1
|
Major J, Crotta S, Finsterbusch K, Chakravarty P, Shah K, Frederico B, D'Antuono R, Green M, Meader L, Suarez-Bonnet A, Priestnall S, Stockinger B, Wack A. Endothelial AHR activity prevents lung barrier disruption in viral infection. Nature 2023; 621:813-820. [PMID: 37587341 PMCID: PMC7615136 DOI: 10.1038/s41586-023-06287-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/06/2023] [Indexed: 08/18/2023]
Abstract
Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.
Collapse
Affiliation(s)
- Jack Major
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
- Laboratory of Epithelial Barrier Immunity, New York University Langone Health, New York, NY, USA.
| | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | | | - Kathleen Shah
- AhRimmunity Laboratory, Francis Crick Institute, London, UK
- Immunology Research Unit, GSK, Stevenage, UK
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, London, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Mary Green
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Lucy Meader
- Experimental Histopathology, Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Simon Priestnall
- Experimental Histopathology, Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | | | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Wiggins BG, Wang YF, Burke A, Grunberg N, Vlachaki Walker JM, Dore M, Chahrour C, Pennycook BR, Sanchez-Garrido J, Vernia S, Barr AR, Frankel G, Birdsey GM, Randi AM, Schiering C. Endothelial sensing of AHR ligands regulates intestinal homeostasis. Nature 2023; 621:821-829. [PMID: 37586410 PMCID: PMC10533400 DOI: 10.1038/s41586-023-06508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.
Collapse
Affiliation(s)
- Benjamin G Wiggins
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
| | - Alice Burke
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Nil Grunberg
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Julia M Vlachaki Walker
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences, London, UK
| | | | - Betheney R Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Santiago Vernia
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Alexis R Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, London, UK
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Chris Schiering
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
3
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
4
|
Rojas IY, Moyer BJ, Ringelberg CS, Tomlinson CR. Reversal of obesity and liver steatosis in mice via inhibition of aryl hydrocarbon receptor and altered gene expression of CYP1B1, PPARα, SCD1, and osteopontin. Int J Obes (Lond) 2020; 44:948-963. [PMID: 31911663 PMCID: PMC7103522 DOI: 10.1038/s41366-019-0512-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a global epidemic and the underlying basis for numerous comorbidities. We report that the aryl hydrocarbon receptor (AHR) plays a key role in the metabolism of obesity. The AHR is a promiscuous, ligand-activated nuclear receptor primarily known for regulating genes involved in xenobiotic metabolism and T cell polarization. The aims of the work reported here were to understand the underlying mechanism of AHR-based obesity and to determine whether inhibition of AHR activity would reverse obesity. METHODS Mice were fed control (low fat) and Western (high fat) diets with and without the AHR antagonist alpha-naphthoflavone (aNF). Gene expression of identified AHR-regulated genes from liver and adipose tissue was characterized. To determine the role of the AHR in obesity reversal, selected mice in control and Western diet regimens were switched at midpoint to the respective control and Western diets containing aNF, and the identified AHR-regulated genes characterized. RESULTS AHR inhibition prevented obesity in mice on a 40-week diet regimen. The likely AHR-regulated and cross-regulated downstream effectors of AHR-based obesity were shown to be CYP1B1, PPARα-target genes, SCD1, and SPP1 (osteopontin). Western diet caused an increase of mRNA and protein expression of the Cyp1b1, Scd1, and Spp1, and PPARα-target genes in the liver, and inhibition of the AHR maintained expression of these genes near control levels. The body weight of obese mice on Western diet switched to Western diet containing aNF decreased to that of mice on control diet concurrently with a reduction in the expression of liver CYP1B1, PPARα-target genes, SCD1, and SPP1. AHR inhibition prevented hypertrophy and hyperplasia in visceral adipose tissue and limited expression levels of CYP1B1 and SPP1 to that of mice on control diet. CONCLUSIONS AHR inhibition prevents and reverses obesity by likely reducing liver expression of the Cyp1b1, Scd1, Spp1, and PPARα-target genes; and the AHR is a potentially potent therapeutic target for the treatment and prevention of obesity and linked diseases.
Collapse
Affiliation(s)
- Itzel Y Rojas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Tufts University School of Medicine, 711 Washington Street, Boston, MA, 02111, USA
| | - Benjamin J Moyer
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Carol S Ringelberg
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
5
|
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020; 578:284-289. [PMID: 32025031 DOI: 10.1038/s41586-020-1975-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.
Collapse
Affiliation(s)
| | | | | | | | - Candice Fung
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | - Mercedes Gomez de Agüero
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Vanden Berghe
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Andrew J Macpherson
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
6
|
Hessel-Pras S, Braeuning A, Guenther G, Adawy A, Enge AM, Ebmeyer J, Henderson CJ, Hengstler JG, Lampen A, Reif R. The pyrrolizidine alkaloid senecionine induces CYP-dependent destruction of sinusoidal endothelial cells and cholestasis in mice. Arch Toxicol 2020; 94:219-229. [PMID: 31606820 DOI: 10.1007/s00204-019-02582-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are widely occurring phytotoxins which can induce severe liver damage in humans and other mammalian species by mechanisms that are not fully understood. Therefore, we investigated the development of PA hepatotoxicity in vivo, using an acutely toxic dose of the PA senecionine in mice, in combination with intravital two-photon microscopy, histology, clinical chemistry, and in vitro experiments with primary mouse hepatocytes and liver sinusoidal endothelial cells (LSECs). We observed pericentral LSEC necrosis together with elevated sinusoidal marker proteins in the serum of senecionine-treated mice and increased sinusoidal platelet aggregation in the damaged tissue regions. In vitro experiments showed no cytotoxicity to freshly isolated LSECs up to 500 µM senecionine. However, metabolic activation of senecionine by preincubation with primary mouse hepatocytes increased the cytotoxicity to cultivated LSECs with an EC50 of approximately 22 µM. The cytochrome P450 (CYP)-dependency of senecionine bioactivation was confirmed in CYP reductase-deficient mice where no PA-induced hepatotoxicity was observed. Therefore, toxic metabolites of senecionine are generated by hepatic CYPs, and may be partially released from hepatocytes leading to destruction of LSECs in the pericentral region of the liver lobules. Analysis of hepatic bile salt transport by intravital two-photon imaging revealed a delayed uptake of a fluorescent bile salt analogue from the hepatic sinusoids into hepatocytes and delayed elimination. This was accompanied by transcriptional deregulation of hepatic bile salt transporters like Abcb11 or Abcc1. In conclusion, senecionine destroys LSECs although the toxic metabolite is formed in a CYP-dependent manner in the adjacent pericentral hepatocytes.
Collapse
Affiliation(s)
- Stefanie Hessel-Pras
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, Germany.
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, Germany
| | - Georgia Guenther
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Alshaimaa Adawy
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Anne-Margarethe Enge
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, Germany
| | - Johanna Ebmeyer
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, Germany
| | - Colin J Henderson
- Systems Medicine, Jacqui Wood Cancer Centre, University of Dundee, School of Medicine, James Arrott Drive, Ninewells Hospital, Dundee, UK
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin, Germany
| | - Raymond Reif
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| |
Collapse
|
7
|
Jie M, Lin H, He Z, Liu H, Li H, Lin JM. An on-chip intestine-liver model for multiple drugs absorption and metabolism behavior simulation. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik AJ, Omenetti S, Henderson CJ, Wolf CR, Nebert DW, Stockinger B. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017; 542:242-245. [PMID: 28146477 PMCID: PMC5302159 DOI: 10.1038/nature21080] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023]
Abstract
The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation.
Collapse
Affiliation(s)
| | - Emma Wincent
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | - Alexandre J Potocnik
- Institute of Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | | | - Colin J Henderson
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - C Roland Wolf
- Dundee University School of Medicine, Division of Cancer Research, Dundee, UK
| | - Daniel W Nebert
- University of Cincinnati, Department of Environmental Health, Cincinnati, Ohio, USA
| | | |
Collapse
|
9
|
Villa M, Gialitakis M, Tolaini M, Ahlfors H, Henderson CJ, Wolf CR, Brink R, Stockinger B. Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J 2017; 36:116-128. [PMID: 27875245 PMCID: PMC5210087 DOI: 10.15252/embj.201695027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up-regulated upon B-cell receptor (BCR) engagement and IL-4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR-deficient (Ahr-/-) B cells proliferate less than AhR-sufficient (Ahr+/+) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr-/- B cells are outcompeted by Ahr+/+ cells. Transcriptome comparison of AhR-deficient and AhR-sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency.
Collapse
Affiliation(s)
- Matteo Villa
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | | | - Mauro Tolaini
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Helena Ahlfors
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Colin J Henderson
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - C Roland Wolf
- Division of Cancer Research, University of Dundee Ninewells Hospital and Medical School, Dundee, UK
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Henderson CJ, McLaughlin LA, Scheer N, Stanley LA, Wolf CR. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo. Mol Pharmacol 2015; 87:733-9. [PMID: 25657337 DOI: 10.1124/mol.114.097394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.
Collapse
Affiliation(s)
- Colin J Henderson
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Lesley A McLaughlin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Nico Scheer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Lesley A Stanley
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| |
Collapse
|