1
|
Lee B, Hoyle C, Wellens R, Green JP, Martin-Sanchez F, Williams DM, Matchett BJ, Seoane PI, Bennett H, Adamson A, Lopez-Castejon G, Lowe M, Brough D. Disruptions in endocytic traffic contribute to the activation of the NLRP3 inflammasome. Sci Signal 2023; 16:eabm7134. [PMID: 36809026 DOI: 10.1126/scisignal.abm7134] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Inflammation driven by the NLRP3 inflammasome is coordinated through multiple signaling pathways and is regulated by subcellular organelles. Here, we tested the hypothesis that NLRP3 senses disrupted endosome trafficking to trigger inflammasome formation and inflammatory cytokine secretion. NLRP3-activating stimuli disrupted endosome trafficking and triggered localization of NLRP3 to vesicles positive for endolysosomal markers and for the inositol lipid PI4P. Chemical disruption of endosome trafficking sensitized macrophages to the NLRP3 activator imiquimod, driving enhanced inflammasome activation and cytokine secretion. Together, these data suggest that NLRP3 can sense disruptions in the trafficking of endosomal cargoes, which may explain in part the spatial activation of the NLRP3 inflammasome. These data highlight mechanisms that could be exploited in the therapeutic targeting of NLRP3.
Collapse
Affiliation(s)
- Bali Lee
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Rose Wellens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Fatima Martin-Sanchez
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Daniel M Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Billie J Matchett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, Brough D. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020; 219:191204. [PMID: 33044555 PMCID: PMC7543090 DOI: 10.1083/jcb.202006194] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Diverse pathogen- and damage-associated stresses drive inflammation via activation of the multimolecular NLRP3-inflammasome complex. How the effects of diverse stimuli are integrated by the cell to regulate NLRP3 has been the subject of intense research, and yet an accepted unifying hypothesis for the control of NLRP3 remains elusive. Here, we review the literature on the effects of NLRP3-activating stimuli on subcellular organelles and conclude that a shared feature of NLRP3-activating stresses is an organelle dysfunction. In particular, we propose that the endosome may be more important than previously recognized as a signal-integrating hub for NLRP3 activation in response to many stimuli and may also link to the dysfunction of other organelles. In addition, NLRP3-inflammasome-activating stimuli trigger diverse posttranslational modifications of NLRP3 that are important in controlling its activation. Future research should focus on how organelles respond to specific NLRP3-activating stimuli, and how this relates to posttranslational modifications, to delineate the organellar control of NLRP3.
Collapse
Affiliation(s)
- Paula I. Seoane
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Bali Lee
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK,Correspondence to David Brough:
| |
Collapse
|
3
|
Assmus F, Houston JB, Galetin A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 2017; 109:419-430. [DOI: 10.1016/j.ejps.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
4
|
Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS NANO 2011; 5:5864-5873. [PMID: 21707035 DOI: 10.1021/nn201643f] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Rikke V Benjaminsen
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Building 423, 2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Takahashi A, Ohkohchi N, Yasunaga M, Kuroda JI, Koga Y, Kenmotsu H, Kinoshita T, Matsumura Y. Detailed distribution of NK012, an SN-38-incorporating micelle, in the liver and its potent antitumor effects in mice bearing liver metastases. Clin Cancer Res 2010; 16:4822-31. [PMID: 20807756 DOI: 10.1158/1078-0432.ccr-10-1467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To clarify and compare the antitumor effects and specific biodistribution of NK012, an SN-38-incorporating polymeric micelle, in mice bearing multiple liver metastases of human colon cancer HT-29 cells with irinotecan hydrochloride (CPT-11). EXPERIMENTAL DESIGN The maximum tolerable dose of NK012 (30 mg/kg) or CPT-11 (66.7 mg/kg) was i.v. administered three times every 4 days to mice bearing metastases to the liver colonized 7 days after the portal administration of HT-29 cells (n = 6). In vivo antitumor effects were evaluated by bioluminescence imaging and histopathologic examination. Drug biodistribution was analyzed by high-performance liquid chromatography and fluorescence microscopy (n = 3). RESULTS NK012 eradicated the liver metastases and produced a significant longer survival rate than CPT-11 (P = 0.0006). High-performance liquid chromatography showed the prolonged distribution of NK012 and free SN-38 released from NK012 in the tumors, liver, and spleen for weeks after NK012 administration. On the other hand, the accumulation levels of CPT-11 and free SN-38 converted from CPT-11 rapidly decreased within 1 day after CPT-11 administration. In the liver metastases, fluorescence microscopy and immunohistochemistry showed that administered NK012 was distributed mainly adjacent to tumor vessels after 1 day. As for the normal liver, NK012 was distributed in Kupffer cells instead of hepatocytes for at least 7 days after administration. CONCLUSION This study suggests that NK012 is strongly effective against liver metastases and does not damage the liver despite the long retention time of NK012 in Kupffer cells.
Collapse
Affiliation(s)
- Amane Takahashi
- Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ahmed KH, Pelster B. Ionic determinants of pH of acidic compartments under hypertonic conditions in trout hepatocytes. J Exp Biol 2008; 211:3306-14. [PMID: 18840665 DOI: 10.1242/jeb.020776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of trout hepatocytes to hypertonicity induced a decrease in acridine orange (AO) fluorescence, indicating a corresponding decrease in pH inside the lumen of acidic compartments (pH(L)). Pre-exposure of cells to the specific V-ATPase inhibitor bafilomycin A1 (0.3 micromol l(-1)) increased AO fluorescence - unmasking H(+) leaks under steady-state conditions - and partially removed the hypertonicity-induced pH(L) decrease. The sustainability of the luminal acidification, but not the acidification itself, appeared to depend on a low K(+) and a high Cl(-) conductance under hypertonic conditions. Increasing K(+) conductance using the specific ionophore valinomycin (10 micromol l(-1)) or removal of extracellular Cl(-) after an instant drop in AO fluorescence resulted in a reversal of luminal acidity. The alkalinization measured under hypertonic conditions in the absence of Cl(-) was largely attenuated when cells were bathed in HCO(3)(-)-free medium, signifying the possible presence of Cl(-)/HCO(3)(-) exchange. Under steady-state conditions, while a slight and brief pH(L) increase was measured upon exposure of cells to valinomycin, Cl(-) removal, unexpectedly, induced a decrease in pH(L), indicating a role for extracellular Cl(-) in limiting luminal acidification. This was confirmed by the substantial pH(L) decrease measured upon exposure of cells to the anion exchanger inhibitor SITS (0.5 mmol l(-1)). Furthermore, hypertonicity-induced acidification was still noticeable in the presence of SITS. On the other hand, the hypertonicity-induced acidification was significantly reduced in the absence of extracellular Na(+) or Ca(2+). However, BAPTA-AM induced an increase in steady-state pH(L) that was independent of V-ATPase inhibition. Moreover, the BAPTA-induced alkalinization was still apparent after depletion of intracellular Ca(2+) using the Ca(2+) ionophore A23187 in Ca(2+)-free medium. We conclude that pH(L) of trout hepatocytes is sensitive to hypertonicity and ionic determinants of hypertonicity. Thus, changes in pH(L) should be considered when studying pH adaptations to hypertonic stress.
Collapse
Affiliation(s)
- Khaled H Ahmed
- Institut für Zoologie and Center of Molecular Biosciences, Leopold Franzens Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
7
|
Reinehr R, Sommerfeld A, Keitel V, Grether-Beck S, Häussinger D. Amplification of CD95 Activation by Caspase 8-induced Endosomal Acidification in Rat Hepatocytes. J Biol Chem 2008; 283:2211-22. [DOI: 10.1074/jbc.m706853200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Becker S, Reinehr R, Grether-Beck S, Eberle A, Häussinger D. Hydrophobic bile salts trigger ceramide formation through endosomal acidification. Biol Chem 2007; 388:185-96. [PMID: 17261082 DOI: 10.1515/bc.2007.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractHydrophobic bile salts activate NADPH oxidase through a ceramide- and PKCζ-dependent pathway as an important upstream event of bile salt-induced hepatocyte apoptosis. The mechanisms underlying bile salt-induced ceramide formation have remained unclear to date and thus were studied in rat hepatocytes. Proapoptotic bile salts, such as taurolithocholylsulfate (TLCS), lowered the apparent pHveswithin seconds from 6.0 to 5.6 in an FITC-dextran-accessible endosomal compartment that also contains acidic sphingomyelinase. Simultaneously, a rapid decrease inN-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) fluorescence was observed, suggestive of an increase in cytosolic [Cl-], which is known to activate vacuolar-type H+-ATPase. No vesicular acidification or increase in cytosolic [Cl-] was found in response to the non-apoptotic bile salt taurocholate or the anti-apoptotic bile salt tauroursodesoxycholate. Inhibition of TLCS-induced endosomal acidification by bafilomycin or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid largely abolished the TLCS-induced ceramide-formation and downstream ceramide-dependent processes, such as p47phox-serine phosphorylation, NADPH oxidase activation, CD95 activation and apoptosis. These responses were also abolished after knockdown of acidic sphingomyelinase in rat hepatocytes. In conclusion, hydrophobic, proapoptotic bile salts stimulate ceramide formation through chloride-dependent acidification of endosomes, with subsequent activation of acidic sphingomyelinase. Our data suggest that changes in ion homeostasis underlie the stimulation of ceramide formation in response to hydrophobic bile acids as an important upstream event of bile salt-induced apoptosis.
Collapse
Affiliation(s)
- Stephan Becker
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
Cell shrinkage, nuclear condensation, DNA fragmentation, and apoptotic body formation are hallmarks of programmed apoptotic cell death. Herein, apoptotic volume decrease (AVD) is an early and ubiquitous event. Conversely, in hepatocytes, hyperosmotic cell shrinkage leads to an activation of the CD95 death receptor system, which involves CD95 tyrosine phosphorylation, CD95 oligomerization, and subsequent trafficking of the CD95 to the plasma membrane, and sensitizes hepatocytes toward CD95 ligand (CD95L)-induced apoptosis. Early signaling events leading to CD95 activation by hyperosmolarity have been identified. In hepatocytes, hyperosmotic exposure induces an almost instantaneous acidification of an acidic sphingomyelinase (ASM) containing endosomal compartment, which is followed by an increase in the intracellular ceramide concentration. Inhibition of anion channels or the vacuolar-type H(+)-ATPase abolishes not only endosomal acidification and subsequent ceramide generation, but also the otherwise observed hyperosmotically induced generation of reactive oxygen species (ROS) by NADPH oxidase isoforms. Hyperosmolarity-induced ROS formation then leads to a Src-family kinase Yes-mediated activation of the epidermal growth factor receptor (EGFR) and to an activation of the c-Jun-N-terminal kinase (JNK). JNK then provides a signal for CD95/EGFR association and subsequent CD95 tyrosine phosphorylation, which is mediated by the EGFR tyrosine kinase activity. CD95 tyrosine phosphorylation then allows for CD95 receptor oligomerization, translocation of the CD95/EGFR protein complex to the plasma membrane, and formation of the death inducing signaling complex (DISC). Mild hyperosmotic exposure, that is, 405 mosmol/liter, does not lead to a reduction of cell viability, even if DISC formation and subsequent caspase 8 and 3 activation occur, but sensitizes hepatocytes to CD95L-induced apoptosis. However, activation of the CD95 system by a more severe hyperosmotic challenge (>505 mosmol/liter) is followed by execution of the apoptotic cell death. Other covalent modifications of CD95, such as CD95 tyrosine nitration or CD95 serine/threonine phosphorylation, were shown to inhibit the CD95 activation process.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, Germany
| | | |
Collapse
|
10
|
Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haüssinger D. Endosomal Acidification and Activation of NADPH Oxidase Isoforms Are Upstream Events in Hyperosmolarity-induced Hepatocyte Apoptosis. J Biol Chem 2006; 281:23150-66. [PMID: 16772302 DOI: 10.1074/jbc.m601451200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperosmotic exposure of rat hepatocytes induced a rapid oxidative-stress(ROS) response as an upstream signal for proapoptotic CD95 activation. This study shows that hyperosmotic ROS formation involves a rapid ceramide- and protein kinase Czeta (PKCzeta)-dependent serine phosphorylation of p47phox and subsequent activation of NADPH oxidase isoforms. Hyperosmotic p47phox phosphorylation and ROS formation were sensitive to inhibition of sphingomyelinases and were strongly blunted after knockdown of acidic sphingomyelinase (ASM) or of p47phox protein. Hyperosmolarity induced a rapid bafilomycin- and 4,4 '-diisothiocyanostilbene-2,2 '-disulfonic acid disodium salt (DIDS)-sensitive acidification of a vesicular compartment, which was accessible to endocytosed fluorescein isothiocyanate-dextran and colocalized with ASM, PKCzeta, and the NADPH oxidase isoform Nox 2 (gp91phox). Bafilomycin and DIDS prevented the hyperosmolarity-induced increase in ceramide formation, p47phox phosphorylation, and ROS formation. As shown recently (Reinehr, R., Becker, S., Höngen, A., and Häussinger, D. (2004) J. Biol. Chem. 279, 23977-23987), hyperosmolarity induced a Yes-dependent activation of JNK and the epidermal growth factor receptor (EGFR), followed by EGFR-CD95 association, EGFR-catalyzed CD95-tyrosine phosphorylation, and translocation of the EGFR-CD95 complex to the plasma membrane, where formation of the deathinducing signaling complex occurs. These proapoptotic responses were not only sensitive to inhibitors of sphingomyelinase, PKCzeta, or NADPH oxidases but also to ASM knockdown, bafilomycin, and DIDS, i.e. maneuvers largely preventing hyperosmolarity-induced endosomal acidification and/or ceramide formation. In hepatocytes from p47phox knock-out mice, hyperosmolarity failed to activate the CD95 system. The data suggest that hyperosmolarity induces endosomal acidification as an important upstream event for CD95 activation through stimulation of ASM-dependent ceramide formation and activation of NADPH oxidase isoforms.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University and Institut für Umweltmedizinische Forschung, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Han B, Klonowski-Stumpe H, Lüthen R, Schreiber R, Häussinger D, Niederau C. Menadione-induced oxidative stress inhibits cholecystokinin-stimulated secretion of pancreatic acini by cell dehydration. Pancreas 2000; 21:191-202. [PMID: 10975714 DOI: 10.1097/00006676-200008000-00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The present study evaluated the effects of free radicals generated by menadione on morphology and function of pancreatic acinar cells focusing on enzyme secretion, stimulus-secretion coupling, and cell hydration. Various experiments evaluated morphology and function of isolated rat pancreatic acinar cells exposed to menadione. Menadione instantaneously generated free radicals (luminol and deoxyribose assays) followed by a time-dependent cell injury (uptake of trypan blue). Early ultrastructural changes included vacuolization and alterations of mitochondria, endoplasmic reticulum, and nucleus. Menadione caused a rapid glutathione oxidation followed by a depletion in reduced glutathione. An increase in lipid peroxides and a depletion of adenosine triphosphate were seen only after 30-60 minutes. Menadione markedly inhibited amylase release stimulated by cholecystokinin (CCK) and carbachol and simultaneously caused cell shrinkage after a few minutes. Similar degrees of cell shrinkage induced by hyperosmolar incubation and by menadione inhibited amylase secretion to a similar extent. CCK binding and its effect on calcium and inositol 1,4,5-trisphosphate (IP3) were not affected by menadione. Menadione (without CCK) induced an instantaneous increase of intracellular calcium followed by a slow constant increase. In single cells, menadione induced calcium oscillations with a frequency lower than that seen after CCK stimulation. Some morphologic and functional alterations owing to menadione-induced oxidative stress may be caused by adenosine triphosphate and glutathione depletion, lipid peroxidation, and changes in cytosolic calcium. The marked inhibition of secretagogue-stimulated enzyme secretion owing to menadione may be mediated to a large part by cell dehydration, whereas classical steps of stimulus-secretion coupling like receptor binding, calcium release, and IP3 generation remained unchanged.
Collapse
Affiliation(s)
- B Han
- Department of Medicine, Hepatology and Infectious Diseases, Heinrich-Heine-University of Düsseldorf Germany
| | | | | | | | | | | |
Collapse
|
12
|
Häussinger D, Schliess F, Dombrowski F, Vom Dahl S. Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology 1999; 116:921-35. [PMID: 10092315 DOI: 10.1016/s0016-5085(99)70076-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Liver cell hydration is a major determinant of proteolysis control; however, the underlying mechanisms are unknown. METHODS The role of mitogen-activated protein kinases for proteolysis control was studied in perfused rat liver. RESULTS Hyposmolarity led to a rapid activation of Erk-2 and p38(MAPK), but not of c-Jun-N-terminal kinase 1. Likewise, isosmotic cell swelling induced by insulin, ethanol, or glutamine/glycine activated p38(MAPK). Inhibition of hyposmotic Erk activation by pertussis or cholera toxin, erbstatin, or genistein had no effect on the swelling-induced inhibition of proteolysis. Likewise, wortmannin, rapamycin, and okadaic acid were ineffective, but proteolysis recovery from hyposmotic inhibition was okadaic acid sensitive. SB203580, an inhibitor of p38(MAPK), abolished both the antiproteolytic effect of hyposmotic cell swelling and the hyposmolarity-induced inhibition of autophagic vacuole formation. Also, the antiproteolytic effect of isotonic cell swelling induced by ethanol, glutamine/glycine, or insulin was abolished by SB203580, but not the swelling potency of these agents. SB203580 had no effect on the cell hydration-independent control of proteolysis exerted by NH4Cl, asparagine, or phenylalanine. CONCLUSIONS The data suggest an important role of p38(MAPK) in the regulation of autophagic proteolysis by cell volume in liver.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
13
|
vom Dahl S, Bode JG, Reinehr RM, Mönnighoff I, Kubitz R, Häussinger D. Release of osmolytes from perfused rat liver on perivascular nerve stimulation: alpha-adrenergic control of osmolyte efflux from parenchymal and nonparenchymal liver cells. Hepatology 1999; 29:195-204. [PMID: 9862867 DOI: 10.1002/hep.510290114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of perivascular nerve stimulation and phenylephrine on osmolyte release were studied in the intact perfused rat liver and isolated liver parenchymal cells (PC) and nonparenchymal cells. In the perfused liver, electrical stimulation of perivascular nerves (20 Hz/2 ms/20 V) led to a phentolamine-sensitive increase of cell hydration by 6.5% +/- 1.2% (n = 3) and a transient phentolamine-sensitive stimulation of taurine and inositol, but not betaine, release. These nerve effects were mimicked by phenylephrine, but not prostaglandin F2alpha, and were not affected by sodium nitroprusside (SNP) or ibuprofen. Nerve stimulation-induced taurine, but not inositol, release was inhibited by 4, 4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS) (50 micromol/L). Single-cell fluorescence studies with isolated liver PC, Kupffer cells (KC), sinusoidal endothelial cells (SEC), and hepatic stellate cells (HSC) revealed that phenylephrine induced an increase in cytosolic free Ca2+ only in PC and HSC, but not in KC and SEC, whereas extracellular uridine triphosphate (UTP) produced Ca2+ transients/oscillations in all liver cell types studied. Phenylephrine had no effect on osmolyte release from isolated KC and SEC, but increased taurine (but not inositol) release from PC and inositol (but not taurine) efflux from HSC. The data suggest that: 1) liver cell hydration and-consecutively-osmolyte content are modulated by hepatic nerves via an alpha-adrenergic mechanism, which does not involve eicosanoids or hemodynamic changes; 2) that PC and HSC are the primary targets for nerve-dependent alpha-adrenergic activation, whereas 3) KC and SEC probably do not express alpha-adrenoceptors coupled to Ca2+ mobilization or osmolyte efflux.
Collapse
Affiliation(s)
- S vom Dahl
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Ellinger I, Klapper H, Fuchs R. Fluid-phase marker transport in rat liver: free-flow electrophoresis separates distinct endosome subpopulations. Electrophoresis 1998; 19:1154-61. [PMID: 9662178 DOI: 10.1002/elps.1150190716] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Free-flow electrophoresis (FFE) was used to investigate the intracellular compartments involved in fluid-phase marker, fluoresceine isothiocyanate (FITC)-dextran, transport in the isolated perfused rat liver. One to 2 min after uptake at 37 degrees C, FITC-dextran was found in endosomes with the same electrophoretic mobility as early sorting endosomes labeled either by the hepatocyte-specific marker asialoorosomucoid (ASOR) or by transferrin that enters all liver cells. Labeling at low temperature (16 degrees C) blocked transport of ASOR and dextran in early endosomes. With increasing internalization time (3-13 min) at 37 degrees C, FITC-dextran-labeled compartments co-localized with late, ASOR-containing endosomes. Since localization of FITC-dextran in late transcytotic compartments was not observed upon FFE separation, it is concluded that the majority of internalized markers is directed to lysosomes. The FITC-label did not account for the predominant lysosomal targeting of the dextran, since [3H]dextran-labeled endosomes exhibited an identical FFE pattern. Taken together, these data indicate that the fluid-phase marker dextran is transported through intracellular compartments with identical characteristics as endosome subcompartments of the receptor-mediated lysosomal route.
Collapse
Affiliation(s)
- I Ellinger
- Department of General and Experimental Pathology, University of Vienna, Austria
| | | | | |
Collapse
|
15
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1285] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Blommaart EF, Luiken JJ, Meijer AJ. Autophagic proteolysis: control and specificity. THE HISTOCHEMICAL JOURNAL 1997; 29:365-85. [PMID: 9184851 DOI: 10.1023/a:1026486801018] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rate of proteolysis is an important determinant of the intracellular protein content. Part of the degradation of intracellular proteins occurs in the lysosomes and is mediated by macroautophagy. In liver, macroautophagy is very active and almost completely accounts for starvation-induced proteolysis. Factors inhibiting this process include amino acids, cell swelling and insulin. In the mechanisms controlling macroautophagy, protein phosphorylation plays an important role. Activation of a signal transduction pathway, ultimately leading to phosphorylation of ribosomal protein S6, accompanies inhibition of macroautophagy. Components of this pathway may include a heterotrimeric Gi3-protein, phosphatidylinositol 3-kinase and p70S6 kinase. Recent evidence indicates that lysosomal protein degradation can be selective and occurs via ubiquitin-dependent and -independent pathways.
Collapse
Affiliation(s)
- E F Blommaart
- Department of Biochemistry, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|