1
|
Thompson R, Cao X. Reassessing granzyme B: unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front Immunol 2024; 15:1392535. [PMID: 38846935 PMCID: PMC11153694 DOI: 10.3389/fimmu.2024.1392535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.
Collapse
Affiliation(s)
- Raylynn Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Tibbs E, Cao X. Emerging Canonical and Non-Canonical Roles of Granzyme B in Health and Disease. Cancers (Basel) 2022; 14:1436. [PMID: 35326588 PMCID: PMC8946077 DOI: 10.3390/cancers14061436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
The Granzyme (Gzm) family has classically been recognized as a cytotoxic tool utilized by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to illicit cell death to infected and cancerous cells. Their importance is established based on evidence showing that deficiencies in these cell death executors result in defective immune responses. Recent findings have shown the importance of Granzyme B (GzmB) in regulatory immune cells, which may contribute to tumor growth and immune evasion during cancer development. Other studies have shown that members of the Gzm family are important for biological processes such as extracellular matrix remodeling, angiogenesis and organized vascular degradation. With this growing body of evidence, it is becoming more important to understand the broader function of Gzm's rather than a specific executor of cell death, and we should be aware of the many alternative roles that Gzm's play in physiological and pathological conditions. Therefore, we review the classical as well as novel non-canonical functions of GzmB and discuss approaches to utilize these new findings to address current gaps in our understanding of the immune system and tissue development.
Collapse
Affiliation(s)
- Ellis Tibbs
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
| | - Xuefang Cao
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Ye J, Chen Q, Wang R. Logical modeling of thymus and natural killer lymphocyte differentiation. J Biol Phys 2021; 47:31-47. [PMID: 33735399 DOI: 10.1007/s10867-021-09563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 10/21/2022] Open
Abstract
Thymus (T) and natural killer (NK) lymphocytes are important barriers against diseases. Therefore, it is necessary to understand regulatory mechanisms related to the cell fate decisions involved in the production of these cells. Although some individual information related to T and NK lymphocyte cell fate decisions have been revealed, the related network and its dynamical characteristics still have not been well understood. By integrating individual information and comparing with experimental data, we construct a comprehensive regulatory network and a logical model related to T and NK lymphocyte differentiation. We aim to explore possible mechanisms of how each lineage differentiation is realized by systematically screening individual perturbations. When determining the perturbation strategies, the state transition can be used to identify the roles of specific genes in cell type selection and reprogramming. In agreement with experimental observations, the dynamics of the model correctly restates the cell differentiation processes from common lymphoid progenitors to CD4+ T cells, CD8+ T cells, and NK cells. Our analysis reveals that some specific perturbations can give rise to directional cell differentiation or reprogramming. We test our in silico results by using known experimental observations. The integrated network and the logical model presented here might be a good candidate for providing qualitative mechanisms of cell fate specification involved in T and NK lymphocyte cell fate decisions.
Collapse
Affiliation(s)
- Jianting Ye
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Qingxi Chen
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Li Y, Li G, Zhang J, Wu X, Chen X. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Front Immunol 2021; 11:619954. [PMID: 33664732 PMCID: PMC7921733 DOI: 10.3389/fimmu.2020.619954] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are the unique T cell subgroup with their T cell receptors composed of γ chain and δ chain. Unlike αβ T cells, γδ T cells are non-MHC-restricted in recognizing tumor antigens, and therefore defined as innate immune cells. Activated γδ T cells can promote the anti-tumor function of adaptive immune cells. They are considered as a bridge between adaptive immunity and innate immunity. However, several other studies have shown that γδ T cells can also promote tumor progression by inhibiting anti-tumor response. Therefore, γδ T cells may have both anti-tumor and tumor-promoting effects. In order to clarify this contradiction, in this review, we summarized the functions of the main subsets of human γδ T cells in how they exhibit their respective anti-tumor or pro-tumor effects in cancer. Then, we reviewed recent γδ T cell-based anti-tumor immunotherapy. Finally, we summarized the existing problems and prospect of this immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Wu
- School of Life Sciences, Tian Jin University, Tian Jin, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Chesneau M, Mai HL, Danger R, Le Bot S, Nguyen TVH, Bernard J, Poullaouec C, Guerrif P, Conchon S, Giral M, Charreau B, Degauque N, Brouard S. Efficient Expansion of Human Granzyme B–Expressing B Cells with Potent Regulatory Properties. THE JOURNAL OF IMMUNOLOGY 2020; 205:2391-2401. [DOI: 10.4049/jimmunol.2000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/10/2020] [Indexed: 01/12/2023]
|
6
|
Ettersperger J, Montcuquet N, Malamut G, Guegan N, Lopez-Lastra S, Gayraud S, Reimann C, Vidal E, Cagnard N, Villarese P, Andre-Schmutz I, Gomes Domingues R, Godinho-Silva C, Veiga-Fernandes H, Lhermitte L, Asnafi V, Macintyre E, Cellier C, Beldjord K, Di Santo JP, Cerf-Bensussan N, Meresse B. Interleukin-15-Dependent T-Cell-like Innate Intraepithelial Lymphocytes Develop in the Intestine and Transform into Lymphomas in Celiac Disease. Immunity 2016; 45:610-625. [PMID: 27612641 DOI: 10.1016/j.immuni.2016.07.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 01/19/2023]
Abstract
The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.
Collapse
Affiliation(s)
- Julien Ettersperger
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France
| | - Nicolas Montcuquet
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France
| | - Georgia Malamut
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France; AP-HP, Department of Gastroenterology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Nicolas Guegan
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; INSERM U 668, 75015 Paris, France
| | - Ségolène Gayraud
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France
| | - Christian Reimann
- Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France; INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France
| | - Elodie Vidal
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France
| | | | - Patrick Villarese
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France
| | - Isabelle Andre-Schmutz
- Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France; INSERM UMR1163, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France
| | - Rita Gomes Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Ludovic Lhermitte
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France
| | - Vahid Asnafi
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France
| | - Elizabeth Macintyre
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France
| | - Christophe Cellier
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France; AP-HP, Department of Gastroenterology, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Kheira Beldjord
- Université Paris Descartes-Sorbonne Paris Cité, Institut Necker-Enfants-Malades, INSERM UMR1151 and, Biological Hematology, AP-HP Necker-Enfants-Malades, 75015 Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75010 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; INSERM U 668, 75015 Paris, France
| | - Nadine Cerf-Bensussan
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France.
| | - Bertrand Meresse
- INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, 75015 Paris, France.
| |
Collapse
|
7
|
Bhela S, Kempsell C, Manohar M, Dominguez-Villar M, Griffin R, Bhatt P, Kivisakk-Webb P, Fuhlbrigge R, Kupper T, Weiner H, Baecher-Allan C. Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2180-9. [PMID: 25637022 PMCID: PMC4428169 DOI: 10.4049/jimmunol.1303257] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In autoimmune patients, regulatory T cells (Tregs) are increasingly found to be unable to suppress patient-derived T cells, an outcome referred to as Treg resistance. In this study, we show that CD4 T cells from patients with multiple sclerosis resist suppression by patient-derived or healthy donor-derived ex vivo Tregs. Importantly, we report that granzyme B (GzmB) contributes to this Treg resistance via a novel, apoptosis-independent mechanism. We show that memory CD4(+)CD127(lo)FOXP3(+) Treg subsets do not express GzmB, whereas activated, nonregulatory CD4 T cells isolated from patients with multiple sclerosis express higher levels of GzmB than do cells from healthy donors. In contrast to the intracellular GzmB that mediates apoptosis, GzmB can be found in extracellular fluids where it is hypothesized to regulate other cellular processes. In this study, we show that providing extracellular GzmB strongly inhibits Treg suppression, without altering Treg viability. However, when GzmB and GzmB-specific inhibitor are both provided to the cocultures, Treg suppression occurs. Thus, these data suggest that a novel activity of extracellular GzmB is to regulate Treg suppression. Additionally, we find that the suppression-abrogating cytokine IL-6 augments GzmB expression by human CD4 T cells, and it inhibits Treg suppression via this nonapoptotic GzmB-mediated mechanism. Lastly, in examining the mechanism whereby GzmB inhibits Treg function, we show that extracellular GzmB reduces Treg expression of CD39 and programmed death ligand 1. Collectively, these data indicate that extracellular GzmB plays an unexpected, nonapoptotic role in regulating Treg suppression and suggest that inactivation of specifically the extracellular activity of GzmB may be an efficacious therapeutic in autoimmunity.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Center for Neurologic Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Christine Kempsell
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Monali Manohar
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Margarita Dominguez-Villar
- Center for Neurologic Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Russell Griffin
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Pooja Bhatt
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Pia Kivisakk-Webb
- Center for Neurologic Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Robert Fuhlbrigge
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Thomas Kupper
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Howard Weiner
- Center for Neurologic Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Clare Baecher-Allan
- Center for Neurologic Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol 2014; 34:2822-32. [PMID: 24842903 DOI: 10.1128/mcb.00206-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, there are four NOTCH receptors and five Delta-Jagged-type ligands regulating many aspects of embryonic development and adult tissue homeostasis. NOTCH proteins are type I transmembrane receptors that interact with ligands on adjacent cells and are activated by regulated intramembrane proteolysis (RIP). The activation mechanism of NOTCH1 receptors upon ligand binding is well understood and requires cleavage by ADAM10 metalloproteases prior to intramembranous cleavage by γ-secretase. How the other human NOTCH receptor homologues are activated upon ligand binding is not known. Here, we dissect the proteolytic activation mechanism of the NOTCH2 and NOTCH3 receptors. We show that NOTCH2 and NOTCH3 signaling can be triggered by both Delta-Jagged-type ligands and requires ADAM10 and presenilin-1 or -2. Importantly, we did not find any role for the highly related ADAM17/TACE (tumor necrosis factor alpha-converting enzyme) protease in ligand-induced NOTCH2 or NOTCH3 signaling. These results demonstrate that canonical ligand-induced proteolysis of the NOTCH1, -2, and -3 receptors strictly depends on consecutive cleavage of these receptors by ADAM10 and the presenilin-containing γ-secretase complex, leading to transcriptional activation.
Collapse
|
9
|
Carnevalli LS, Scognamiglio R, Cabezas-Wallscheid N, Rahmig S, Laurenti E, Masuda K, Jöckel L, Kuck A, Sujer S, Polykratis A, Erlacher M, Pasparakis M, Essers MAG, Trumpp A. Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B. ACTA ACUST UNITED AC 2014; 211:769-79. [PMID: 24752302 PMCID: PMC4010905 DOI: 10.1084/jem.20131072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Granzyme B is expressed by hematopoietic stem cells (HSCs) and stromal cells in response to bacterial products or chemotherapy agents and limits HSC reconstitution potential. The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4–TRIF–p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress.
Collapse
Affiliation(s)
- Larissa S Carnevalli
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gogoi D, Dar AA, Chiplunkar SV. Involvement of Notch in activation and effector functions of γδ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:2054-62. [PMID: 24489102 DOI: 10.4049/jimmunol.1300369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Notch signaling plays a pivotal role in cell fate decision and lineage commitment of lymphocytes. Although the role of Notch in CD4(+) and CD8(+) αβ T cells is well documented, there are no reports on how Notch signaling regulates effector functions of γδ T cells. γδ T cells are a minor fraction in the peripheral blood but are known to play a major role in defense against pathogens and tumors. In this study, we show that Notch receptors (mRNA and protein) are expressed in peripheral γδ T cells. Inhibition of Notch signaling by γ-secretase inhibitor inhibited the proliferation and IFN-γ secretion of γδ T cells in response to stimulation with phosphoantigens and anti-CD3 mAb. In the presence of γ-secretase inhibitor, the antitumor cytolytic ability of γδ T cells was inhibited with a decreased CD107a expression. Knockdown of Notch1 and Notch2 genes in γδ T cells using small interfering RNA inhibited their antitumor cytotoxic potential. Our study describes for the first time, to our knowledge, the role of Notch as an additional signal contributing to Ag-specific effector functions of γδ T cells.
Collapse
Affiliation(s)
- Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | | | | |
Collapse
|
11
|
High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol 2013; 108:440-445. [PMID: 23891097 DOI: 10.1016/j.radonc.2013.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. MATERIALS AND METHODS NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. RESULTS Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. CONCLUSIONS We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy.
Collapse
|
12
|
IL-21-stimulated human plasmacytoid dendritic cells secrete granzyme B, which impairs their capacity to induce T-cell proliferation. Blood 2013; 121:3103-11. [PMID: 23407551 DOI: 10.1182/blood-2012-08-452995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a crucial role during innate immunity by secreting bulk amounts of type I interferons (IFNs) in response to Toll-like receptor (TLR)-mediated pathogen recognition. In addition, pDCs can also contribute to adaptive immunity by activation of antigen-specific T cells. Furthermore, it is well established that pDCs contribute to the pathogenesis of autoimmune diseases, including lupus. Interleukin-21 (IL-21) is a cytokine produced by activated CD4(+) T and natural killer T (NKT) cells and has a pleiotropic role in immunity by controlling myeloid DC-, NKT-, T-, and B-cell functions. It has remained elusive whether IL-21 affects pDCs. Here we investigate the role of IL-21 in human pDC activation and function and observe that IL-21 activates signal transducer and activator of transcription 3 in line with the finding that pDCs express the IL-21 receptor. Although IL-21 did not affect TLR-induced type I IFNs, IL-6, and TNF-α nor expression of major-histocompatibility-complex class II or costimulatory molecules, IL-21 markedly increased expression of the serine protease granzyme B (GrB). We demonstrate that GrB induction was, in part, responsible for IL-21-mediated downmodulation of CD4(+) T-cell proliferation induced by TLR preactivated pDCs. Collectively, our data provide evidence that pDCs are important cells to consider when investigating the role of IL-21 in immunity or pathogenesis.
Collapse
|