1
|
Bakowski W, Smiechowicz J, Dragan B, Goździk W, Adamik B. Platelet Aggregation Alterations in Patients with Severe Viral Infection Treated at the Intensive Care Unit: Implications for Mortality Risk. Pathogens 2024; 13:778. [PMID: 39338970 PMCID: PMC11435101 DOI: 10.3390/pathogens13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Severe viral infections often result in abnormal platelet function, affecting various stages of hemostasis. Activated platelets are often considered prothrombotic and more susceptible to further stimulation. However, emerging evidence suggests that initial hyperactivation is followed by platelet exhaustion and hypo-responsiveness, affecting platelet degranulation, activation, and aggregation. We examined early alterations in platelet aggregation among patients (N = 28) with acute respiratory distress syndrome and SARS-CoV-2 infection who were receiving mechanical ventilation and venovenous extracorporeal membrane oxygenation support. Blood samples were stimulated with four different activators: arachidonic acid, adenosine diphosphate, thrombin receptor-activating protein 6, and ristocetin. Our observations revealed that platelet aggregation was reduced in most patients upon admission (ranging from 61 to 89%, depending on the agonist used), and this trend intensified during the 5-day observation period. Concurrently, other coagulation parameters remained within normal ranges, except for elevated d-dimer and fibrinogen levels. Importantly, we found a significant association between platelet aggregation and patient mortality. Impaired platelet aggregation was more severe in patients who ultimately died, and reduced aggregation was associated with a significantly lower probability of survival, as confirmed by Kaplan-Meier analysis (p = 0.028). These findings underscore the potential of aggregometry as an early detection tool for identifying patients at higher risk of mortality within this specific cohort.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (W.B.); (J.S.); (B.D.); (W.G.)
| |
Collapse
|
2
|
Paul DS, Blatt TN, Schug WJ, Clark EG, Kawano T, Mackman N, Murcia S, Poe KO, Mwiza JMN, Harden TK, Bergmeier W, Nicholas RA. Loss of P2Y 1 receptor desensitization does not impact hemostasis or thrombosis despite increased platelet reactivity in vitro. J Thromb Haemost 2023; 21:1891-1902. [PMID: 36958516 PMCID: PMC10809801 DOI: 10.1016/j.jtha.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.
Collapse
Affiliation(s)
- David S Paul
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/David_S_Paul
| | - Tasha N Blatt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wyatt J Schug
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily G Clark
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tomohiro Kawano
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sebastian Murcia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn O Poe
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean Marie N Mwiza
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Clark CC, Jukema BN, Barendrecht AD, Spanjaard JS, Jorritsma NKN, Smits S, de Maat S, Seinen CW, Verhoef S, Parr NMJ, Sebastian SAE, Koekman AC, van Wesel ACW, van Goor HMR, Spijkerman R, Bongers SH, van der Vries E, Nierkens S, Boes M, Koenderman L, Kaasjager KAH, Maas C. Thrombotic Events in COVID-19 Are Associated With a Lower Use of Prophylactic Anticoagulation Before Hospitalization and Followed by Decreases in Platelet Reactivity. Front Med (Lausanne) 2021; 8:650129. [PMID: 33968958 PMCID: PMC8100661 DOI: 10.3389/fmed.2021.650129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Coronavirus disease of 2019 (COVID-19) is associated with a prothrombotic state and a high incidence of thrombotic event(s) (TE). Objectives: To study platelet reactivity in hospitalized COVID-19 patients and determine a possible association with the clinical outcomes thrombosis and all-cause mortality. Methods: Seventy nine hospitalized COVID-19 patients were enrolled in this retrospective cohort study and provided blood samples in which platelet reactivity in response to stimulation with ADP and TRAP-6 was determined using flow cytometry. Clinical outcomes included thrombotic events, and all-cause mortality. Results: The incidence of TE in this study was 28% and all-cause mortality 16%. Patients that developed a TE were younger than patients that did not develop a TE [median age of 55 vs. 70 years; adjusted odds ratio (AOR) = 0.96 per 1 year of age, 95% confidence interval (CI) 0.92-1.00; p = 0.041]. Furthermore, patients using preexisting thromboprophylaxis were less likely to develop a thrombotic complication than patients that were not (18 vs. 54%; AOR = 0.19, 95% CI 0.04-0.84; p = 0.029). Conversely, having asthma strongly increased the risk on TE development (AOR = 6.2, 95% CI 1.15-33.7; p = 0.034). No significant differences in baseline P-selectin expression or platelet reactivity were observed between the COVID-19 positive patients (n = 79) and COVID-19 negative hospitalized control patients (n = 21), nor between COVID-19 positive survivors or non-survivors. However, patients showed decreased platelet reactivity in response to TRAP-6 following TE development. Conclusion: We observed an association between the use of preexisting thromboprophylaxis and a decreased risk of TE during COVID-19. This suggests that these therapies are beneficial for coping with COVID-19 associated hypercoagulability. This highlights the importance of patient therapy adherence. We observed lowered platelet reactivity after the development of TE, which might be attributed to platelet desensitization during thromboinflammation.
Collapse
Affiliation(s)
- Chantal C. Clark
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Bernard N. Jukema
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Arjan D. Barendrecht
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Judith S. Spanjaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nikita K. N. Jorritsma
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Simone Smits
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven de Maat
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cor W. Seinen
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sandra Verhoef
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Naomi M. J. Parr
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Silvie A. E. Sebastian
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Arnold C. Koekman
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Annet C. W. van Wesel
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Harriet M. R. van Goor
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roy Spijkerman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzanne H. Bongers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Trauma Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Erhard van der Vries
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Leo Koenderman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Karin A. H. Kaasjager
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Coen Maas
- Department of Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Adrenoceptor α 2A signalling countervails the taming effects of synchronous cyclic nucleotide-elevation on thrombin-induced human platelet activation and aggregation. Cell Signal 2019; 59:96-109. [PMID: 30926386 DOI: 10.1016/j.cellsig.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
The healthy vascular endothelium constantly releases autacoids which cause an increase of intracellular cyclic nucleotides to tame platelets from inappropriate activation. Elevating cGMP and cAMP, in line with previous reports, cooperated in the inhibition of isolated human platelet intracellular calcium-mobilization, dense granules secretion, and aggregation provoked by thrombin. Further, platelet alpha granules secretion and, most relevant, integrin αIIaβ3 activation in response to thrombin are shown to be prominently affected by the combined elevation of cGMP and cAMP. Since stress-related sympathetic nervous activity is associated with an increase in thrombotic events, we investigated the impact of epinephrine in this setting. We found that the assessed signalling events and functional consequences were to various extents restored by epinephrine, resulting in full and sustained aggregation of isolated platelets. The restoring effects of epinephrine were abolished by either interfering with intracellular calcium-elevation or with PI3-K signalling. Finally, we show that in our experimental setting epinephrine likewise reconstitutes platelet aggregation in heparinized whole blood, which may indicate that this mechanism could also apply in vivo.
Collapse
|
5
|
Macwan AS, Boknäs N, Ntzouni MP, Ramström S, Gibbins JM, Faxälv L, Lindahl TL. Gradient-dependent inhibition of stimulatory signaling from platelet G protein-coupled receptors. Haematologica 2019; 104:1482-1492. [PMID: 30630981 PMCID: PMC6601095 DOI: 10.3324/haematol.2018.205815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/08/2019] [Indexed: 11/18/2022] Open
Abstract
As platelet activation is an irreversible and potentially harmful event, platelet stimulatory signaling must be tightly regulated to ensure the filtering-out of inconsequential fluctuations of agonist concentrations in the vascular milieu. Herein, we show that platelet activation via G protein-coupled receptors is gradient-dependent, i.e., determined not only by agonist concentrations per se but also by how rapidly concentrations change over time. We demonstrate that gradient-dependent inhibition is a common feature of all major platelet stimulatory G protein-coupled receptors, while platelet activation via the non-G protein-coupled receptor glycoprotein VI is strictly concentration-dependent. By systematically characterizing the effects of variations in temporal agonist concentration gradients on different aspects of platelet activation, we demonstrate that gradient-dependent inhibition of protease-activated receptors exhibits different kinetics, with platelet activation occurring at lower agonist gradients for protease-activated receptor 4 than for protease-activated receptor 1, but shares a characteristic bimodal effect distribution, as gradient-dependent inhibition increases over a narrow range of gradients, below which aggregation and granule secretion is effectively shut off. In contrast, the effects of gradient-dependent inhibition on platelet activation via adenosine diphosphate and thromboxane receptors increase incrementally over a large range of gradients. Furthermore, depending on the affected activation pathway, gradient-dependent inhibition results in different degrees of refractoriness to subsequent autologous agonist stimulation. Mechanistically, our study identifies an important role for the cyclic adenosine monophosphate-dependent pathway in gradient-dependent inhibition. Together, our findings suggest that gradient-dependent inhibition may represent a new general mechanism for hemostatic regulation in platelets.
Collapse
Affiliation(s)
- Ankit S Macwan
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Niklas Boknäs
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hematology, Linköping University, Linköping, Sweden
| | - Maria P Ntzouni
- Core Facility, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Sofia Ramström
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Lars Faxälv
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Tomas L Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Pourtau L, Sellal JM, Lacroix R, Poncelet P, Bernus O, Clofent-Sanchez G, Hocini M, Haïssaguerre M, Dignat-George F, Sacher F, Nurden P. Platelet function and microparticle levels in atrial fibrillation: Changes during the acute episode. Int J Cardiol 2018; 243:216-222. [PMID: 28747025 DOI: 10.1016/j.ijcard.2017.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Thrombotic risk constitutes a major complication of atrial fibrillation (AF). Platelets and microparticles (MPs) are important for hemostasis and thrombosis, however their participation during AF is not well known. The aim of this study was to characterize platelet function and MPs procoagulant and fibrinolytic activity in AF patients and to determine the effects of an acute-AF episode. METHODS Blood was collected from paroxysmal (21) and persistent (16) AF patients referred for AF catheter ablation. Ten patients in sinus rhythm for 10days were induced in AF allowing comparisons of left atrium samples before and after induction. Platelet aggregation with ADP, TRAP, collagen, and ristocetin was studied. Platelet surface expression of PAR-1, αIIbβ3, GPIb and P-selectin were evaluated by flow cytometry, and MPs-associated procoagulant and fibrinolytic activity levels were determined by functional assays. RESULTS A specific reduction in platelet aggregation to TRAP, activating the thrombin receptor PAR-1, was found in all AF patients. No differences in platelet receptor expression were found. Yet, after acute-induced AF, the platelet response was improved. Furthermore, a significant decrease of left atrium tissue factor-dependent procoagulant activity of MPs was observed. CONCLUSION Acute episodes of AF results in a decrease in MPs-associated tissue factor activity, possibly corresponding to consumption, which in turn favors coagulation and the local production of thrombin. A decreased platelet basal aggregation to TRAP may result from PAR1 desensitization, whereas the improved response after an induced episode of AF suggests activation of coagulation and PAR1 re-sensitization.
Collapse
Affiliation(s)
- Line Pourtau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France.
| | - Jean Marc Sellal
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France; Centre Hospitalier Régional Universitaire (CHRU) de Nancy, département de cardiologie, 54500 Vandœuvre-lès-Nancy, France.
| | - Romaric Lacroix
- VRCM, UMR-S1076, Aix -Marseille Université, INSERM, UFR de Pharmacie, 13385 Marseille, France; Department of Haematology and Vascular Biology, CHU Conception, AP-HM, 13385 Marseille, France.
| | - Philippe Poncelet
- Research & Technology Department, BioCytex, 13010 Marseille, France.
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France.
| | - Gisèle Clofent-Sanchez
- Univ Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, U5536, 33076 Bordeaux, France.
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Françoise Dignat-George
- VRCM, UMR-S1076, Aix -Marseille Université, INSERM, UFR de Pharmacie, 13385 Marseille, France; Department of Haematology and Vascular Biology, CHU Conception, AP-HM, 13385 Marseille, France.
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France; Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, 33600 Pessac, France.
| | - Paquita Nurden
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, 33600, Pessac, France.
| |
Collapse
|
8
|
Larkin CM, Breen EP, Tomaszewski KA, Eisele S, Radomski MW, Ryan TA, Santos-Martinez MJ. Platelet microaggregation in sepsis examined by quartz crystal microbalance with dissipation technology. Platelets 2017; 29:301-304. [DOI: 10.1080/09537104.2017.1371686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline M. Larkin
- Department of Anaesthesia and Intensive Care Medicine, St. James’s Hospital, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Eamon P. Breen
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Krzysztof A. Tomaszewski
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Simon Eisele
- Department of Pharmacy, Ludwig Maximilian University, Munich, Germany
| | - Marek W. Radomski
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- School of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas A. Ryan
- Department of Anaesthesia and Intensive Care Medicine, St. James’s Hospital, Dublin, Ireland
| | - Maria-Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
9
|
A cluster of aspartic residues in the extracellular loop II of PAR 4 is important for thrombin interaction and activation of platelets. Thromb Res 2017; 154:84-92. [DOI: 10.1016/j.thromres.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
|
10
|
Duvernay MT, Temple KJ, Maeng JG, Blobaum AL, Stauffer SR, Lindsley CW, Hamm HE. Contributions of Protease-Activated Receptors PAR1 and PAR4 to Thrombin-Induced GPIIbIIIa Activation in Human Platelets. Mol Pharmacol 2017; 91:39-47. [PMID: 27784794 PMCID: PMC5198515 DOI: 10.1124/mol.116.106666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/25/2016] [Indexed: 01/18/2023] Open
Abstract
Human platelets display a unique dual receptor system for responding to its primary endogenous activator, α-thrombin. Because of the lack of efficacious antagonists, the field has relied on synthetic peptides and pepducins to describe protease-activated receptor PAR1 and PAR4 signaling. The precise contributions of each receptor have not been established in the context of thrombin. We took advantage of newly discovered PAR antagonists to contrast the contribution of PAR1 and PAR4 to thrombin-mediated activation of the platelet fibrin receptor (GPIIbIIIa). PAR1 is required for platelet activation at low but not high concentrations of thrombin, and maximal platelet activation at high concentrations of thrombin requires PAR4. As the concentration of thrombin is increased, PAR1 signaling is quickly overcome by PAR4 signaling, leaving a narrow window of low thrombin concentrations that exclusively engage PAR1. PAR4 antagonism reduces the maximum thrombin response by over 50%. Thus, although the PAR1 response still active at higher concentrations of thrombin, this response is superseded by PAR4. Truncation of a known PAR4 antagonist and identification of the minimum pharmacophore converted the mechanism of inhibition from noncompetitive to competitive, such that the antagonist could be outcompeted by increasing doses of the ligand. Fragments retained efficacy against both soluble and tethered ligands with lower cLogP values and an increased free fraction in plasma. These reversible, competitive compounds represent a route toward potentially safer PAR4 antagonists for clinical utility and the development of tools such as radioligands and positron emission tomography tracers that are not currently available to the field for this target.
Collapse
Affiliation(s)
- Matthew T Duvernay
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Kayla J Temple
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Jae G Maeng
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Anna L Blobaum
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Shaun R Stauffer
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Craig W Lindsley
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| | - Heidi E Hamm
- Department of Pharmacology (M.T.D., K.J.T., J.G.M., A.L.B., S.R.S., C.W.L., H.E.H.) and Vanderbilt Center for Neuroscience Drug Discovery (K.J.T., A.L.B., S.R.S., C.W.L.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Chemistry, Vanderbilt University, Nashville, Tennessee (S.R.S., C.W.L.)
| |
Collapse
|
11
|
French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. J Thromb Haemost 2016; 14:1642-54. [PMID: 26878340 DOI: 10.1111/jth.13293] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/26/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Essentials The platelet thrombin receptor, PAR4, is an emerging anti-thrombotic drug target. We examined the anti-platelet & anti-thrombotic effects of PAR4 inhibition in human blood. PAR4 inhibition impaired platelet procoagulant activity in isolated cells and during thrombosis. Our study shows PAR4 is required for platelet procoagulant function & thrombosis in human blood. SUMMARY Background Thrombin-induced platelet activation is important for arterial thrombosis. Thrombin activates human platelets predominantly via protease-activated receptor (PAR)1 and PAR4. PAR1 has higher affinity for thrombin, and the first PAR1 antagonist, vorapaxar, was recently approved for use as an antiplatelet agent. However, vorapaxar is contraindicated in a significant number of patients, owing to adverse bleeding events. Consequently, there is renewed interest in the role of platelet PAR4 in the setting of thrombus formation. Objectives To determine the specific antiplatelet effects of inhibiting PAR4 function during thrombus formation in human whole blood. Methods and Results We developed a rabbit polyclonal antibody against the thrombin cleavage site of PAR4, and showed it to be a highly specific inhibitor of PAR4-mediated platelet function. This function-blocking anti-PAR4 antibody was used to probe for PAR4-dependent platelet functions in human isolated platelets in the absence and presence of concomitant PAR1 inhibition. The anti-PAR4 antibody alone was sufficient to abolish the sustained elevation of cytosolic calcium level and consequent phosphatidylserine exposure induced by thrombin, but did not significantly inhibit integrin αII b β3 activation, α-granule secretion, or aggregation. In accord with these in vitro experiments on isolated platelets, selective inhibition of PAR4, but not of PAR1, impaired thrombin activity (fluorescence resonance energy transfer-based thrombin sensor) and fibrin formation (anti-fibrin antibody) in an ex vivo whole blood flow thrombosis assay. Conclusions These findings demonstrate that PAR4 is required for platelet procoagulant function during thrombus formation in human blood, and suggest PAR4 inhibition as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- S L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - W S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, Australia
| | - R K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - E E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Fu Q, Cheng J, Gao Y, Zhang Y, Chen X, Xie J. Protease-activated receptor 4: a critical participator in inflammatory response. Inflammation 2015; 38:886-95. [PMID: 25120239 DOI: 10.1007/s10753-014-9999-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors of which four members PAR1, PAR2, PAR3, and PAR4 have been identified, characterized by a typical mechanism of activation involving various related proteases. The amino-terminal sequence of PARs is cleaved by a broad array of proteases, leading to specific proteolytic cleavage which forms endogenous tethered ligands to induce agonist-biased PAR activation. The biological effect of PARs activated by coagulation proteases to regulate hemostasis and thrombosis plays an enormous role in the cardiovascular system, while PAR4 can also be activated by trypsin, cathepsin G, the activated factor X of the coagulation cascade, and trypsin IV. Irrespective of its role in thrombin-induced platelet aggregation, PAR4 activation is believed to be involved in inflammatory lesions, as show by investigations that have unmasked the effects of PAR4 on neutrophil recruitment, the regulation of edema, and plasma extravasation. This review summarizes the roles of PAR4 in coagulation and other extracellular protease pathways, which activate PAR4 to participate in normal regulation and disease.
Collapse
Affiliation(s)
- Qiang Fu
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | | | | | | | | | | |
Collapse
|
14
|
Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα. Redox Biol 2015; 6:640-647. [PMID: 26569550 PMCID: PMC4656914 DOI: 10.1016/j.redox.2015.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Thrombin, a potent platelet activator, can signal through GPIbα and protease-activated receptor (PAR) 1 and PAR4 on human platelets, and recently has been implicated in the generation of ROS. While ROS are known to have key roles in intra-platelet signalling and subsequent platelet activation, the precise receptors and signalling pathways involved in thrombin-induced ROS generation have yet to be fully elucidated. Objective To investigate the relative contribution of platelet GPIbα and PARs to thrombin-induced reactive oxygen species (ROS) generation. Methods and results Highly specific antagonists targeting PAR1 and PAR4, and the GPIbα-cleaving enzyme, Naja kaouthia (Nk) protease, were used in quantitative flow cytometry assays of thrombin-induced ROS production. Antagonists of PAR4 but not PAR1, inhibited thrombin-derived ROS generation. Removal of the GPIbα ligand binding region attenuated PAR4-induced and completely inhibited thrombin-induced ROS formation. Similarly, PAR4 deficiency in mice abolished thrombin-induced ROS generation. Additionally, GPIbα and PAR4-dependent ROS formation were shown to be mediated through focal adhesion kinase (FAK) and NADPH oxidase 1 (NOX1) proteins. Conclusions Both GPIbα and PAR4 are required for thrombin-induced ROS formation, suggesting a novel functional cooperation between GPIbα and PAR4. Our study identifies a novel role for PAR4 in mediating thrombin-induced ROS production that was not shared by PAR1. This suggests an independent signalling pathway in platelet activation that may be targeted therapeutically. PAR4 plays an important role in platelet-derived ROS generation. Thrombin-induced ROS generation in platelets require both GPIbα and PAR4. Potential functional association between GPIbα and PAR4 receptors and mouse and human platelets. GPIbα and PAR4-dependent ROS formation is mediated through FAK and NOX1 proteins.
Collapse
|
15
|
Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta Gen Subj 2015; 1850:2518-29. [PMID: 26391841 DOI: 10.1016/j.bbagen.2015.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/01/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two major soluble blood platelet activators are thrombin and ADP. Of these two, only thrombin can induce mitochondrial collapse and programmed cell death leading to phosphatidylserine (PS) exposure required for blood clotting reactions acceleration. Thrombin can also greatly potentiate collagen-induced PS exposure. However, ADP acting through the P2Y12 receptor was shown to increase the PS-exposing (PS+) platelets fraction produced by thrombin or thrombin-plus-collagen via an unknown mechanism. METHODS We developed a comprehensive multicompartmental computational model of platelet PAR1-and-P2Y12 calcium signal transduction that included cytoplasmic signaling, dense tubular system and mitochondria. To test model predictions, flow cytometry experiments with washed, annexin V-labeled platelets were performed. RESULTS Stimulation of thrombin receptor PAR1 in the model induced cytoplasmic calcium oscillations, calcium uptake by mitochondria, opening of the permeability transition pore and collapse of the mitochondrial membrane potential. ADP stimulation of P2Y12 led to cAMP decrease that, in turn, caused changes in phospholipase C phosphorylation by protein kinase A, increase in cytoplasmic calcium level and, consequently, PS+ platelet formation. ADP addition before stimulation of PAR1 produced much greater increase of the PS+ fraction because cAMP concentration had time to go down prior to calcium oscillations; this prediction was also tested and confirmed experimentally. CONCLUSION These results suggest a mechanism of ADP-dependent PS exposure regulation and show a likely mode of action that could be important for the PS exposure regulation in thrombi, where ADP is released before thrombin formation.
Collapse
Affiliation(s)
- S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - V I Shaturny
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudnyi, 141700, Russia.
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia.
| |
Collapse
|
16
|
Judge HM, Jennings LK, Moliterno DJ, Hord E, Ecob R, Tricoci P, Rorick T, Kotha J, Storey RF. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact. Platelets 2014; 26:236-42. [DOI: 10.3109/09537104.2014.902924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Uppal A, Wightman SC, Ganai S, Weichselbaum RR, An G. Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model. Theor Biol Med Model 2014; 11:17. [PMID: 24725600 PMCID: PMC4022382 DOI: 10.1186/1742-4682-11-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Metastatic tumors are a major source of morbidity and mortality for most cancers. Interaction of circulating tumor cells with endothelium, platelets and neutrophils play an important role in the early stages of metastasis formation. These complex dynamics have proven difficult to study in experimental models. Prior computational models of metastases have focused on tumor cell growth in a host environment, or prediction of metastasis formation from clinical data. We used agent-based modeling (ABM) to dynamically represent hypotheses of essential steps involved in circulating tumor cell adhesion and interaction with other circulating cells, examine their functional constraints, and predict effects of inhibiting specific mechanisms. METHODS We developed an ABM of Early Metastasis (ABMEM), a descriptive semi-mechanistic model that replicates experimentally observed behaviors of populations of circulating tumor cells, neutrophils, platelets and endothelial cells while incorporating representations of known surface receptor, autocrine and paracrine interactions. Essential downstream cellular processes were incorporated to simulate activation in response to stimuli, and calibrated with experimental data. The ABMEM was used to identify potential points of interdiction through examination of dynamic outcomes such as rate of tumor cell binding after inhibition of specific platelet or tumor receptors. RESULTS The ABMEM reproduced experimental data concerning neutrophil rolling over endothelial cells, inflammation-induced binding between neutrophils and platelets, and tumor cell interactions with these cells. Simulated platelet inhibition with anti-platelet drugs produced unstable aggregates with frequent detachment and re-binding. The ABMEM replicates findings from experimental models of circulating tumor cell adhesion, and suggests platelets play a critical role in this pre-requisite for metastasis formation. Similar effects were observed with inhibition of tumor integrin αV/β3. These findings suggest that anti-platelet or anti-integrin therapies may decrease metastasis by preventing stable circulating tumor cell adhesion. CONCLUSION Circulating tumor cell adhesion is a complex, dynamic process involving multiple cell-cell interactions. The ABMEM successfully captures the essential interactions necessary for this process, and allows for in-silico iterative characterization and invalidation of proposed hypotheses regarding this process in conjunction with in-vitro and in-vivo models. Our results suggest that anti-platelet therapies and anti-integrin therapies may play a promising role in inhibiting metastasis formation.
Collapse
Affiliation(s)
| | | | | | | | - Gary An
- Department of Surgery, The University of Chicago Medicine, 5841 S, Maryland Avenue, MC 5094 S-032, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
|
19
|
Duvernay M, Young S, Gailani D, Schoenecker J, Hamm HE, Hamm H. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets. Mol Pharmacol 2013; 83:781-92. [PMID: 23307185 PMCID: PMC3608438 DOI: 10.1124/mol.112.083477] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/10/2013] [Indexed: 01/03/2023] Open
Abstract
With the recent interest of protease-activated receptors (PAR) 1 and PAR4 as possible targets for the treatment of thrombotic disorders, we compared the efficacy of protease-activated receptor (PAR)1 and PAR4 in the generation of procoagulant phenotypes on platelet membranes. PAR4-activating peptide (AP)-stimulated platelets promoted thrombin generation in plasma up to 5 minutes earlier than PAR1-AP-stimulated platelets. PAR4-AP-mediated factor V (FV) association with the platelet surface was 1.6-fold greater than for PAR1-AP. Moreover, PAR4 stimulation resulted in a 3-fold greater release of microparticles, compared with PAR1 stimulation. More robust FV secretion and microparticle generation with PAR4-AP was attributable to stronger and more sustained phosphorylation of myosin light chain at serine 19 and threonine 18. Inhibition of Rho-kinase reduced PAR4-AP-mediated FV secretion and microparticle generation to PAR1-AP-mediated levels. Thrombin generation assays measuring prothrombinase complex activity demonstrated 1.5-fold higher peak thrombin levels on PAR4-AP-stimulated platelets, compared with PAR1-AP-stimulated platelets. Rho-kinase inhibition reduced PAR4-AP-mediated peak thrombin generation by 25% but had no significant effect on PAR1-AP-mediated thrombin generation. In conclusion, stimulation of PAR4 on platelets leads to faster and more robust thrombin generation, compared with PAR1 stimulation. The greater procoagulant potential is related to more efficient FV release from intracellular stores and microparticle production driven by stronger and more sustained myosin light chain phosphorylation. These data have implications about the role of PAR4 during hemostasis and are clinically relevant in light of recent efforts to develop PAR antagonists to treat thrombotic disorders.
Collapse
Affiliation(s)
- Matthew Duvernay
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nylander M, Osman A, Ramström S, Åklint E, Larsson A, Lindahl TL. The role of thrombin receptors PAR1 and PAR4 for PAI-1 storage, synthesis and secretion by human platelets. Thromb Res 2012; 129:e51-8. [DOI: 10.1016/j.thromres.2011.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/11/2011] [Accepted: 12/19/2011] [Indexed: 12/16/2022]
|
21
|
Yeung J, Apopa PL, Vesci J, Kenyon V, Rai G, Jadhav A, Simeonov A, Holman TR, Maloney DJ, Boutaud O, Holinstat M. Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Mol Pharmacol 2012; 81:420-30. [PMID: 22155783 PMCID: PMC3286293 DOI: 10.1124/mol.111.075630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
Platelet activation is important in the regulation of hemostasis and thrombosis. Uncontrolled activation of platelets may lead to arterial thrombosis, which is a major cause of myocardial infarction and stroke. After activation, metabolism of arachidonic acid (AA) by 12-lipoxygenase (12-LOX) may play a significant role in regulating the degree and stability of platelet activation because inhibition of 12-LOX significantly attenuates platelet aggregation in response to various agonists. Protein kinase C (PKC) activation is also known to be an important regulator of platelet activity. Using a newly developed selective inhibitor for 12-LOX and a pan-PKC inhibitor, we investigated the role of PKC in 12-LOX-mediated regulation of agonist signaling in the platelet. To determine the role of PKC within the 12-LOX pathway, a number of biochemical endpoints were measured, including platelet aggregation, calcium mobilization, and integrin activation. Inhibition of 12-LOX or PKC resulted in inhibition of dense granule secretion and attenuation of both aggregation and αIIbβ(3) activation. However, activation of PKC downstream of 12-LOX inhibition rescued agonist-induced aggregation and integrin activation. Furthermore, inhibition of 12-LOX had no effect on PKC-mediated aggregation, indicating that 12-LOX is upstream of PKC. These studies support an essential role for PKC downstream of 12-LOX activation in human platelets and suggest 12-LOX as a possible target for antiplatelet therapy.
Collapse
Affiliation(s)
- Jennifer Yeung
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
de la Fuente M, Noble DN, Verma S, Nieman MT. Mapping human protease-activated receptor 4 (PAR4) homodimer interface to transmembrane helix 4. J Biol Chem 2012; 287:10414-10423. [PMID: 22318735 DOI: 10.1074/jbc.m112.341438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activates platelets by binding and cleaving protease-activated receptors 1 and 4 (PAR1 and PAR4). Because of the importance of PAR4 activation on platelets in humans and mice and emerging roles for PAR4 in other tissues, experiments were done to characterize the interaction between PAR4 homodimers. Bimolecular fluorescence complementation and bioluminescence resonance energy transfer (BRET) were used to examine the PAR4 homodimer interface. In bimolecular fluorescence complementation experiments, PAR4 formed homodimers that were disrupted by unlabeled PAR4 in a concentration-dependent manner, but not by rhodopsin. In BRET experiments, the PAR4 homodimers showed a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression. PAR4 did not interact with rhodopsin in BRET assays. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, rhodopsin was unable to disrupt the BRET signal, indicating that the disruption of the PAR4 homodimer is not due to nonspecific interactions. A panel of rho-PAR4 chimeras and PAR4 point mutants has mapped the dimer interface to hydrophobic residues in transmembrane helix 4. Finally, mutations that disrupted dimer formation had reduced calcium mobilization in response to the PAR4 agonist peptide. These results link the loss of dimer formation to a loss of PAR4 signaling.
Collapse
Affiliation(s)
- María de la Fuente
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel N Noble
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sheetal Verma
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Marvin T Nieman
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
23
|
Schlagenhauf A, Kozma N, Leschnik B, Wagner T, Muntean W. Thrombin receptor levels in platelet concentrates during storage and their impact on platelet functionality. Transfusion 2012; 52:1253-9. [PMID: 22233332 DOI: 10.1111/j.1537-2995.2011.03475.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quality control of platelet (PLT) concentrates is challenging, due to PLT lesions, which are difficult to detect with routine methods. The search for reliable PLT lesion biomarkers is focused on the role of PLTs in primary hemostasis. PLT transfusions also have a significant impact on secondary hemostasis. In this phase, responsiveness of PLTs to small amounts of thrombin is crucial. PAR1 and PAR4 are protease-activated receptors and are responsible for thrombin reactivity of human PLTs. This study should elucidate if levels of those two receptors are changing in PLT concentrates during storage and if those changes have an impact on PLT aggregation and support of thrombin generation. STUDY DESIGN AND METHODS PLT concentrates from buffy coat preparations were stored in SSP+ solution for 9 days at 22±2°C on a horizontal flatbed agitator, and samples were taken daily for analysis. PAR1 and PAR4 levels were evaluated using Western blot analysis. PLT aggregation was measured using Born aggregometry and specific PAR1 or PAR4 agonists. Thrombin generation was measured using calibrated automated thrombography. RESULTS Levels of both receptors (PAR1 and PAR4) started to decrease after 5 days of storage. PAR1-mediated PLT aggregation remained constant, whereas PAR4-mediated PLT aggregation decreased with storage time. Rate of thrombin generation was accelerated after 5 days of storage. CONCLUSION Decreasing levels of PARs in PLT concentrates after 5 days of storage influenced PAR4-mediated, but not PAR1-mediated, aggregation. Thrombin generation with senescent PLTs was increased, which may be attributed to other mechanisms promoting increased phosphatidylserine exposure.
Collapse
Affiliation(s)
- Axel Schlagenhauf
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|