
|
Caspase-dependent degradation of MDMx/MDM4 cell cycle regulatory protein in amyloid β-induced neuronal damage. Neurosci Lett 2015; 609:182-8. [PMID: 26477779 DOI: 10.1016/j.neulet.2015.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 11/23/2022]
Abstract
MDMx/MDM4 is a negative regulator of the p53 tumor suppressor protein and is necessary for survival in dividing cells. MDMx is also expressed in postmitotic neurons, with prosurvival roles that are independent of its extensively described roles in carcinogenesis. We and others have shown a role for MDMx loss in neuronal death in vitro and in vivo in several neurodegenerative diseases. Further, we have recently shown that MDMx is targeted for proteolytic degradation by calcium-dependent proteases, calpains, in neurons in vitro, and that MDMx overexpression provided partial neuroprotection in a model of HIV-associated neurodegeneration. Here, we assessed whether amyloid β (Aβ)-induced MDMx degradation occurred in Alzheimer's Disease (AD) models. Our data shows an age-dependent reduction in MDMx levels in cholinergic neurons within the cortex of adult mice expressing the swedish mutant of the amyloid precursor protein, APP in the Tg2576 murine model of AD. In vitro, Aβ treatment of primary cortical neurons led to the caspase-dependent MDMx degradation. Our findings suggest that MDMx degradation associated with neuronal death occurs via caspase activation in neurons, and that the progressive loss of MDMx protein represents a potential mechanism of Aβ-induced neuronal death during disease progression in AD.
Collapse
|
14
|
Niklison-Chirou MV, Killick R, Knight RA, Nicotera P, Melino G, Agostini M. How Does p73 Cause Neuronal Defects? Mol Neurobiol 2015; 53:4509-20. [PMID: 26266644 DOI: 10.1007/s12035-015-9381-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
Abstract
The p53-family member, p73, plays a key role in the development of the central nervous system (CNS), in senescence, and in tumor formation. The role of p73 in neuronal differentiation is complex and involves several downstream pathways. Indeed, in the last few years, we have learnt that TAp73 directly or indirectly regulates several genes involved in neural biology. In particular, TAp73 is involved in the maintenance of neural stem/progenitor cell self-renewal and differentiation throughout the regulation of SOX-2, Hey-2, TRIM32 and Notch. In addition, TAp73 is also implicated in the regulation of the differentiation and function of postmitotic neurons by regulating the expression of p75NTR and GLS2 (glutamine metabolism). Further still, the regulation of miR-34a by TAp73 indicates that microRNAs can also participate in this multifunctional role of p73 in adult brain physiology. However, contradictory results still exist in the relationship between p73 and brain disorders, and this remains an important area for further investigation.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard Killick
- The Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Richard A Knight
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Massimiliano Agostini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
15
|
Mazza T, Fusilli C, Saracino C, Mazzoccoli G, Tavano F, Vinciguerra M, Pazienza V. Functional Impact of Autophagy-Related Genes on the Homeostasis and Dynamics of Pancreatic Cancer Cell Lines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:667-678. [PMID: 26357277 DOI: 10.1109/tcbb.2014.2371824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pancreatic cancer is a highly aggressive and chemotherapy-resistant malignant neoplasm. In basal condition, it is characterized by elevated autophagy activity, which is required for tumor growth and that correlates with treatment failure. We analyzed the expression of autophagy related genes in different pancreatic cancer cell lines. A correlation-based network analysis evidenced the sociality and topological roles of the autophagy-related genes after serum starvation. Structural and functional tests identified a core set of autophagy related genes, suggesting different scenarios of autophagic responses to starvation, which may be responsible for the clinical variations associated with pancreatic cancer pathogenesis.
Collapse
|
16
|
Fe65 Ser228 is phosphorylated by ATM/ATR and inhibits Fe65-APP-mediated gene transcription. Biochem J 2015; 465:413-21. [PMID: 25397632 DOI: 10.1042/bj20140656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fe65 binds the amyloid precursor protein (APP) and regulates the secretase-mediated processing of APP into several proteolytic fragments, including amyloid β-peptides (Aβ) and APP intracellular domain (AICD). Aβ accumulation in neural plaques is a pathological feature of Alzheimer's disease (AD) and AICD has important roles in the regulation of gene transcription (in complex with Fe65). It is therefore important to understand how Fe65 is regulated and how this contributes to the function and/or processing of APP. Studies have also implicated Fe65 in the cellular DNA damage response with knockout mice showing increased DNA strand breaks and Fe65 demonstrating a gel mobility shift after DNA damage, consistent with protein phosphorylation. In the present study, we identified Fe65 Ser(228) as a novel target of the ATM (ataxia telangiectasia mutated) and ATR (ataxia-telangiectasia- and Rad3-related protein) protein kinases, in a reaction that occurred independently of APP. Neither phosphorylation nor mutation of Ser(228) affected the Fe65-APP complex, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Finally, mutation of Ser(228) to alanine (thus blocking phosphorylation) caused a significant increase in Fe65-APP transcriptional activity, whereas phosphomimetic mutants (S(228)D and S(228)E) showed decreased transcriptional activity. These studies identify a novel phosphorylation site within Fe65 and a novel regulatory mechanism for the transcriptional activity of the Fe65-APP complex.
Collapse
|
17
|
UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport. J Neurosci 2014; 34:3320-39. [PMID: 24573290 DOI: 10.1523/jneurosci.1503-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.
Collapse
|
18
|
Altered processing of amyloid precursor protein in cells undergoing apoptosis. PLoS One 2013; 8:e57979. [PMID: 23469123 PMCID: PMC3585261 DOI: 10.1371/journal.pone.0057979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023] Open
Abstract
Altered proteolysis of amyloid precursor protein is an important determinant of pathology development in Alzheimer's disease. Here, we describe the detection of two novel fragments of amyloid precursor protein in H4 neuroglioma cells undergoing apoptosis. Immunoreactivity of these 25-35 kDa fragments to two different amyloid precursor protein antibodies suggests that they contain the amyloid-β region and an epitope near the C-terminus of amyloid precursor protein. Generation of these fragments is associated with cleavage of caspase-3 and caspase-7, suggesting activation of these caspases. Studies in neurons undergoing DNA damage-induced apoptosis also showed similar results. Inclusion of caspase inhibitors prevented the generation of these novel fragments, suggesting that they are generated by a caspase-dependent mechanism. Molecular weight prediction and immunoreactivity of the fragments generated suggested that such fragments could not be generated by cleavage at any previously identified caspase, secretase, or calpain site on amyloid precursor protein. Bioinformatic analysis of the amino acid sequence of amyloid precursor protein revealed that fragments fitting the observed size and immunoreactivity could be generated by either cleavage at a novel, hitherto unidentified, caspase site or at a previously identified matrix metalloproteinase site in the extracellular domain. Proteolytic cleavage at any of these sites leads to a decrease in the generation of α-secretase cleaved secreted APP, which has both anti-apoptotic and neuroprotective properties, and thus may contribute to neurodegeneration in Alzheimer's disease.
Collapse
|
19
|
Doxorubicin promotes transcriptional upregulation of Cdc25B in cancer cells by releasing Sp1 from the promoter. Oncogene 2012; 32:5123-8. [PMID: 23160377 DOI: 10.1038/onc.2012.524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023]
Abstract
Cdc25B phosphatases have a key role in G2/M cell-cycle progression by activating the CDK1-cyclinB1 complexes and functioning as important targets of checkpoints. Overexpression of Cdc25B results in a bypass of the G2/M checkpoint and illegitimate entry into mitosis. It can also cause replicative stress, which leads to genomic instability. Thus, fine-tuning of the Cdc25B expression level is critical for correct cell-cycle arrest in response to DNA damage. In response to genotoxic stress, Cdc25B is mainly regulated by post-transcriptional mechanisms affecting either Cdc25B protein stability or translation. Here, we show that upon DNA damage Cdc25B can be regulated at the transcriptional level. Although ionizing radiation downregulates Cdc25B in a p53-dependent pathway, doxorubicin transcriptionally upregulates Cdc25B in p53-proficient cancer cells. We show that in the presence of wild-type p53, doxorubicin activates the Cdc25B promoter by preventing the binding of Sp1 and increasing the binding of NF-Y on the Cdc25B promoter, thus preventing p53 from downregulating this promoter. Our results highlight the mechanistically distinct regulation of the three Cdc25 phosphatases by checkpoint signalling following doxorubicin treatment.
Collapse
|
20
|
Contreras-Jurado C, Pascual A. Thyroid hormone regulation of APP (β-amyloid precursor protein) gene expression in brain and brain cultured cells. Neurochem Int 2012; 60:484-7. [PMID: 22349409 DOI: 10.1016/j.neuint.2012.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
Abstract
We have previously shown that the thyroid hormone triiodothyronine negatively regulates the transcriptional activity of the β-amyloid precursor protein gene (APP) in cultured murine neuroblastoma cells, by a mechanism that involves binding of the nuclear thyroid hormone receptor (TR) to DNA sequences located within the first exon of the gene. In this report we present results showing that the thyroid hormones also repress the expression of APP in human neuroblastoma cells and in primary cultures of rat neurons. In addition, and in agreement with the results obtained in cultured cells, APP messenger RNA and protein levels are significantly higher in the brain of hypothyroid rats and mice, and also in Alzheimer-related brain regions dissected from KO mice lacking TRs. These results show that binding of the thyroid hormones to their nuclear receptors mediate their repressive effect on APP gene expression in vivo.
Collapse
|
21
|
Jebelli JD, Hooper C, Garden GA, Pocock JM. Emerging roles of p53 in glial cell function in health and disease. Glia 2011; 60:515-25. [PMID: 22105777 DOI: 10.1002/glia.22268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Joseph D Jebelli
- Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
22
|
Hochstrasser T, Marksteiner J, Defrancesco M, Deisenhammer EA, Kemmler G, Humpel C. Two Blood Monocytic Biomarkers (CCL15 and p21) Combined with the Mini-Mental State Examination Discriminate Alzheimer's Disease Patients from Healthy Subjects. Dement Geriatr Cogn Dis Extra 2011; 1:297-309. [PMID: 22545041 PMCID: PMC3235941 DOI: 10.1159/000330468] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder. In AD, monocytes migrate across the blood-brain barrier and differentiate into microglia, are linked to inflammatory responses and display age-dependent decreases in telomere lengths. Methods Six monocyte-specific chemokines and the (telomere-associated) tumor suppressor proteins p53 and p21 were determined by multiplex immunoassay in plasma and monocyte extracts of patients with AD or mild cognitive impairment, and levels were compared between patients and controls (without cognitive impairment). Results CCL15 (macrophage inflammatory protein-1δ), CXCL9 (monokine-induced by interferon-γ) and p21 levels were decreased in monocytes of AD patients compared with controls. Conclusion The combination of monocytic CCL15 and p21 together with the Mini-Mental State Examination enables to differentiate AD patients from controls with high specificity and sensitivity.
Collapse
Affiliation(s)
- Tanja Hochstrasser
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
23
|
The Alzheimer's amyloid β-peptide (Aβ) binds a specific DNA Aβ-interacting domain (AβID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 2011; 488:1-12. [PMID: 21699964 DOI: 10.1016/j.gene.2011.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 11/23/2022]
Abstract
Deposition of extracellular plaques, primarily consisting of amyloid β peptide (Aβ), in the brain is the confirmatory diagnostic of Alzheimer's disease (AD); however, the physiological and pathological role of Aβ is not fully understood. Herein, we demonstrate novel Aβ activity as a putative transcription factor upon AD-associated genes. We used oligomers from 5'-flanking regions of the apolipoprotein E (APOE), Aβ-precursor protein (APP) and β-amyloid site cleaving enzyme-1 (BACE1) genes for electrophoretic mobility shift assay (EMSA) with different fragments of the Aβ peptide. Our results suggest that Aβ bound to an Aβ-interacting domain (AβID) with a consensus of "KGGRKTGGGG". This peptide-DNA interaction was sequence specific, and mutation of the first "G" of the decamer's terminal "GGGG" eliminated peptide-DNA interaction. Furthermore, the cytotoxic Aβ25-35 fragment had greatest DNA affinity. Such specificity of binding suggests that the AβID is worth of further investigation as a site wherein the Aβ peptide may act as a transcription factor.
Collapse
|
24
|
Wang MJ, Pei DS, Qian GW, Yin XX, Cheng Q, Li LT, Li HZ, Zheng JN. p53 regulates Ki-67 promoter activity through p53- and Sp1-dependent manner in HeLa cells. Tumour Biol 2011; 32:905-12. [PMID: 21611785 DOI: 10.1007/s13277-011-0191-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/12/2011] [Indexed: 01/10/2023] Open
Abstract
The expression of the human Ki-67 protein, which is strictly associated with cell proliferation, is regulated by a variety of cellular mediators. In this study, we studied the effects of p53 on Ki-67 promoter in HeLa cells using luciferase reporter assay. The results showed that: (1) p53 inhibited Ki-67 promoter activity in a dose-dependent manner, (2) the p53-binding motifs mediated part of the transcriptional repression of Ki-67 promoter through a sequence-specific interaction with p53, (3) p53 was able to repress the Sp1-stimulated Ki-67 promoter activity, and (4) the Sp1-binding sites were responsible for the p53-mediated transcriptional repression of Ki-67 promoter. In conclusion, p53 inhibited Ki-67 promoter activity via p53- and Sp1-dependent pathways, and the interaction between p53 and Sp1 might be involved in the transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Mei-Juan Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Effects of ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses in HaCaT cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:89-101. [PMID: 20508917 DOI: 10.1007/s00210-010-0522-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/01/2010] [Indexed: 01/17/2023]
Abstract
Our previous study demonstrated the increase in the repair of UVB damage by mRg2, a mixture of ginsenosides containing 60% Rg2 in NIH3T3 cells. In the present study, the effects of purified Rg2 on the repair and apoptosis in ultraviolet B (UVB)-exposed HaCaT cells were investigated on gene expression levels. When cells were exposed to UVB and post-incubated in normal medium for 24 h, the cell viability decreased to about 50% of that in nontreated control. When Rg2 was post-incubated, however, the UVB-induced cytotoxicity was significantly prevented in an Rg2 concentration- and time-dependent manner. The apoptotic nuclear fragmentation resulting from UVB exposure was also significantly protected by the Rg2 post-incubation. Microarray analysis showed that the genes stimulated by the Rg2-alone treatment include those involved in p53 signaling pathway such as GADD45alpha, GADD45beta, and cell communication genes. RT-PCR analysis showed that the Rg2-alone treatment slightly upregulated the p53 and GADD45 transcript and protein levels by about 1.5-fold as compared with the nontreated control. The mRNA levels of p53 and GADD45 in cells exposed to UVB and post-incubated with Rg2 for 24 h decreased in an Rg2 concentration-dependent manner as compared with that post-incubated in normal medium. However, the mRNA level of the UVB-exposed cells post-incubated with 5 microM retinol was essentially the same as that post-incubated in normal medium. Time course experiment showed that the mRNA levels of p53 and GADD45 in UVB-exposed cells were upregulated by post-incubation with 50 microM Rg2 until 6 and 9 h, respectively, and then gradually decreased until 24 h. By Western blot analysis, it was also revealed that the Rg2 post-incubation decreases the expression of p53, phospho-p53, GADD45, and ATM in UVB-exposed cells. Time course analysis also indicated that these decreased expressions were due to the earlier upregulation of p53 and GADD45 proteins. When UVB-exposed cells were post-incubated with Rg2 for 24 h after UVB exposure, the level of remaining cyclobutane pyrimidine dimers decreased in both Rg2 concentration- and time-dependent manner. All these results suggest that Rg2 protects cells against UVB-induced genotoxicity by increasing DNA repair, in possible association with modulation of protein levels involved in p53 signaling pathway.
Collapse
|
26
|
Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol 2009; 118:329-47. [PMID: 19597829 PMCID: PMC2716447 DOI: 10.1007/s00401-009-0560-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
27
|
Cuesta A, Zambrano A, López E, Pascual A. Thyroid hormones reverse the UV-induced repression of APP in neuroblastoma cells. FEBS Lett 2009; 583:2401-6. [DOI: 10.1016/j.febslet.2009.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/02/2009] [Accepted: 06/22/2009] [Indexed: 01/27/2023]
|
28
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|