1
|
Stewart M, Paththamperuma C, McCann C, Cottingim K, Zhang H, DelVecchio R, Peng I, Fennimore E, Nix JC, Saeed MN, George K, Makaroff K, Colie M, Paulakonis E, Almeida MF, Afolayan AJ, Brown NG, Page RC, Schisler JC. Phosphorylation-State Modulated Binding of HSP70: Structural Insights and Compensatory Protein Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.637997. [PMID: 40027613 PMCID: PMC11870554 DOI: 10.1101/2025.02.17.637997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Protein quality control is crucial for cellular homeostasis, involving the heat shock response, the ubiquitin-proteasome system, and the autophagy-lysosome pathway. Central to these systems are the chaperone homologs heat shock protein 70 (HSP70) and heat shock cognate 70 (HSC70), which manage protein folding and degradation. This study investigated the impact of the C-terminal phosphorylation of HSP70 on its interaction with the co-chaperone CHIP (C-terminus of HSC70 interacting protein), an E3 ligase that ubiquitinates protein substrates for degradation. Using both cell-free and cell-based approaches, including X-ray crystallography, biolayer interferometry, and live cell biocomplementation assays, we demonstrate that phosphorylation at HSP70 T636 reduces CHIP's binding affinity, shifting the preference toward other co-chaperones like HOP. Structural analysis reveals that phosphorylation disrupts key hydrogen bonds, altering binding dynamics. We engineered a CHIP variant (CHIP-G132N) to restore binding affinity to phosphorylated HSP70. While CHIP-G132N effectively restored binding without additional functional domains, its effectiveness was diminished in full-length phosphomimetic constructs in cell-free and in-cell assays, suggesting that additional interactions may influence binding. Functional assays indicate that phosphorylation of HSP70 affects its stability and degradation, with implications for diseases such as cancer and neurodegeneration. Our findings highlight the complexity of chaperone-co-chaperone interactions and underscore the importance of post-translational modifications in regulating protein quality control mechanisms. By elucidating the molecular details of HSP70 and CHIP interactions, our study provides a foundation for developing therapeutic interventions for diseases characterized by proteostasis imbalance.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Colleen McCann
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelsey Cottingim
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Huaqun Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rian DelVecchio
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ivy Peng
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica Fennimore
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Morcos N Saeed
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen George
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Katherine Makaroff
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Meagan Colie
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ethan Paulakonis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael F. Almeida
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adeleye J Afolayan
- Department of Pediatrics, Children’s Research Institute and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Lab Medicine, and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Huo Y, Karnawat R, Liu L, Knieß RA, Groß M, Chen X, Mayer MP. Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients. J Mol Biol 2024; 436:168772. [PMID: 39222679 DOI: 10.1016/j.jmb.2024.168772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.
Collapse
Affiliation(s)
- Yuantao Huo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Rishabh Karnawat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Lixia Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Robert A Knieß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Maike Groß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Xuemei Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 PMCID: PMC11599458 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Kong JC, Zhou F, Shi L, Wei Y, Wu C. A novel nanodrug for the sensitization of photothermal chemotherapy for breast cancer in vitro. RSC Adv 2024; 14:21292-21299. [PMID: 38974230 PMCID: PMC11225340 DOI: 10.1039/d4ra01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Owing to the complexity of tumor treatment, clinical tumor treatment has evolved from a single treatment mode to multiple combined treatment modes. Reducing the tolerance of tumors to heat and the toxicity of chemotherapy drugs to the body, as well as increasing the sensitivity of tumors to photothermal therapy and chemotherapy drugs, are key issues that urgently need to be addressed in the current cancer treatment. In this work, polylactic acid-based drug nanoparticles (PLA@DOX/GA/ICG) were synthesized with good photothermal conversion ability by encapsulating the water-soluble anticancer drug doxorubicin (DOX), photothermal conversion agent indocyanine green (ICG) and liposoluble drug gambogic acid (GA) using a double emulsion method. The preparation process of PLA@DOX/GA/ICG was examined. Gambogic acid entrapped in PLA@DOX/GA/ICG nanoparticles could act as an HSP90 protein inhibitor to achieve bidirectional sensitization to chemotherapy and photothermal therapy under 808 nm laser irradiation for the first time, effectively ablating breast cancer cells in vitro. This nanodrug was expected to be used for the efficient treatment of tumors.
Collapse
Affiliation(s)
- Ji Chuan Kong
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Feng Zhou
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Liting Shi
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Yihui Wei
- Henan Polytechinc University Jiaozuo Henan 45400 China
| | - Chunhong Wu
- Henan Polytechinc University Jiaozuo Henan 45400 China
| |
Collapse
|
5
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Jing D, Zhang Y, Gong C, Du K, Wang Y, Lai L, Meng D. Kamaonensine A-G: Lycaconitine-type C 19-diterpenoid alkaloids with anti-inflammatory activities from Delphinium kamaonense Huth. PHYTOCHEMISTRY 2023; 215:113822. [PMID: 37574118 DOI: 10.1016/j.phytochem.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Delphinium kamaonense Huth is a sort of folkloric plant resource which is cultivated and planted with great ornamental and medicinal values. In this work, seven undescribed lycaconitine-type C19-diterpenoid alkaloids, especially a rare skeleton with -CH=N and N-oxide moieties, along with ten known compounds, were isolated from D. kamaonense, of which the structures were determined by various spectroscopic data, combined with calculated electronic circular dichroism (ECD) and single-crystal X-ray diffraction analysis. In vitro nitric oxide inhibitory activities assay of these compounds indicated that lycaconitine-type C19-diterpenoid alkaloids had significant anti-inflammatory inhibitory activities, with kamaonensine E being the most potent (0.9 ± 0.2 μM) stronger than positive (9.0 ± 1.3 μM). In the network pharmacology studies, binding three key targets mitogen-activated protein kinase 8 (MAPK8), mitogen-activated protein kinase 14 (MAPK14), and heat shock protein HSP 90-alpha (HSP90α), the anti-inflammatory mechanism might be related to MAPK signaling pathways. Furthermore, the molecular docking results revealed that the uncommon amides and methylenedioxy groups might be the most two promising pharmacophores for lycaconitine-type C19-diterpenoid alkaloids.
Collapse
Affiliation(s)
- Di Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yunhong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chang Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lantao Lai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
7
|
Yang S, Nie T, She H, Tao K, Lu F, Hu Y, Huang L, Zhu L, Feng D, He D, Qi J, Kukar T, Ma L, Mao Z, Yang Q. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity. Autophagy 2023; 19:822-838. [PMID: 35941759 PMCID: PMC9980472 DOI: 10.1080/15548627.2022.2105561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022] Open
Abstract
TFEB (transcription factor EB) regulates multiple genes involved in the process of macroautophagy/autophagy and plays a critical role in lifespan determination. However, the detailed mechanisms that regulate TFEB activity are not fully clear. In this study, we identified a role for HSP90AA1 in modulating TFEB. HSP90AA1 was phosphorylated by CDK5 at Ser 595 under basal condition. This phosphorylation inhibited HSP90AA1, disrupted its binding to TFEB, and impeded TFEB's nuclear localization and subsequent autophagy induction. Pro-autophagy signaling attenuated CDK5 activity and enhanced TFEB function in an HSP90AA1-dependent manner. Inhibition of HSP90AA1 function or decrease in its expression significantly attenuated TFEB's nuclear localization and transcriptional function following autophagy induction. HSP90AA1-mediated regulation of a TFEB ortholog was involved in the extended lifespan of Caenorhabditis elegans in the absence of its food source bacteria. Collectively, these findings reveal that this regulatory process plays an important role in modulation of TFEB, autophagy, and longevity.Abbreviations : AL: autolysosome; AP: autophagosome; ATG: autophagy related; BafA1: bafilomycin A1; CDK5: cyclin-dependent kinase 5; CDK5R1: cyclin dependent kinase 5 regulatory subunit 1; CR: calorie restriction; FUDR: 5-fluorodeoxyuridine; HSP90AA1: heat shock protein 90 alpha family class A member 1; MAP1LC3: microtubule associated protein 1 light chain 3; NB: novobiocin sodium; SQSTM1: sequestosome 1; TFEB: transcription factor EB; WT: wild type.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hua She
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Tao
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhu
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dayun Feng
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dan He
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Qi
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
9
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
10
|
Kim S, Backe SJ, Wengert LA, Johnson AE, Isakov RV, Bratslavsky MS, Woodford MR. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration. Cell Stress Chaperones 2022; 27:573-585. [PMID: 35976490 PMCID: PMC9485411 DOI: 10.1007/s12192-022-01293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.
Collapse
Affiliation(s)
- Seungchan Kim
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Anna E Johnson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Roman V Isakov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael S Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
11
|
Zhang S, Wang C, Ma B, Xu M, Xu S, Liu J, Tian Y, Fu Y, Luo Y. Mutant p53 Drives Cancer Metastasis via RCP-Mediated Hsp90α Secretion. Cell Rep 2021; 32:107879. [PMID: 32640214 DOI: 10.1016/j.celrep.2020.107879] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Mutant p53 (mutp53) loses its tumor suppressor properties but gains oncogenic functions of driving malignancy. However, it remains largely unknown how mutp53 drives cancer metastasis. Here, we show that wild-type p53 (WTp53) suppresses the secretion of heat shock protein 90-alpha (Hsp90α), whereas mutp53 enhances Hsp90α vesicular trafficking and exosome-mediated secretion. Long-term delivery of an antibody that blocks extracellular Hsp90α (eHsp90α) function extends the survival of p53-/- mice and attenuates the invasiveness of p53 mutant tumors. Furthermore, mass spectrometry and functional analysis identified a critical role for Rab coupling protein (RCP) in mutp53-induced Hsp90α secretion. RCP knockdown decreases eHsp90α levels and inhibits malignant progression. Notably, recombinant Hsp90α re-introduction markedly rescues the impaired migration and invasion abilities caused by RCP depletion. Taken together, these findings elucidate the molecular mechanisms by which mutp53 executes oncogenic activities via its downstream RCP-mediated Hsp90α secretion and a strategy to treat human cancers expressing mutp53 proteins.
Collapse
Affiliation(s)
- Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
13
|
Li K, Sun P, Wang Y, Gao T, Zheng D, Liu A, Ni Y. Hsp90 interacts with Cdc37, is phosphorylated by PKA/PKC, and regulates Src phosphorylation in human sperm capacitation. Andrology 2020; 9:185-195. [PMID: 32656999 DOI: 10.1111/andr.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heat shock protein 90 (Hsp90) signaling pathways participate in protein phosphorylation during sperm capacitation. However, the underlying mechanism is largely unknown. OBJECTIVE The aim of this study was to explore the interaction between Hsp90 and its co-chaperone protein, cell division cycle protein Cdc37 (Cdc37), in human spermatozoa. MATERIALS AND METHODS We examined the effects of H-89 (a protein kinase A [PKA] inhibitor) and Go6983 (a protein kinase C [PKC] inhibitor) on the phosphorylation of serine, threonine, and tyrosine residues in Hsp90; the effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG, Hsp90 inhibitor) on Y416-Src phosphorylation; and the effects of 17-AAG and geldanamycin on threonine phosphorylation during human sperm capacitation. RESULTS Hsp90 co-localized and interacted with Cdc37. During human sperm capacitation, Hsp90 phosphorylation at serine, threonine, and tyrosine residues was inhibited by H-89 and Go6983. In addition, phosphorylation of residue Y416 in the tyrosine kinase Src (its active site) was inhibited by 17-AAG, and the threonine phosphorylation levels of some proteins were decreased by 17-AAG and geldanamycin. DISCUSSION AND CONCLUSION Taken together, our data showed that the interaction of Hsp90 with Cdc37 regulates total protein threonine phosphorylation and Src phosphorylation via its serine, threonine, and tyrosine phosphorylation, which are controlled by PKA and PKC during human sperm capacitation. The results of this study help understand the mechanism underlying Hsp90 regulation of sperm function.
Collapse
Affiliation(s)
- Kun Li
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Peibei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Yayan Wang
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Tian Gao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ajuan Liu
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| | - Ya Ni
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences/Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
15
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
16
|
Gong Y, Wang C, Jiang Y, Zhang S, Feng S, Fu Y, Luo Y. Metformin Inhibits Tumor Metastasis through Suppressing Hsp90α Secretion in an AMPKα1-PKCγ Dependent Manner. Cells 2020; 9:cells9010144. [PMID: 31936169 PMCID: PMC7016760 DOI: 10.3390/cells9010144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin has been documented in epidemiological studies to mitigate tumor progression. Previous reports show that metformin inhibits tumor migration in several cell lines, such as MCF-7 and H1299, but the mechanisms whereby metformin exerts its inhibitory effects on tumor metastasis remain largely unknown. The secreted proteins in cancer cell-derived secretome have been reported to play important roles in tumor metastasis, but whether metformin has an effect on tumor secretome remains unclear. Here we show that metformin inhibits tumor metastasis by suppressing Hsp90α (heat shock protein 90α) secretion. Mass spectrometry (MS) analysis and functional validation identify that eHsp90α (extracellular Hsp90α) is one of the most important secreted proteins for metformin to inhibit tumor cells migration, invasion and metastasis both in vitro and in vivo. Moreover, we find that metformin inhibits Hsp90α secretion in an AMPKα1 dependent manner. Our data elucidate that AMPKα1 (AMP-activated protein kinase α1) decreases the phosphorylation level of Hsp90α by inhibiting the kinase activity of PKCγ (protein kinase Cγ), which suppresses the membrane translocation and secretion of Hsp90α. Collectively, our results illuminate that metformin inhibits tumor metastasis by suppressing Hsp90α secretion in an AMPKα1 dependent manner.
Collapse
Affiliation(s)
- Yuanchao Gong
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Jiang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; (Y.G.); (C.W.); (Y.J.); (S.Z.); (S.F.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Correspondence: ; Tel.: +86-10-6277-2897; Fax: +86-10-6279-4691
| |
Collapse
|
17
|
Liu W, Li J, Zhang P, Hou Q, Feng S, Liu L, Cui D, Shi H, Fu Y, Luo Y. A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer Sci 2019; 110:2941-2959. [PMID: 31343810 PMCID: PMC6726694 DOI: 10.1111/cas.14143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
A sensitive and specific diagnosis biomarker, in principle scalable to most cancer types, is needed to reduce the prevalent cancer mortality. Meanwhile, the investigation of diagnosis determinants of a biomarker will facilitate the interpretation of its screening results in clinic. Here we design a large-scale (1558 enrollments), multicenter (multiple hospitals), and cross-validation (two datasets) clinic study to validate plasma Hsp90α quantified by ELISA as a pan-cancer biomarker. ROC curve shows the optimum diagnostic cutoff is 69.19 ng/mL in discriminating various cancer patients from all controls (AUC 0.895, sensitivity 81.33% and specificity 81.65% in test cohort; AUC 0.893, sensitivity 81.72% and specificity 81.03% in validation cohort). Similar results are noted in detecting early-stage cancer patients. Plasma Hsp90α maintains also broad-spectrum for cancer subtypes, especially with 91.78% sensitivity and 91.96% specificity in patients with AFP-limited liver cancer. In addition, we demonstrate levels of plasma Hsp90α are determined by ADAM10 expression, which will affect Hsp90α content in exosomes. Furthermore, Western blotting and PRM-based quantitative proteomics identify that partial false ELISA-negative patients secret high levels of plasma Hsp90α. Mechanism analysis reveal that TGFβ-PKCγ gene signature defines a distinct pool of hyperphosphorylated Hsp90α at Theronine residue. In clinic, a mechanistically relevant population of false ELISA-negative patients express also higher levels of PKCγ. In sum, plasma Hsp90α is a novel pan-cancer diagnosis biomarker, and cancer diagnosis with plasma Hsp90α is particularly effective in those patients with high expression of ADAM10, but may be insufficient to detect the patients with low ADAM10 and those with hyperphosphorylated Hsp90α.
Collapse
Affiliation(s)
- Wei Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ping Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lisheng Liu
- Clinical Laboratory, Shandong Cancer Hospital, Jinan, China
| | - Dawei Cui
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Tian Y, Wang C, Chen S, Liu J, Fu Y, Luo Y. Extracellular Hsp90α and clusterin synergistically promote breast cancer epithelial-to-mesenchymal transition and metastasis via LRP1. J Cell Sci 2019; 132:jcs.228213. [PMID: 31273033 DOI: 10.1242/jcs.228213] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular heat shock protein 90 alpha (eHsp90α, also known as HSP90AA1) has been widely reported to promote tumor cell motility and tumor metastasis in various types of cancer. Several extracellular proteins and membrane receptors have been identified as interacting proteins of eHsp90α and mediate its pro-metastasis function. However, the regulatory mechanism of eHsp90α activity remains largely unknown. Here, we report that clusterin, a protein newly demonstrated to interact with eHsp90α, modulates eHsp90α signaling. We found that clusterin potentiated the effects of eHsp90α on activation of the AKT, ERK and NF-κB protein families, epithelial-to-mesenchymal transition (EMT) and migration in breast cancer cells. Furthermore, in vivo investigations demonstrated similar synergistic effects of eHsp90α and clusterin on tumor metastasis. Notably, the effects of eHsp90α and clusterin were mediated by low-density lipoprotein receptor-related protein 1 (LRP1). Proximity ligation assay and co-immunoprecipitation experiments demonstrated that clusterin participated in eHsp90α-LRP1 complex formation, which enhanced the binding affinity of eHsp90α to LRP1. Collectively, our data establish a role of clusterin as a newly discovered modulator of eHsp90α, and unravel detailed molecular mechanisms underlying the synergistic metastasis-promoting effects of clusterin and eHsp90α.
Collapse
Affiliation(s)
- Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Shuohua Chen
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Beijing, Haidian district, 100084, China .,Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, Haidian district, 100084, China
| |
Collapse
|
19
|
Low Electric Treatment activates Rho GTPase via Heat Shock Protein 90 and Protein Kinase C for Intracellular Delivery of siRNA. Sci Rep 2019; 9:4114. [PMID: 30858501 PMCID: PMC6412017 DOI: 10.1038/s41598-019-40904-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/28/2019] [Indexed: 11/08/2022] Open
Abstract
Low electric treatment (LET) promotes intracellular delivery of naked siRNA by altering cellular physiology. However, which signaling molecules and cellular events contribute to LET-mediated siRNA uptake are unclear. Here, we used isobaric tags in relative and absolute quantification (iTRAQ) proteomic analysis to identify changes in the levels of phosphorylated proteins that occur during cellular uptake of siRNA promoted by LET. iTRAQ analysis revealed that heat shock protein 90 (Hsp90)α and myristoylated alanine-rich C-kinase substrate (Marcks) were highly phosphorylated following LET of NIH 3T3 cells, but not untreated cells. Furthermore, the levels of phosphorylated Hsp90α and protein kinase C (PKC)γ were increased by LET both with siRNA and liposomes having various physicochemical properties used as model macromolecules, suggesting that PKCγ activated partly by Ca2+ influx as well as Hsp90 chaperone function were involved in LET-mediated cellular siRNA uptake. Furthermore, LET with siRNA induced activation of Rho GTPase via Hsp90 and PKC, which could contribute to cellular siRNA uptake accompanied by actin cytoskeleton remodeling. Collectively, our results suggested that LET-induced Rho GTPase activation via Hsp90 and PKC would participate in actin-dependent cellular uptake of siRNA.
Collapse
|
20
|
Regulation of the Hsp90 system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:889-897. [PMID: 29563055 DOI: 10.1016/j.bbamcr.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Hsp90 is a highly conserved and abundant chaperone. It participates in essential cellular activities by supporting the maturation process of its client proteins, many of which are protein kinases and steroid receptors. Client processing is achieved via extensive conformational changes within the dimeric chaperone. This requires an ATP hydrolysis activity that is controlled by auto-inhibitory mechanisms and several structurally diverse cofactors. Especially the client-specificity of Hsp90 depends on client-specific cofactors, which can adapt Hsp90's activities to the client requirements at different conditions and in different cell types. Additionally, post-translational modifications can influence almost every aspect of Hsp90's interactions and activities. In this review, we present these regulatory principles, discuss the factors that have an impact on Hsp90's function and elaborate the mechanisms that are responsible for regulating the Hsp90 machinery.
Collapse
|
21
|
Progress in Molecular Chaperone Regulation of Heat Shock Protein 90 and Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rybarczyk P, Vanlaeys A, Brassart B, Dhennin-Duthille I, Chatelain D, Sevestre H, Ouadid-Ahidouch H, Gautier M. The Transient Receptor Potential Melastatin 7 Channel Regulates Pancreatic Cancer Cell Invasion through the Hsp90α/uPA/MMP2 pathway. Neoplasia 2017; 19:288-300. [PMID: 28284058 PMCID: PMC5345960 DOI: 10.1016/j.neo.2017.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/13/2017] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a very poor prognosis. There is an urgent need to better understand the molecular mechanisms that regulate PDAC cell aggressiveness. The transient receptor potential melastatin 7 (TRPM7) is a nonselective cationic channel that mainly conducts Ca2+ and Mg2+. TRPM7 is overexpressed in numerous malignancies including PDAC. In the present study, we used the PANC-1 and MIA PaCa-2 cell lines to specifically assess the role of TRPM7 in cell invasion and matrix metalloproteinase secretion. We show that TRPM7 regulates Mg2+ homeostasis and constitutive cation entry in both PDAC cell lines. Moreover, cell invasion is strongly reduced by TRPM7 silencing without affecting the cell viability. Conditioned media were further studied, by gel zymography, to detect matrix metalloproteinase (MMP) secretion in PDAC cells. Our results show that MMP-2, urokinase plasminogen activator (uPA), and heat-shock protein 90α (Hsp90α) secretions are significantly decreased in TRPM7-deficient PDAC cells. Moreover, TRPM7 expression in human PDAC lymph node metastasis is correlated to the channel expression in primary tumor. Taken together, our results show that TRPM7 is involved in PDAC cell invasion through regulation of Hsp90α/uPA/MMP-2 proteolytic axis, confirming that this channel could be a promising biomarker and possibly a target for PDAC metastasis therapy.
Collapse
Affiliation(s)
- Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Bertrand Brassart
- SFR CAP-Santé (FED 4231); UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), F-51095 Reims, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Denis Chatelain
- Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Henri Sevestre
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231); Service d'anatomie pathologique, CHU d'Amiens, Université de Picardie Jules Verne, F-80000 Amiens, France, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231)
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire-EA4667, UFR Sciences, Université de Picardie Jules Verne, F-80039 Amiens, France; SFR CAP-Santé (FED 4231).
| |
Collapse
|
24
|
Nguyen MT, Knieß RA, Daturpalli S, Le Breton L, Ke X, Chen X, Mayer MP. Isoform-Specific Phosphorylation in Human Hsp90β Affects Interaction with Clients and the Cochaperone Cdc37. J Mol Biol 2017; 429:732-752. [DOI: 10.1016/j.jmb.2017.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
|
25
|
Sagare-Patil V, Bhilawadikar R, Galvankar M, Zaveri K, Hinduja I, Modi D. Progesterone requires heat shock protein 90 (HSP90) in human sperm to regulate motility and acrosome reaction. J Assist Reprod Genet 2017; 34:495-503. [PMID: 28236106 DOI: 10.1007/s10815-017-0879-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The aims of this paper were to study whether heat shock protein 90 (HSP90) is a regulator of sperm functions and to determine its association with oligoasthenozoospermia. METHODS The levels of HSP90 in sperm lysates were measured by ELISA. Localization of HSP90 and its isoforms was evaluated by immunofluorescence. Sperm motility and kinetics were assessed by computer-assisted sperm analysis. Acrosome reaction was determined by lectin staining. RESULTS The levels of HSP90 were lower in oligoasthenozoospermic men and correlated positively with the number of motile spermatozoa. In capacitated human spermatozoa, HSP90α was mostly found in residual nuclear envelope, and the HSP90β isoform was higher in the flagella. Inhibition of HSP90 by geldanamycin or 17-AAG did not affect basal motility, but suppressed progesterone-mediated forward progressive motility, hyperactivation and acrosome reaction. Progesterone treatment dephosphorylated both HSP90α and HSP90β at Ser/Thr-Pro residues, but not Tyr residues. CONCLUSION HSP90 levels are downregulated in oligoasthenozoospermia, and its functional inhibition attenuates progesterone-mediated sperm motility and acrosome reaction.
Collapse
Affiliation(s)
- Vrushali Sagare-Patil
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| | - Rashmi Bhilawadikar
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Mosami Galvankar
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India
| | - Kusum Zaveri
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Indira Hinduja
- Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Center, Veer Savarkar Marg, Mahim, Mumbai, 400016, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
26
|
Gil KE, Park MJ, Lee HJ, Park YJ, Han SH, Kwon YJ, Seo PJ, Jung JH, Park CM. Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:128-140. [PMID: 27607358 DOI: 10.1111/tpj.13351] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 05/19/2023]
Abstract
The circadian clock control of CONSTANS (CO) transcription and the light-mediated stabilization of its encoded protein coordinately adjust photoperiodic flowering by triggering rhythmic expression of the floral integrator flowering locus T (FT). Diurnal accumulation of CO is modulated sequentially by distinct E3 ubiquitin ligases, allowing peak CO to occur in the late afternoon under long days. Here we show that CO abundance is not simply targeted by E3 enzymes but is also actively self-adjusted through dynamic interactions between two CO isoforms. Alternative splicing of CO produces two protein variants, the full-size COα and the truncated COβ lacking DNA-binding affinity. Notably, COβ, which is resistant to E3 enzymes, induces the interaction of COα with CO-destabilizing E3 enzymes but inhibits the association of COα with CO-stabilizing E3 ligase. These observations demonstrate that CO plays an active role in sustaining its diurnal accumulation dynamics during Arabidopsis photoperiodic flowering.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Young-Ju Kwon
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
27
|
Structural and functional basis of protein phosphatase 5 substrate specificity. Proc Natl Acad Sci U S A 2016; 113:9009-14. [PMID: 27466404 DOI: 10.1073/pnas.1603059113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP-substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors.
Collapse
|
28
|
Woodford MR, Truman AW, Dunn DM, Jensen SM, Cotran R, Bullard R, Abouelleil M, Beebe K, Wolfgeher D, Wierzbicki S, Post DE, Caza T, Tsutsumi S, Panaretou B, Kron SJ, Trepel JB, Landas S, Prodromou C, Shapiro O, Stetler-Stevenson WG, Bourboulia D, Neckers L, Bratslavsky G, Mollapour M. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Rep 2016; 14:872-884. [PMID: 26804907 PMCID: PMC4887101 DOI: 10.1016/j.celrep.2015.12.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Sandra M Jensen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Cotran
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mourad Abouelleil
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sara Wierzbicki
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Dawn E Post
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Shinji Tsutsumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Barry Panaretou
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steve Landas
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
29
|
HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 2016; 7:e2051. [PMID: 26775703 PMCID: PMC4816171 DOI: 10.1038/cddis.2015.386] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 01/02/2023]
Abstract
Necroptosis is a caspase-independent form of regulated cell death that has been implicated in the development of a range of inflammatory, autoimmune and neurodegenerative diseases. The pseudokinase, Mixed Lineage Kinase Domain-Like (MLKL), is the most terminal known obligatory effector in the necroptosis pathway, and is activated following phosphorylation by Receptor Interacting Protein Kinase-3 (RIPK3). Activated MLKL translocates to membranes, leading to membrane destabilisation and subsequent cell death. However, the molecular interactions governing the processes downstream of RIPK3 activation remain poorly defined. Using a phenotypic screen, we identified seven heat-shock protein 90 (HSP90) inhibitors that inhibited necroptosis in both wild-type fibroblasts and fibroblasts expressing an activated mutant of MLKL. We observed a modest reduction in MLKL protein levels in human and murine cells following HSP90 inhibition, which was only apparent after 15 h of treatment. The delayed reduction in MLKL protein abundance was unlikely to completely account for defective necroptosis, and, consistent with this, we also found inhibition of HSP90 blocked membrane translocation of activated MLKL. Together, these findings implicate HSP90 as a modulator of necroptosis at the level of MLKL, a function that complements HSP90's previously demonstrated modulation of the upstream necroptosis effector kinases, RIPK1 and RIPK3.
Collapse
|
30
|
Woodford MR, Dunn D, Miller JB, Jamal S, Neckers L, Mollapour M. Impact of Posttranslational Modifications on the Anticancer Activity of Hsp90 Inhibitors. Adv Cancer Res 2015; 129:31-50. [PMID: 26916000 DOI: 10.1016/bs.acr.2015.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Molecular chaperones are essential for guarding proteins that are indispensable for normal cellular functions. Heat shock protein 90 (Hsp90) is a vital molecular chaperone in eukaryotes that participates in stabilizing and activating approximately 200 target proteins, called "clients," many of which are involved in signal transduction pathways. Cancer cells however utilize Hsp90 to chaperone an array of mutated and overexpressed oncoproteins to protect them from misfolding and degradation. Therefore, Hsp90 is an attractive target in cancer therapy. Hsp90 chaperone function relies on ATP binding and hydrolysis, which in turn guides its carefully orchestrated conformational changes. This chaperone cycle is fine-tuned by another group of proteins called co-chaperones. They are able to accelerate or decelerate the cycle, allowing Hsp90 to chaperone different clients. Posttranslational modifications (PTMs) can also regulate the chaperone cycle at an epigenetic level thereby tailoring Hsp90 function to suit a specific cell type or environmental condition. Recent evidence suggests that inhibition of the enzymes that catalyze the PTM of Hsp90 can act synergistically with Hsp90 inhibitors, providing a novel therapeutic strategy to enhance the efficacy of Hsp90 inhibitors in cancer cells.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Diana Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA; Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonelle B Miller
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sami Jamal
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA; Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
31
|
Abstract
Hsp90 chaperones receive much attention due to their role in cancer and other pathological conditions, and a tremendous effort of many laboratories has contributed in the past decades to considerable progress in the understanding of their functions. Hsp90 chaperones exist as dimers and, with the help of cochaperones, promote the folding of numerous client proteins. Although the original view of these interactions suggested that these dimeric complexes were symmetrical, it is now clear that many features are asymmetrical. In this review we discuss several recent advances that highlight how asymmetric interactions with cochaperones as well as asymmetric posttranslational modifications provide mechanisms to regulate client interactions and the progression through Hsp90's chaperone cycle.
Collapse
Affiliation(s)
- Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Wang S, Lu XA, Liu P, Fu Y, Jia L, Zhan S, Luo Y. Endostatin has ATPase activity, which mediates its antiangiogenic and antitumor activities. Mol Cancer Ther 2015; 14:1192-201. [PMID: 25788476 DOI: 10.1158/1535-7163.mct-14-0836] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/11/2015] [Indexed: 11/16/2022]
Abstract
Endostatin is an endogenous angiogenesis inhibitor with broad-spectrum antitumor activities. Although the molecular mechanisms of endostatin have been extensively explored, the intrinsic biochemical characteristics of endostatin are not completely understood. Here, we revealed for the first time that endostatin embedded novel ATPase activity. Moreover, mutagenesis study showed that the ATPase activity of endostatin mutants positively correlated with effects on endothelial cell activities and tumor growth. E-M, an endostatin mutant with higher ATPase activity than that of wild-type (WT) endostatin, significantly increased endostatin-mediated inhibitory effects on endothelial cell proliferation, migration, tube formation, and adhesion. In vivo study showed that E-M displayed enhanced antitumor effects compared with WT. On the other hand, K96A, K96R, and E176A, endostatin mutants with lower ATPase activities than that of WT, showed reduced or comparable effects on targeting both in vitro endothelial cell activities and in vivo tumor angiogenesis and tumor growth. Furthermore, endostatin and its mutants exhibited distinct abilities in regulations of gene expression (Id1, Id3), cell signaling (Erk, p38, and Src phosphorylation), and intracellular ATP levels. Collectively, our study demonstrates that endostatin has novel ATPase activity, which mediates its antiangiogenic and antitumor activities, suggesting that construction of endostatin analogues with high ATPase activity may provide a new direction for the development of more potent antiangiogenic drugs.
Collapse
Affiliation(s)
- Shan Wang
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin-An Lu
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Liu
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Jia
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shunli Zhan
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Beijing Key Laboratory for Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China. Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
The Hsp90 ensemble: coordinated Hsp90–cochaperone complexes regulate diverse cellular processes. Nat Struct Mol Biol 2014; 21:1017-21. [DOI: 10.1038/nsmb.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|