1
|
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov 2021; 16:709-718. [PMID: 33356639 DOI: 10.1080/17460441.2021.1858792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular calcium (Ca2+) release channels located on the endoplasmic/sarcoplasmic reticulum. The availability of the structure of the ligand-binding domain of IP3Rs has enabled the design of compatible ligands, but the limiting step remains their actual effectiveness in a biological context.Areas covered: This article summarizes the compelling literature on both agonists and antagonists targeting IP3Rs, emphasizing their strengths and limitations. The main challenges toward the discovery and development of IP3 receptor modulators are also described.Expert opinion: Despite significant progress in recent years, the pharmacology of IP3R still has major drawbacks, especially concerning the availability of specific antag onists. Moreover, drugs specifically targeting the three different subtypes of IP3R are especially needed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| | - Marco B Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Vanessa Castellanos
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Pasquale Mone
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| |
Collapse
|
2
|
Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019; 80:103-111. [PMID: 30999216 DOI: 10.1016/j.ceca.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.
Collapse
Affiliation(s)
- Iulia Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
3
|
Saleem H, Tovey SC, Molinski TF, Taylor CW. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol 2014; 171:3298-312. [PMID: 24628114 PMCID: PMC4080982 DOI: 10.1111/bph.12685] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca(2+) channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood. EXPERIMENTAL APPROACH IP3-evoked Ca(2+) release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca(2+) indicator. The effects of commonly used antagonists on IP3-evoked Ca(2+) release and (3) H-IP3 binding were characterized. KEY RESULTS Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca(2+) release via any IP3R subtype. CONCLUSIONS AND IMPLICATIONS Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs.
Collapse
Affiliation(s)
- Huma Saleem
- Department of Pharmacology, University of CambridgeCambridge, UK
| | - Stephen C Tovey
- Department of Pharmacology, University of CambridgeCambridge, UK
| | | | - Colin W Taylor
- Department of Pharmacology, University of CambridgeCambridge, UK
| |
Collapse
|
4
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
5
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
6
|
Vargas R, Cifuentes F, Morales M. Role of presynaptic and postsynaptic IP3-dependent intracellular calcium release in long-term potentiation in sympathetic ganglion of the rat. Synapse 2010; 65:441-8. [DOI: 10.1002/syn.20862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/16/2010] [Indexed: 01/21/2023]
|
7
|
Bai Y, Edelmann M, Sanderson MJ. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L347-61. [PMID: 19465516 DOI: 10.1152/ajplung.90559.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative contribution of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) and ryanodine receptors (RyRs) to agonist-induced Ca(2+) signaling in mouse airway smooth muscle cells (SMCs) was investigated in lung slices with phase-contrast or laser scanning microscopy. At room temperature (RT), methacholine (MCh) or 5-hydroxytryptamine (5-HT) induced Ca(2+) oscillations and an associated contraction in small airway SMCs. The subsequent exposure to an IP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB), inhibited the Ca(2+) oscillations and induced airway relaxation in a concentration-dependent manner. 2-APB also inhibited Ca(2+) waves generated by the photolytic release of IP(3). However, the RyR antagonist ryanodine had no significant effect, at any concentration, on airway contraction or agonist- or IP(3)-induced Ca(2+) oscillations or Ca(2+) wave propagation. By contrast, a second RyR antagonist, tetracaine, relaxed agonist-contracted airways and inhibited agonist-induced Ca(2+) oscillations in a concentration-dependent manner. However, tetracaine did not affect IP(3)-induced Ca(2+) release or wave propagation nor the Ca(2+) content of SMC Ca(2+) stores as evaluated by Ca(2+)-release induced by caffeine. Conversely, both ryanodine and tetracaine completely blocked agonist-independent slow Ca(2+) oscillations induced by KCl. The inhibitory effects of 2-APB and absence of an effect of ryanodine on MCh-induced airway contraction or Ca(2+) oscillations of SMCs were also observed at 37 degrees C. In Ca(2+)-permeable SMCs, tetracaine inhibited agonist-induced contraction without affecting intracellular Ca(2+) levels indicating that relaxation also resulted from a reduction in Ca(2+) sensitivity. These results indicate that agonist-induced Ca(2+) oscillations in mouse small airway SMCs are primary mediated via IP(3)Rs and that tetracaine induces relaxation by both decreasing Ca(2+) sensitivity and inhibiting agonist-induced Ca(2+) oscillations via an IP(3)-dependent mechanism.
Collapse
Affiliation(s)
- Yan Bai
- Dept. of Physiology, Univ. of Massachusetts Medical School, Worcester, 01655, USA
| | | | | |
Collapse
|
8
|
Tunçel N, Sener E, Cerit C, Karasu U, Gürer F, Sahintürk V, Bayçu C, Ak D, Filiz Z. Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson's disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 2005; 26:827-36. [PMID: 15808913 DOI: 10.1016/j.peptides.2004.12.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 12/31/2022]
Abstract
In the present study, the effect of systemically administered vasoactive intestinal peptide (VIP) (25 ng/kg i.p.) was investigated on drug-induced rotational behavior, extra-cellular dopamine levels and histology of corpus striatum in a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. After 15 days of 6-OHDA lesion, apomorphine-induced (0.05 mg/kg s.c.) rotational behavior of the animals significantly increased and extra-cellular dopamine levels of corpus striatum were significantly reduced. VIP reversed the rotational deficits but did not alter the decrease in striatal dopamine levels. On the other hand, histological data indicate that VIP significantly reduced neuronal death and demyelination. Electron microscopic appearance of mast cells showed ultra-structural variety between VIP-treated and 6-OHDA lesioned groups. VIP activates mast cells without any evidence of typical exocytosis, and possibly mast cells could participate in neuroprotection. Our results suggest that systemically administered VIP can attenuate the motor response changes, neuronal cell death, and myelin sheet loss characteristically associated with 12 microg 6-OHDA administration into the rat striatum. Brain mast cells seem to participate in neuronal protection. Possibly, protective cues could be produced by brain mast cells.
Collapse
Affiliation(s)
- Neşe Tunçel
- Osmangazi University, Medical Faculty, Physiology Department, 26480 Eskişehir, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang YT, Rosania GR, Chung SK. Inositol phospholipid pathway inhibitors and regulators Inositol phospholipid pathway inhibitors and regulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.1.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Abstract
The great majority of the sustained secretory response of adrenal chromaffin cells to histamine is due to extracellular Ca(2+) influx through voltage-operated Ca(2+) channels (VOCCs). This is likely to be true also for other G protein-coupled receptor (GPCR) agonists that evoke catecholamine secretion from these cells. However, the mechanism by which these GPCRs activate VOCCs is not yet clear. A substantial amount of data have established that histamine acts on H(1) receptors to activate phospholipase C via a Pertussis toxin-resistant G protein, causing the production of inositol 1,4,5-trisphosphate and the mobilisation of store Ca(2+); however, the molecular events that lead to the activation of the VOCCs remain undefined. This review will summarise the known actions of histamine on cellular signalling pathways in adrenal chromaffin cells and relate them to the activation of extracellular Ca(2+) influx through voltage-operated channels, which evokes catecholamine secretion. These actions provide insight into how other GPCRs might activate Ca(2+) influx in many excitable and non-excitable cells.
Collapse
Affiliation(s)
- Philip D Marley
- Department of Pharmacology, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
11
|
Buratta S, Andreoli V, Mambrini R, Iorio A, Porcellati S, Mozzi R. Serine base exchange enzyme in porcine lyophilised platelets: enzyme properties and modulation by AlF4- and different types of heparin. Mol Cell Biochem 2000; 203:177-84. [PMID: 10724347 DOI: 10.1023/a:1007019412944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phosphatidylserine is one of the PKC modulators and thus it may play an important role in signal transduction. Regulation of the synthesis of this phospholipid is not yet clarified. The contrasting reports are possibly related to the existence of different enzymes which, in mammalian tissues, catalyse the exchange between free serine and the nitrogen base of a membrane phospholipid. This study demonstrates that serine base exchange reactions of commercially available lyophilised porcine platelets exhibit similar pH optima, temperature and Ca2+ dependence as observed in fresh tissues. Analysis of fatty acids composition of the three phospholipid classes involved in base exchange reactions also demonstrated a similarity with fresh platelets. Serine and ethanolamine base exchange enzyme activities were assayed in parallel in platelet lysate subjected to preincubation at various temperatures (30-60 degrees C). When dithioerithrol was omitted from the incubation medium, the two base exchange reactions were inhibited with a similar temperature-dependent pattern. Addition of the reducing agent enhanced the sensitivity to preincubation only for the serine base exchange reaction which was inhibited by 80% after preincubation at 45 degrees C. With respect to its regulation, porcine platelet serine base exchange enzyme(s) was inhibited by fluoroalluminate, a widely used G-protein activator, and stimulated by unfractionated heparin. Low mol. wt. heparin did not influence enzyme activity. Unfractionated heparin greatly stimulated SBEE activity assayed at pH 7.4, a pH value far from the optimal pH.
Collapse
Affiliation(s)
- S Buratta
- Istituto di Biochimica e Chimica Medica, Universita' di Perugia, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Iversen PL, Cornish KG, Iversen LJ, Mata JE, Bylund DB. Bolus intravenous injection of phosphorothioate oligonucleotides causes hypotension by acting as alpha(1)-adrenergic receptor antagonists. Toxicol Appl Pharmacol 1999; 160:289-96. [PMID: 10544063 DOI: 10.1006/taap.1999.8771] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bolus intravenous injections of phosphorothioate oligonucleotides (PS-ODN) into primates cause profound hypotension, which has been attributed to complement activation, the biochemical pathway leading to acute inflammatory response. Because the hypotension was not accompanied by peripheral or pulmonary edema and epinephrine was not effective, but administration of 200 ml Ringer's lactate was effective, we examined the possibility that the 15-base PS-ODN interferes with sympathetic tone. We administered doses ranging from 3.3 to 10 mg/kg of a 15-base PS-ODN as a 30-60 s iv bolus into the right atrium of conscious Macaca mulatta. Blood pressure fell to 27 mm Hg following a 5.0 mg/kg dose, but no hypotension was observed after a 3.3 mg/kg dose; 10 mg/kg was lethal. Adrenergic receptor binding was evaluated in radioligand binding assays using rat cerebral cortex membranes with radiolabeled prazosin. The 15-base PS-ODN competes with prazosin for the alpha(1)-adrenergic receptor with an IC50 of 14 microM, which favors binding over serum albumin (K(d) = 37 to 48 microM). Admixing serum albumin with 5.0 mg/kg 15-base PS-ODN prior to injection prevented hypotension, suggesting that unbound PS-ODN interferes with sympathetic tone before binding to plasma proteins. Interactions of the 15-base PS-ODN with the alpha(1)-adrenergic receptor in vivo were confirmed by a decreased response to phenylephrine. Reducing the length from 15 to 9 or 5 bases abolished alpha(1)-adrenergic receptor binding in vitro and bolus infusion of 5.0 mg/kg of 9-base PS-ODN no longer produced hypotension. In conclusion, the 15-base PS-ODN shows cooperative binding to the alpha(1)-adrenergic receptor, which produces cardiovascular effects that are oligomer length, dose, and formulation dependent.
Collapse
Affiliation(s)
- P L Iversen
- Department of Pharmacology, University of Nebraska College of Medicine, 98620 Nebraska Medical Center, Omaha, Nebraska, 68198-6260, USA.
| | | | | | | | | |
Collapse
|
13
|
De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, Sorrentino V, Missiaen L. Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca(2+) pumps. Cell Calcium 1999; 26:9-13. [PMID: 10892566 DOI: 10.1054/ceca.1999.0047] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xestospongins, a group of macrocyclic bis-1-oxaquinolizidines isolated from the Australian sponge, Xestospongia species, are potent blockers of the inositol 1,4,5-trisphosphate (IP(3))-induced Ca2+ release in bi-directional Ca2+-flux conditions. We have now studied the effects of xestospongin C on the (45)Ca2+ uptake and the uni-directional (45)Ca2+ efflux in permeabilized A7r5 smooth-muscle cells. Xestospongin C not only inhibits the IP(3)-induced Ca2+ release, but is also an equally potent blocker of the endoplasmic-reticulum Ca2+ pump, while it has no effect on the passive Ca2+ leak. The inhibition of the IP(3) receptor did not depend on the IP(3), Ca2+ or ATP concentration. Xestospongin C can, therefore, not be considered as a selective blocker of IP(3) receptors.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium-Transporting ATPases/antagonists & inhibitors
- Cell Membrane Permeability/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/enzymology
- Inositol 1,4,5-Trisphosphate Receptors
- Macrocyclic Compounds
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxazoles/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- P De Smet
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg O/N, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taylor CW, Broad LM. Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls. Trends Pharmacol Sci 1998; 19:370-5. [PMID: 9786025 DOI: 10.1016/s0165-6147(98)01243-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex changes in intracellular Ca2+ concentration that follow cell stimulation reflect the concerted activities of Ca2+ channels in the plasma membrane and in the membranes of intracellular stores, and the opposing actions of the mechanisms that extrude Ca2+ from the cytosol. Disentangling the roles of each of these processes is hampered by the lack of adequately selective pharmacological tools. In this review, Colin Taylor and Lisa Broad summarize the more serious problems associated with some of the commonly used drugs, and describe specific situations in which the multiple effects of drugs on Ca2(+)-signalling pathways have confused analysis of these pathways.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, UK
| | | |
Collapse
|
15
|
Lambert C, Goudeau H, Franchet C, Lambert G, Goudeau M. Ascidian eggs block polyspermy by two independent mechanisms: one at the egg plasma membrane, the other involving the follicle cells. Mol Reprod Dev 1997; 48:137-43. [PMID: 9266770 DOI: 10.1002/(sici)1098-2795(199709)48:1<137::aid-mrd16>3.0.co;2-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many ascidians live in clumps and usually release sperm before the eggs. Consequently, eggs are often spawned into dense clouds of sperm. Because fertilization by more than a single sperm is lethal, ascidians have evolved at least two successive blocks to polyspermy: the rapid release of a glycosidase that inhibits sperm binding to the vitelline coat (VC) and a subsequent change in membrane potential that prevents supernumerary sperm-egg fusion. This paper shows that (1) these two blocks can be uncoupled by the use of suramin, and (2) most of the glycosidase appears to be from the follicle cells, which are accessory cells on the outside of the egg VC. Phallusia mammillata eggs initially bind numerous sperm but, after the glycosidase is released, only a few additional sperm bind. Intact eggs in 20 microM suramin release glycosidase, but the electrical response is inhibited; sperm swim actively and bind to the VC but fail to penetrate. Suramin treatment is completely reversible; intact eggs exhibit the electrical response an average of 11 minutes after the drug is washed out. Sperm must contact the follicle cells before passing through the VC; eggs with the VC removed and fertilized in the presence of 20 microM suramin show the electrical response 35% of the time, thus VC removal enhances sperm entry. Like the intact eggs, 100% of the naked eggs respond electrically to fertilization after the drug is washed out. Follicle cells that are isolated by calcium magnesium free seawater and then returned to complete seawater release N-acetylglucosaminidase activity in response to sperm. Thus, these eggs have two blocks to polyspermy that operate in sequence: an early first block resulting from enzymatic modification of the VC by N-acetylglucosaminidase released primarily from follicle cells and a second electrical block operating at the egg plasma membrane level and requiring sperm-egg fusion.
Collapse
Affiliation(s)
- C Lambert
- Department of Biological Science, California State University Fullerton, 92834-6850, USA.
| | | | | | | | | |
Collapse
|
16
|
Tordjmann T, Berthon B, Claret M, Combettes L. Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO J 1997; 16:5398-407. [PMID: 9311999 PMCID: PMC1170171 DOI: 10.1093/emboj/16.17.5398] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium-mobilizing agonists induce intracellular Ca2+ concentration ([Ca2+]i) changes thought to trigger cellular responses. In connected cells, rises in [Ca2+]i can propagate from cell to cell as intercellular Ca2+ waves, the mechanisms of which are not elucidated. Using fura2-loaded rat hepatocytes, we studied the mechanisms controlling coordination and intercellular propagation of noradrenaline-induced Ca2+ signals. Gap junction blockade with 18 alpha-glycyrrhetinic acid resulted in a loss of coordination between connected cells. We found that second messengers and [Ca2+]i rises in one hepatocyte cannot trigger Ca2+ responses in connected cells, suggesting that diffusion across gap junctions, while required for coordination, is not sufficient by itself for the propagation of intercellular Ca2+ waves. In addition, our experiments revealed functional differences between noradrenaline-induced Ca2+ signals in connected hepatocytes. These results demonstrate that intercellular Ca2+ signals in multicellular systems of rat hepatocytes are propagated and highly organized through complex mechanisms involving at least three factors. First, gap junction coupling ensures coordination of [Ca2+]i oscillations between the different cells; second, the presence of hormone at each hepatocyte is required for cell-cell Ca2+ signal propagation; and third, functional differences between adjacent connected hepatocytes could allow a 'pacemaker-like' intercellular spread of Ca2+ waves.
Collapse
Affiliation(s)
- T Tordjmann
- Unité de Recherche U.442, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, IFR-FR 46, Bat. 443, 91405 Orsay, France
| | | | | | | |
Collapse
|
17
|
Mozzi R, Andreoli V, Buratta S, Iorio A. Different mechanisms regulate phosphatidylserine synthesis in rat cerebral cortex. Mol Cell Biochem 1997; 168:41-9. [PMID: 9062892 DOI: 10.1023/a:1006826224004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transduction of extracellular signals through the membrane involves both the lipid and protein moiety. Phosphatidylserine participates to these processes as a cofactor for protein kinase C activity and thus the existence of a regulatory mechanism for its synthesis ought to be expected. In plasma membranes from rat cerebral cortex, the activity of serine base exchange enzyme, that is mainly responsible for phosphatidylserine synthesis in mammalian tissues, was reduced by the addition to the incubation mixture of AlF4- or GTP-gamma-S, known activators of G proteins, whereas ATP was almost uneffective. GTP-gamma-S inhibited the enzyme activity only at relatively high concentration (> 0.5 mM). When the synthesis of phosphatidylserine in the same cerebral area was investigated by measuring the incorporation of labelled serine into the phospholipid in the homogenate buffered at pH 7.6, ATP had an inhibitory effect as GTP-gamma-S and AlF4-. Heparin activated both serine base exchange enzyme in plasma membranes and phosphatidylserine synthesis in the homogenate. The preincubation of plasma membranes in the buffer without any other addition at 37 degrees C for 15 min reduced by 30% serine base exchange enzyme activity. The remaining activity responded to the addition of GTP-gamma-S but was insensitive to 5 mM AlF-4, a concentration that inhibited by 60% the enzyme assayed without preincubation. These results indicate the existence of different regulatory mechanisms, involving ATP and G proteins, possibly acting on different enzymes responsible for the synthesis of phosphatidylserine. Since previous studies have shown that hypoxia increases the synthesis of this phospholipid in brain slices or homogenate (Mozzi et al. Mol Cell Biochem 126: 101-107, 1993), it is possible that hypoxia may interfere with at least one of these mechanisms. This hypothesis is supported by the observation that in hypoxic homogenate 20 mM AlF-4 was not able to reduce the synthesis of phosphatidylserine as in normoxic samples. A similar difference between oxygenated and hypoxic samples, concerning their response to AlF4-, was observed when the incorporation of ethanolamine into phosphatidylethanolamine was studied. The incorporation of choline into phosphatidilcholine was, on the contrary, inhibited at a similar extent in both experimental conditions.
Collapse
Affiliation(s)
- R Mozzi
- Istituto di Biochimica e Chimica Medica Universitá di Perugia, Italy
| | | | | | | |
Collapse
|
18
|
Mahmoudian M, Damankeshideh M. Effect of trypan blue on the action of acetylcholine, histamine and salbutamol in the isolated guinea-pig ileum. PHARMACOLOGY & TOXICOLOGY 1996; 79:29-31. [PMID: 8841093 DOI: 10.1111/j.1600-0773.1996.tb00237.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been reported that trypan blue, a diazo dye with polyamphipatic structure, can inhibit the coupling of receptors to G-proteins. This inhibition of G-protein coupling has been investigated in isolated guinea-pig ileum. It was found that trypan blue could elicit a slight but dose-dependent contractile response in isolated guinea-pig ileum (4.5% of maximum contractile response induced by acetylcholine). While trypan blue potentiated the effect of histamine and shifted its dose-response curve to the left, it did not affect the contractile effects of acetylcholine. Furthermore, the relaxation which has been induced by salbutamol, a beta 2 agonist, was inhibited by trypan blue. It is concluded that trypan blue, as shown in biochemical studies, act selectively and can uncouple Gs-protein from beta 1 receptors. However, the effect of trypan blue on the whole tissue preparation depends on the type of G-protein involved and post G-protein processes which are stimulated after receptor activation. Trypan blue and similar agents could provide useful tools for further investigations of the mechanism of receptor-G protein coupling in the whole tissue preparation.
Collapse
Affiliation(s)
- M Mahmoudian
- Department of Pharmacology, Iran University of Medical Sciences, Tehran
| | | |
Collapse
|
19
|
Anderson L, Alexander CL, Faccenda E, Eidne KA. Rapid desensitization of the thyrotropin-releasing hormone receptor expressed in single human embryonal kidney 293 cells. Biochem J 1995; 311 ( Pt 2):385-92. [PMID: 7487872 PMCID: PMC1136012 DOI: 10.1042/bj3110385] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study uses fluorescence microscopy combined with dynamic video imaging to examine the events associated with the rapid desensitization of the thyrotropin-releasing hormone receptor (TRH-R). In single non-pituitary human embryonic kidney 293 (HEK-293) cells, expressing either the rat or human TRH-Rs, TRH produced a rapid dose-dependent monophasic rise in [Ca2+]i. This Ca2+ transient was completely abolished by pretreatment of cells with the intracellular Ca2+ antagonists thapsigargin or cyclopiazonic acid, but not EGTA, the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine or the second-messenger-operated Ca2+ channel antagonist SK&F 96365. These results suggest that TRH causes the mobilization of Ca2+ from thapsigargin/cyclopiazonic acid-sensitive intracellular Ca2+ stores but not the influx of extracellular Ca2+. HEK-293 cells also failed to respond to KCl or the slow Ca(2+)-channel activator BAY K 8644, suggesting that they lack L-type VOCCs. Rat and human TRH-Rs are highly conserved except at the C-terminus where the sequence differs. The C-terminus is believed to be important in receptor desensitization. Despite differences in this region, rat and human TRH-Rs expressed in HEK-293 cells underwent rapid (within 1 min) desensitization. This desensitization was dose-dependent and did not involve receptor loss. Similarly the bradykinin receptor endogenous to HEK-293 cells also displays a rapid desensitization. We conclude that in TRH-R-expressing non-pituitary HEK-293 cells, TRH mobilizes intracellular Ca2+ resulting in a monophasic Ca2+ transient. The rat and human TRH-Rs as well as the endogenous bradykinin receptor also displayed rapid receptor desensitization.
Collapse
Affiliation(s)
- L Anderson
- MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh, Scotland, U.K
| | | | | | | |
Collapse
|
20
|
Michelangeli F, Mezna M, Tovey S, Sayers LG. Pharmacological modulators of the inositol 1,4,5-trisphosphate receptor. Neuropharmacology 1995; 34:1111-22. [PMID: 8532181 DOI: 10.1016/0028-3908(95)00053-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevation of cytosolic calcium concentrations, induced by many neurotransmitters, plays a crucial role in neuronal function. Some neurotransmitters produce the second messenger InsP3 which activates an intracellular calcium channel (InsP3 receptor) usually located in the endoplasmic reticulum. This article undertakes a comprehensive survey of most pharmacological modulators of the InsP3 receptor so far reported. This review discusses in detail competitive antagonists, non-competitive antagonists and thiol reactive reagents, highlighting their modes of action and in some cases indicating drawbacks in their use.
Collapse
Affiliation(s)
- F Michelangeli
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
21
|
England S, McFadzean I. Inhibition of voltage-dependent Ca(2+)-current by alpha-adrenoceptor agonists in smooth muscle cells. Eur J Pharmacol 1995; 288:355-64. [PMID: 7774680 DOI: 10.1016/0922-4106(95)90049-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cellular mechanisms underlying the inhibitory effects of phenylephrine on dihydropyridine-sensitive, voltage-dependent Ca2+ currents recorded from single smooth muscle cells dissociated from the rat anococcygeus muscle were examined. Phenylephrine (0.1-30 microM) produced a concentration-dependent inhibition of the Ca2+ current; the maximum response occurred at a concentration of 10 microM, which inhibited the peak inward current evoked at 0 mV by 57.7 +/- 4% (n = 8). The response to phenylephrine was reduced but not abolished in cells containing 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), and it persisted in cells dialysed internally with heparin (5 mg.ml-1). This was despite the fact that both EGTA (5 mM) and heparin were able to block the phenylephrine-induced, Ca(2+)-dependent chloride current recorded in the same cells. The inhibition of the Ca2+ current produced by phenylephrine was abolished in cells containing guanosine 5'-[beta-thio]diphosphate (GDP-beta-S) but persisted in cells pre-treated with pertussis toxin. Our results suggest that the inhibition of L-type Ca2+ current seen following alpha-adrenoceptor activation occurs by a mechanism independent from the inositol trisphosphate-mediated release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- S England
- Vascular Biology Research Centre, King's College London, UK
| | | |
Collapse
|
22
|
Cheek TR, Murawsky MM, Stauderman KA. Histamine-induced Ca2+ entry precedes Ca2+ mobilization in bovine adrenal chromaffin cells. Biochem J 1994; 304 ( Pt 2):469-76. [PMID: 7998982 PMCID: PMC1137516 DOI: 10.1042/bj3040469] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relationship between histamine-induced Ca2+ mobilization and Ca2+ entry in bovine adrenal chromaffin cells has been investigated. Stopped-flow fluorimetry of fura-2-loaded chromaffin cell populations revealed that 10 microM histamine promoted entry of Ca2+ or Mn2+ without measurable delay (< or = 20 ms), through a pathway that was insensitive to the dihydropyridine antagonist nifedipine. In the absence of extracellular Ca2+, or in the presence of 100 microM La3+, a blocker of receptor-mediated Ca2+ entry, 10 microM histamine triggered an elevation in intracellular calcium concentration ([Ca2+]i), but only after a delay of approx. 200 ms, which presumably represented the time required to mobilize intracellular Ca2+. These data suggested that histamine-induced bivalent-cation entry precedes extensive Ca2+ mobilization in chromaffin cells. In order to confirm that histamine can promote Ca2+ entry largely independently of mobilizing intracellular Ca2+, the ability of histamine to promote Ca2+ entry into cells whose intracellular Ca2+ store had been largely depleted was assessed. Fura-2-loaded chromaffin cells were treated with 10 microM ryanodine together with 40 mM caffeine, to deplete the hormone-sensitive Ca2+ store. This resulted in an approx. 95% inhibition of histamine-induced Ca2+ release. Under these conditions, histamine was still able to promote an entry of Ca2+ that was essentially indistinguishable from that promoted in control cells. In single cells, introduction of heparin (100 mg/ml), but not de-N-sulphated heparin (100 mg/ml), abolished the histamine-induced rise in [Ca2+]i. All these data suggest that histamine can induce G-protein- or inositol phosphate-dependent rapid (< or = 20 ms) Ca2+ entry without an extensive intracellular mobilization response in chromaffin cells, which points to activation of an entry mechanism distinct from the Ca(2+)-release-activated Ca2+ channel found in non-excitable cells.
Collapse
Affiliation(s)
- T R Cheek
- AFRC Laboratory of Molecular Signalling, Department of Zoology, Cambridge, U.K
| | | | | |
Collapse
|
23
|
Marshall IC, Taylor CW. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J 1994; 301 ( Pt 2):591-8. [PMID: 8043006 PMCID: PMC1137122 DOI: 10.1042/bj3010591] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytosolic Ca2+ biphasically regulates Ins(1,4,5)P3-stimulated Ca2+ mobilization in liver [Marshall and Taylor (1993) J. Biol. Chem. 268, 13214-13220]. We have investigated the mechanisms underlying this biphasic control of Ca2+ mobilization in permeabilized hepatocytes by comparing the effects of Sr2+, Ba2+ and Ca2+ on the liver Ins(1,4,5)P3 receptor. Both Ca2+ and Sr2+ increased the binding of [3H]Ins(1,4,5)P3 to liver membranes by converting receptors from a low-affinity (KD approximately 35 nM) to a high-affinity (KD approximately 5 nM) state. Ba2+ (< or = 20 microM) did not affect [3H]Ins(1,4,5)P3 binding. At concentrations similar to those that caused an enhancement of [3H]Ins(1,4,5)P3 binding, Sr2+ (EC50 = 570 nM) and Ca2+ (EC50 = 200 nM) increased the sensitivity of the intracellular Ca2+ stores to Ins(1,4,5)P3. Further modest elevations in [Ca2+] (EC50 = 1.5 microM) inhibited Ins(1,4,5)P3-stimulated Ca2+ mobilization, whereas Sr2+ caused inhibition only when its concentration was very substantially increased (EC50 approximately 900 microM). Sr2+ is therefore only 3-fold less potent than Ca2+ in causing sensitization of Ins(1,4,5)P3-stimulated Ca2+ release, but 600-fold less potent in causing inhibition. Ba2+ neither sensitized ([Ba2+] < or = 20 microM) nor inhibited ([Ba2+] < or = 1 mM) Ins(1,4,5)P3-stimulated Ca2+ release, and did not inhibit either the sensitization of Ca2+ release evoked by Sr2+ or the inhibition of Ca2+ release evoked by Ca2+. Our results suggest that two distinct Ca(2+)-binding sites, which differ in their selectivities for bivalent cations, mediate the interconversion of Ins(1,4,5)P3 receptors between at least three different conformational states. These two Ca(2+)-binding sites, which may reside either on the Ins(1,4,5)P3 receptor itself or on distinct regulatory proteins, can be distinguished by their different selectivities for bivalent cations.
Collapse
Affiliation(s)
- I C Marshall
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
24
|
Enomoto K, Furuya K, Yamagishi S, Oka T, Maeno T. The increase in the intracellular Ca2+ concentration induced by mechanical stimulation is propagated via release of pyrophosphorylated nucleotides in mammary epithelial cells. Pflugers Arch 1994; 427:533-42. [PMID: 7971152 DOI: 10.1007/bf00374271] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mechanical stimulation of one mammary tumor cell in culture induced an increase in its intracellular calcium concentration which spread to surrounding cells. The increase in calcium can also be induced by addition of a solution in which cultured mammary tumor cells were stimulated by repeated pipetting (solution after pipetting cells, SAPC). The activity of the SAPC was completely abolished by treatment with snake venom phosphodiesterase or pyrophosphatase. Uridine triphosphate (UTP), uridine diphosphate (UDP) and ATP (1 microM each) were detected in the SAPC, whereas 5'-UMP and 5'-AMP were produced by phosphodiesterase digestion. A mixture of UTP, UDP and ATP (1 microM each) elicited a calcium response which was comparable to that induced by SAPC, while UTP, UDP or ATP alone at 1 microM elicited a small increase in calcium concentration in mammary tumor cells. Suramin, a competitive antagonist of P2 purinoceptors, diminished the spreading of the calcium wave induced by mechanical stimulation. It also blocked the responses to SAPC, UTP, UDP and ATP. These findings suggest that the mechanical stimulation results in the release of UTP, UDP and ATP into the extracellular space which mediates induction of the spreading calcium response via P2U-type purinoceptors.
Collapse
Affiliation(s)
- K Enomoto
- Department of Physiology, Shimane Medical University, Japan
| | | | | | | | | |
Collapse
|
25
|
Dasso L, Taylor C. Interactions between Ca(2+)-mobilizing receptors and their G proteins in hepatocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37016-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Flint N, Cove FL, Evans GS. Heparin stimulates the proliferation of intestinal epithelial cells in primary culture. J Cell Sci 1994; 107 ( Pt 2):401-11. [PMID: 8207071 DOI: 10.1242/jcs.107.2.401] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparin is a sulphated glycosaminoglycan derived from mast cells and has a number of functions including the inhibition of proliferation in several cell types and interactions with a range of heparin-binding growth factors. We report that heparin is a trophic factor in primary cultures of rat small intestinal epithelium. Heparin elicits a dose-dependent increase in epithelial proliferation and inhibits the growth of associated mesenchyme. The trophic effect of this molecule is not reproduced by other glycosaminoglycans including heparan sulphate but is dependent upon extensive molecular sulphation. Highly sulphated polysaccharides that are structurally unrelated to heparin (e.g. dextran sulphate and pentosan polysulphate) also stimulate epithelial proliferation in primary cultures. Heparin may act by the potentiation of mesenchyme-derived heparin-binding growth factors and these data suggest an in vivo role for mast cell-derived heparin in mucosal wound regeneration.
Collapse
Affiliation(s)
- N Flint
- Department of Epithelial Biology, Paterson Institute for Cancer Research, Withington, Manchester, UK
| | | | | |
Collapse
|
27
|
Thorn P, Petersen O. Calcium oscillations in pancreatic acinar cells, evoked by the cholecystokinin analogue JMV-180, depend on functional inositol 1,4,5-trisphosphate receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49451-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Sanchez-Bueno A, Cobbold PH. Agonist-specificity in the role of Ca(2+)-induced Ca2+ release in hepatocyte Ca2+ oscillations. Biochem J 1993; 291 ( Pt 1):169-72. [PMID: 8385928 PMCID: PMC1132497 DOI: 10.1042/bj2910169] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ca(2+)-mobilizing hormones induce oscillations in the cytoplasmic concentration of free Ca2+ ('free Ca') (spikes) in many cells. In hepatocytes the frequency of spiking depends on agonist dose, but the time course of an individual spike does not change with agonist concentration. Interestingly, the time course of individual spikes does depend on the hormone species, but the cellular mechanisms underlying this agonist-specificity are not understood. Here we show that ryanodine, which blocks the muscle Ca2+ channel responsible for Ca(2+)-induced Ca2+ release ('CICR') in the open conformation, has almost no effect on phenylephrine-induced spikes, but does, in contrast, inhibit vasopressin- or angiotensin II-induced spikes. We also show that ryanodine has no effect either on the increase in frequency or on the elevated peak free Ca induced by increased cyclic AMP on phenylephrine spikes. In contrast, ryanodine truncates the prolonged falling phases of spikes induced by vasopressin or angiotensin II in the presence of elevated cyclic AMP. A working hypothesis is proposed in which vasopressin- or angiotensin II-induced spikes consist of an Ins(1,4,5)P3-mediated symmetrical spike, identical in time course and mechanism with those induced by phenylephrine, followed by a 'tail' that represents CICR. The data hint at the existence of a novel signalling pathway.
Collapse
Affiliation(s)
- A Sanchez-Bueno
- Department of Human Anatomy and Cell Biology, University of Liverpool, U.K
| | | |
Collapse
|
29
|
ORAL COMMUNICATIONS. Br J Pharmacol 1992. [DOI: 10.1111/j.1476-5381.1992.tb16282.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Noel J, Fukami K, Hill AM, Capiod T. Oscillations of cytosolic free calcium concentration in the presence of intracellular antibodies to phosphatidylinositol 4,5-bisphosphate in voltage-clamped guinea-pig hepatocytes. Biochem J 1992; 288 ( Pt 2):357-60. [PMID: 1334405 PMCID: PMC1132019 DOI: 10.1042/bj2880357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In liver cells, the stimulation of alpha 1-adrenoceptors by noradrenaline induces the production of Ins(1,4,5)P3 through the degradation of membrane polyphosphoinositides [PtdIns(4,5)P2]. InsP3 evokes in turn the release of Ca2+ from internal stores. Our results show that the internal perfusion of single guinea-pig hepatocytes with monoclonal anti-PtdInsP2 antibody blocks the rise in cytosolic free Ca2+ concn. ([Ca2+]i) evoked by noradrenaline, an InsP3-dependent agonist, but not by the monohydroxylated bile acid taurolithocholate 3-sulphate, which is known to permeabilize the endoplasmic reticulum. In these conditions, the bile acid elicited either fast or slow fluctuations of [Ca2+]i independently of any InsP3 production. The responses to the bile acid were also observed in the absence of external Ca2+. The presence of intracellular anti-PtdInsP2 antibody does not affect the response to a photolytic release of InsP3 (1.5 microM final concn.) from a caged precursor.
Collapse
Affiliation(s)
- J Noel
- INSERM U274, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
31
|
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a soluble intracellular messenger formed rapidly after activation of a variety of cell-surface receptors that stimulate phosphoinositidase C activity. The initial response to Ins(1,4,5)P3 is a rapid Ca2+ efflux from nonmitochondrial intracellular stores which are probably specialized subcompartments of the endoplasmic reticulum, although their exact identities remain unknown. This initial response is followed by more complex Ca2+ signals: regenerative Ca2+ waves propagate across the cell, repetitive Ca2+ spikes occur, and stimulated Ca2+ entry across the plasma membrane contributes to the sustained Ca2+ signal. The mechanisms underlying these complex Ca2+ signals are unknown, although Ins(1,4,5)P3 is clearly involved. The intracellular receptor that mediates Ins(1,4,5)P3-stimulated Ca2+ mobilization has been purified and functionally reconstituted, and its amino acid sequence deduced from its cDNA sequence. These studies demonstrate that the Ins(1,4,5)P3 receptor has an integral Ca2+ channel separated from the Ins(1,4,5)P3 binding site by a long stretch of residues some of which form binding sites for allosteric regulators, and some of which are substrates for phosphorylation. In this review, we discuss the ligand recognition characteristics of Ins(1,4,5)P3 receptors, and their functional properties in their native environment and after purification, and we relate these properties to what is known of the structure of the receptor. In addition to regulation by Ins(1,4,5)P3, the Ins(1,4,5)P3 receptor is subject to many additional regulatory influences which include Ca2+, adenine nucleotides, pH and phosphorylation by protein kinases. Many of the functional and structural characteristics of the Ins(1,4,5)P3 receptor show striking similarities to another intracellular Ca2+ channel, the ryanodine receptor. These properties of the Ins(1,4,5)P3 are discussed, and their possible roles in contributing to the complex Ca2+ signals evoked by extracellular stimuli are considered.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, Cambridge, U.K
| | | |
Collapse
|