1
|
Beaumel S, Verbrugge L, Fieschi F, Stasia MJ. CRISPR-gene-engineered CYBB knock-out PLB-985 cells, a useful model to study functional impact of X-linked chronic granulomatous disease mutations: application to the G412E X91+-CGD mutation. Clin Exp Immunol 2023; 212:156-165. [PMID: 36827093 PMCID: PMC10128165 DOI: 10.1093/cei/uxad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Lucile Verbrugge
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
2
|
Sun B, Zhu Z, Hui X, Sun J, Wang W, Ying W, Zhou Q, Yao H, Hou J, Wang X. Variant Type X91 + Chronic Granulomatous Disease: Clinical and Molecular Characterization in a Chinese Cohort. J Clin Immunol 2022; 42:1564-1579. [PMID: 35796921 DOI: 10.1007/s10875-022-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE We aimed to report the clinical and immunological characteristics of variant type X91+ chronic granulomatous disease (CGD) in a Chinese cohort. METHODS The clinical manifestations and immunological phenotypes of patients with X91+ CGD were collected. A dihydrorhodamine (DHR) analysis was performed to evaluate neutrophil function. Gp91phox protein expression was determined using extracellular staining with the monoclonal antibody (mAb) 7D5 and flow cytometry. RESULTS Patients with X91+ CGD accounted for 8% (7/85) of all patients with CGD. The median age of onset in the seven patients with X91+ CGD was 4 months. Six patients received the BCG vaccine, and 50% (3/6) had probable BCG infections. Mycobacterium tuberculosis infection was prominent. The most common sites of infection were the lung (6/7), lymph nodes (5/7), and soft tissue (3/7). Two patients experienced recurrent oral ulcers. The stimulation index (SI) of the patients with X91+ CGD ranged widely from 1.9 to 67.3. The difference in the SI among the three groups of patients (X91+ CGD, X91- CGD, and X910 CGD) was statistically significant (P = 0.0071). The three groups showed no significant differences in onset age, diagnosis age, or severe infection frequency. CYBB mutations associated with X91+ CGD were commonly located in the second transmembrane or intracellular regions. Three novel X91+ CGD-related mutations (c.1462-2 A > T, c.1243C > T, and c.925G > A) were identified. CONCLUSIONS Variant type X91+ CGD may result in varied clinical manifestations. Moreover, the laboratory findings might indicate a moderate neutrophil SI. We should deepen our understanding of variant X91+ CGD to prevent missed diagnoses.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Zeyu Zhu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.,Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Department of Pediatrics, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China. .,Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
| |
Collapse
|
3
|
Randzavola LO, Mortimer PM, Garside E, Dufficy ER, Schejtman A, Roumelioti G, Yu L, Pardo M, Spirohn K, Tolley C, Brandt C, Harcourt K, Nichols E, Nahorski M, Woods G, Williamson JC, Suresh S, Sowerby JM, Matsumoto M, Santos CXC, Kiar CS, Mukhopadhyay S, Rae WM, Dougan GJ, Grainger J, Lehner PJ, Calderwood MA, Choudhary J, Clare S, Speak A, Santilli G, Bateman A, Smith KGC, Magnani F, Thomas DC. EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling. eLife 2022; 11:76387. [PMID: 36421765 PMCID: PMC9767466 DOI: 10.7554/elife.76387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.
Collapse
Affiliation(s)
- Lyra O Randzavola
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Paige M Mortimer
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Emma Garside
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth R Dufficy
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - Andrea Schejtman
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Georgia Roumelioti
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Lu Yu
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Mercedes Pardo
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | | | | | | | - Esme Nichols
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Mike Nahorski
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Geoff Woods
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Shreehari Suresh
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Celio XC Santos
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College LondonLondonUnited Kingdom
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - William M Rae
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Gordon J Dougan
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John Grainger
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Paul J Lehner
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | - Jyoti Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Simon Clare
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | | | - Giorgia Santilli
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome CampusHinxtonUnited Kingdom
| | - Kenneth GC Smith
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of PaviaPaviaItaly
| | - David C Thomas
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Terzi A, Roeder H, Weaver CJ, Suter DM. Neuronal NADPH oxidase 2 regulates growth cone guidance downstream of slit2/robo2. Dev Neurobiol 2020; 81:3-21. [PMID: 33191581 DOI: 10.1002/dneu.22791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
NADPH oxidases (Nox) are membrane-bound multi-subunit protein complexes producing reactive oxygen species (ROS) that regulate many cellular processes. Emerging evidence suggests that Nox-derived ROS also control neuronal development and axonal outgrowth. However, whether Nox act downstream of receptors for axonal growth and guidance cues is presently unknown. To answer this question, we cultured retinal ganglion cells (RGCs) derived from zebrafish embryos and exposed these neurons to netrin-1, slit2, and brain-derived neurotrophic factor (BDNF). To test the role of Nox in cue-mediated growth and guidance, we either pharmacologically inhibited Nox or investigated neurons from mutant fish that are deficient in Nox2. We found that slit2-mediated growth cone collapse, and axonal retraction were eliminated by Nox inhibition. Though we did not see an effect of either BDNF or netrin-1 on growth rates, growth in the presence of netrin-1 was reduced by Nox inhibition. Furthermore, attractive and repulsive growth cone turning in response to gradients of BDNF, netrin-1, and slit2, respectively, were eliminated when Nox was inhibited in vitro. ROS biosensor imaging showed that slit2 treatment increased growth cone hydrogen peroxide levels via mechanisms involving Nox2 activation. We also investigated the possible relationship between Nox2 and slit2/Robo2 signaling in vivo. astray/nox2 double heterozygote larvae exhibited decreased area of tectal innervation as compared to individual heterozygotes, suggesting both Nox2 and Robo2 are required for establishment of retinotectal connections. Our results provide evidence that Nox2 acts downstream of slit2/Robo2 by mediating growth and guidance of developing zebrafish RGC neurons.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Haley Roeder
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Cory J Weaver
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Mollin M, Beaumel S, Vigne B, Brault J, Roux-Buisson N, Rendu J, Barlogis V, Catho G, Dumeril C, Fouyssac F, Monnier D, Gandemer V, Revest M, Brion JP, Bost-Bru C, Jeziorski E, Eitenschenck L, Jarrasse C, Drillon Haus S, Houachée-Chardin M, Hancart M, Michel G, Bertrand Y, Plantaz D, Kelecic J, Traberg R, Kainulainen L, Fauré J, Fieschi F, Stasia MJ. Clinical, functional and genetic characterization of 16 patients suffering from chronic granulomatous disease variants - identification of 11 novel mutations in CYBB. Clin Exp Immunol 2020; 203:247-266. [PMID: 32954498 DOI: 10.1111/cei.13520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The most common form is the X-linked CGD (X91-CGD), caused by mutations in the CYBB gene. Clinical, functional and genetic characterizations of 16 CGD cases of male patients and their relatives were performed. We classified them as suffering from different variants of CGD (X910 , X91- or X91+ ), according to NADPH oxidase 2 (NOX2) expression and NADPH oxidase activity in neutrophils. Eleven mutations were novel (nine X910 -CGD and two X91- -CGD). One X910 -CGD was due to a new and extremely rare double missense mutation Thr208Arg-Thr503Ile. We investigated the pathological impact of each single mutation using stable transfection of each mutated cDNA in the NOX2 knock-out PLB-985 cell line. Both mutations leading to X91- -CGD were also novel; one deletion, c.-67delT, was localized in the promoter region of CYBB; the second c.253-1879A>G mutation activates a splicing donor site, which unveils a cryptic acceptor site leading to the inclusion of a 124-nucleotide pseudo-exon between exons 3 and 4 and responsible for the partial loss of NOX2 expression. Both X91- -CGD mutations were characterized by a low cytochrome b558 expression and a faint NADPH oxidase activity. The functional impact of new missense mutations is discussed in the context of a new three-dimensional model of the dehydrogenase domain of NOX2. Our study demonstrates that low NADPH oxidase activity found in both X91- -CGD patients correlates with mild clinical forms of CGD, whereas X910 -CGD and X91+ -CGD cases remain the most clinically severe forms.
Collapse
Affiliation(s)
- M Mollin
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - S Beaumel
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - B Vigne
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - J Brault
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - N Roux-Buisson
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - J Rendu
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - V Barlogis
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - G Catho
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - C Dumeril
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - F Fouyssac
- Département d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - D Monnier
- Laboratoire d'Immunologie Cellulaire, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - V Gandemer
- Service d'Onco-hématologie Pédiatrique, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - M Revest
- Service des Maladies Infectieuses et Réanimation Médicale, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - J-P Brion
- Pôle Médecine Aigue et Communautaire, Service d'Infectiologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - C Bost-Bru
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - E Jeziorski
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - L Eitenschenck
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - C Jarrasse
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - S Drillon Haus
- Service de Pédiatrie et Onco-hématologie, Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - M Houachée-Chardin
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - M Hancart
- Département Urgences Post-urgences, CHU Montpellier, Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - G Michel
- Service de Pédiatrie et Hématologie Pédiatrique, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - Y Bertrand
- Institut d'Hématologie et d'Oncologie Pédiatrique, Hospices Civiles de Lyon, Lyon, France
| | - D Plantaz
- Département de Pédiatrie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - J Kelecic
- Klinicki Bolnicki Centar Zagreb, Zagreb, Croatia
| | - R Traberg
- Hospital of Lithuanian University of Health Sciences, Kauno Klinikos, Kaunas, Lithuania
| | - L Kainulainen
- Department of Pediatrics, University Hospital of Turku, Turku, Finland.,Faculty of Medicine Turku, University of Turku, Turku, Finland
| | - J Fauré
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France.,Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm U1216, Grenoble, France
| | - F Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| | - M J Stasia
- Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, CGD Diagnosis and Research Centre (CDiReC), Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38044, Grenoble, France
| |
Collapse
|
6
|
Abstract
Structure-function analysis of specific regions of NOX2 can be carried out after stable expression of site-directed mutagenesis-modified NOX2 in the X0-CGD PLB-985 cell model. Indeed, the generation of this human cellular model by Prof. MC Dinauer's team gave researchers the opportunity to gain a deeper understanding of functional regions of NOX2. With this model cell line, the functional impact of X+-CGD or of new mutations in NOX2 can be highlighted, as the biological material is not limited. PLB-985 cells transfected with various NOX2 mutations can be easily cultured and differentiated into neutrophils or monocytes/macrophages. Several measurements in intact mutated NOX2 PLB-985 cells can be carried out such as NOX2 expression, cytochrome b 558 spectrum, enzymatic activity, and assembly of the NADPH oxidase complex. Purified membranes or purified cytochrome b 558 from mutated NOX2 PLB-985 cells can be used for the study of the impact of specific mutations on NADPH oxidase or diaphorase activity, FAD incorporation, and NADPH or NADH binding in a cell-free assay system. Here, we describe a method to generate mutated NOX2 PLB-985 cells in order to analyze NOX2 structure-function relationships.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France
| | - Marie José Stasia
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
7
|
O'Neill S, Mathis M, Kovačič L, Zhang S, Reinhardt J, Scholz D, Schopfer U, Bouhelal R, Knaus UG. Quantitative interaction analysis permits molecular insights into functional NOX4 NADPH oxidase heterodimer assembly. J Biol Chem 2018; 293:8750-8760. [PMID: 29674345 DOI: 10.1074/jbc.ra117.001045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Protein-protein interactions critically regulate many biological systems, but quantifying functional assembly of multipass membrane complexes in their native context is still challenging. Here, we combined modeling-assisted protein modification and information from human disease variants with a minimal-size fusion tag, split-luciferase-based approach to probe assembly of the NADPH oxidase 4 (NOX4)-p22phox enzyme, an integral membrane complex with unresolved structure, which is required for electron transfer and generation of reactive oxygen species (ROS). Integrated analyses of heterodimerization, trafficking, and catalytic activity identified determinants for the NOX4-p22phox interaction, such as heme incorporation into NOX4 and hot spot residues in transmembrane domains 1 and 4 in p22phox Moreover, their effect on NOX4 maturation and ROS generation was analyzed. We propose that this reversible and quantitative protein-protein interaction technique with its small split-fragment approach will provide a protein engineering and discovery tool not only for NOX research, but also for other intricate membrane protein complexes, and may thereby facilitate new drug discovery strategies for managing NOX-associated diseases.
Collapse
Affiliation(s)
- Sharon O'Neill
- From the Conway Institute and.,School of Medicine, University College Dublin, Dublin 4, Ireland and
| | - Magalie Mathis
- the Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Lidija Kovačič
- From the Conway Institute and.,School of Medicine, University College Dublin, Dublin 4, Ireland and
| | - Suisheng Zhang
- From the Conway Institute and.,School of Medicine, University College Dublin, Dublin 4, Ireland and
| | - Jürgen Reinhardt
- the Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | - Ulrich Schopfer
- the Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Rochdi Bouhelal
- the Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Ulla G Knaus
- From the Conway Institute and .,School of Medicine, University College Dublin, Dublin 4, Ireland and
| |
Collapse
|
8
|
Prieto-Bermejo R, Hernández-Hernández A. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Antioxidants (Basel) 2017; 6:antiox6020032. [PMID: 28505091 PMCID: PMC5488012 DOI: 10.3390/antiox6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells have to cope with the constant generation of reactive oxygen species (ROS). Although the excessive production of ROS might be deleterious for cell biology, there is a plethora of evidence showing that moderate levels of ROS are important for the control of cell signaling and gene expression. The family of the nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases or Nox) has evolved to produce ROS in response to different signals; therefore, they fulfil a central role in the control of redox signaling. The role of NADPH oxidases in vascular physiology has been a field of intense study over the last two decades. In this review we will briefly analyze how ROS can regulate signaling and gene expression. We will address the implication of NADPH oxidases and redox signaling in angiogenesis, and finally, the therapeutic possibilities derived from this knowledge will be discussed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|
9
|
Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 2017; 12:2161-2177. [PMID: 28356734 PMCID: PMC5367562 DOI: 10.2147/ijn.s128611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency due to dysfunction of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex leading to severe and recurrent infections in early childhood. The main genetic form is the X-linked CGD leading to the absence of cytochrome b558 composed of NOX2 and p22phox, the membrane partners of the NADPH oxidase complex. The first cause of death of CGD patients is pulmonary infections. Recombinant proteoliposome-based therapy is an emerging and innovative approach for membrane protein delivery, which could be an alternative local, targeted treatment to fight lung infections in CGD patients. We developed an enzyme therapy using recombinant NOX2/p22phox liposomes to supply the NADPH oxidase activity in X0-linked CGD (X0-CGD) macrophages. Using an optimized prokaryotic cell-free protein synthesis system, a recombinant cytochrome b558 containing functional hemes was produced and directly inserted into the lipid bilayer of specific liposomes. The size of the NOX2/p22phox liposomes was estimated to be around 700 nm. These proteoliposomes were able to generate reactive oxygen species (ROS) in an activated reconstituted cell-free NADPH oxidase activation assay in the presence of recombinant p47phox, p67phox and Rac, the cytosolic components of the NADPH oxidase complex. Furthermore, using flow cytometry and fluorescence microscopy, we demonstrated that cytochrome b558 was successfully delivered to the plasma membrane of X0-CGD-induced pluripotent stem cell (iPSC)-derived macrophages. In addition, NADPH oxidase activity was restored in X0-CGD iPSC-derived macrophages treated with NOX2/p22phox liposomes for 8 h without any toxicity. In conclusion, we confirmed that proteoliposomes provide a new promising technology for the delivery of functional proteins to the membrane of targeted cells. This efficient liposomal enzyme replacement therapy will be useful for future treatment of pulmonary infections in CGD patients refractory to conventional anti-infectious treatments.
Collapse
Affiliation(s)
- Julie Brault
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| | | | - Aline Le Roy
- IBS, University of Grenoble Alpes, Grenoble, France; CNRS, IBS, University Grenoble Alpes, Grenoble, France; CEA, IBS, University of Grenoble Alpes, Grenoble, France
| | | | | | - Marie José Stasia
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Ezzine A, Souabni H, Machillot P, Bizouarn T, Baciou L. Relationship between p22 phox expression, tag position and oxidase activity of the heterologous NADPH oxidase expressed in Pichia pastoris. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene 2016; 586:27-35. [PMID: 27048830 DOI: 10.1016/j.gene.2016.03.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 12/31/2022]
Abstract
P22(phox) is a ubiquitous protein encoded by the CYBA gene located on the long arm of chromosome 16 at position 24, containing six exons and spanning 8.5 kb. P22(phox) is a critical component of the superoxide-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). It is associated with NOX2 to form cytochrome b558 expressed mainly in phagocytes and responsible for the killing of microorganisms when bacterial and fungal infections occur. CYBA mutations lead to one of the autosomal recessive forms of chronic granulomatous disease (AR22(0)CGD) clinically characterized by recurrent and severe infections in early childhood. However, p22(phox) is also the partner of NOX1, NOX3 and NOX4, but not NOX5, which are analogs of NOX2, the first identified member of the NOX family. P22(phox)-NOX complexes have emerged as one of the most relevant sources of reactive oxygen species (ROS) in tissues and cells, and are associated with several diseases such as cardiovascular and cerebrovascular diseases. The p22(phox)-deficient mouse strain nmf333 has made it possible to highlight the role of p22(phox) in the control of inner ear balance in association with NOX3. However, the relevance of p22(phox) for NOX3 function remains uncertain because AR22(0)CGD patients do not suffer from vestibular dysfunction. Finally, a large number of genetic variations of CYBA have been reported, among them the C242T polymorphism, which has been extensively studied in association with coronary artery and heart diseases, but conflicting results continue to be reported.
Collapse
|
12
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|