1
|
Zarlenga D, Hoberg E, Tuo W. The Identification of Haemonchus Species and Diagnosis of Haemonchosis. ADVANCES IN PARASITOLOGY 2016; 93:145-80. [PMID: 27238005 DOI: 10.1016/bs.apar.2016.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diagnosis is often equated with identification or detection when discussing parasitic diseases. Unfortunately, these are not necessarily mutually exclusive activities; diseases and infections are generally diagnosed and organisms are identified. Diagnosis is commonly predicated upon some clinical signs; in an effort to determine the causative agent, identification of genera and species is subsequently performed. Both identification and diagnosis play critical roles in managing an infection, and involve the interplay of direct and indirect methods of detection, particularly in light of the complex and expanding problem of drug-resistance in parasites. Accurate and authoritative identification that is cost- and time-effective, based on structural and molecular attributes of specimens, provides a foundation for defining parasite diversity and changing patterns of geographical distribution, host association and emergence of disease. Most techniques developed thus far have been grounded in assumptions based on strict host associations between Haemonchus contortus and small ruminants, that is, sheep and goats, and between Haemonchus placei and bovids. Current research and increasing empirical evidence of natural infections in the field demonstrates that this assumption misrepresents the host associations for these species of Haemonchus. Furthermore, the capacity of H. contortus to utilize a considerably broad spectrum of ungulate hosts is reflected in our understanding of the role of anthropogenic forcing, the 'breakdown' of ecological isolation, global introduction and host switching as determinants of distribution. Nuanced insights about distribution, host association and epidemiology have emerged over the past 30years, coincidently with the development of increasingly robust means for parasite identification. In this review and for the sake of argument, we would like to delineate the diagnosis of haemonchosis from the identification of the specific pathogen. As a foundation for exploring host and parasite biology, we will examine the evolution of methods for distinguishing H. contortus from other common gastrointestinal nematodes of agriculturally significant and free-ranging wild ruminants using morphological, molecular and/or immunological methods for studies at the species and genus levels.
Collapse
|
2
|
Akula S, Thorpe M, Boinapally V, Hellman L. Granule Associated Serine Proteases of Hematopoietic Cells - An Analysis of Their Appearance and Diversification during Vertebrate Evolution. PLoS One 2015; 10:e0143091. [PMID: 26569620 PMCID: PMC4646688 DOI: 10.1371/journal.pone.0143091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/20/2015] [Indexed: 12/02/2022] Open
Abstract
Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Vamsi Boinapally
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
3
|
Blanco I, Lara B, de Serres F. Efficacy of alpha1-antitrypsin augmentation therapy in conditions other than pulmonary emphysema. Orphanet J Rare Dis 2011; 6:14. [PMID: 21486454 PMCID: PMC3094201 DOI: 10.1186/1750-1172-6-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/12/2011] [Indexed: 12/03/2022] Open
Abstract
Up to now alpha 1-antitrypsin (AAT) augmentation therapy has been approved only for commercial use in selected adults with severe AAT deficiency-related pulmonary emphysema (i.e. PI*ZZ genotypes as well as combinations of Z, rare and null alleles expressing AAT serum concentrations <11 μmol/L). However, the compassionate use of augmentation therapy in recent years has proven outstanding efficacy in small cohorts of patients suffering from uncommon AAT deficiency-related diseases other than pulmonary emphysema, such as fibromyalgia, systemic vasculitis, relapsing panniculitis and bronchial asthma. Moreover, a series of preclinical studies provide evidence of the efficacy of AAT augmentation therapy in several infectious diseases, diabetes mellitus and organ transplant rejection. These facts have generated an expanding number of medical applications and patents with claims for other indications of AAT besides pulmonary emphysema. The aim of the present study is to compile and analyze both clinical and histological features of the aforementioned published case studies and reports where AAT augmentation therapy was used for conditions other than pulmonary emphysema. Particularly, our research refers to ten case reports and two clinical trials on AAT augmentation therapy in patients with both AAT deficiency and, at least, one of the following diseases: fibromyalgia, vasculitis, panniculitis and bronchial asthma. In all the cases, AAT was successfully applied whereas previous maximal conventional therapies had failed. In conclusion, laboratory studies in animals and humans as well as larger clinical trials should be, thus, performed in order to determine both the strong clinical efficacy and security of AAT in the treatment of conditions other than pulmonary emphysema.
Collapse
Affiliation(s)
- Ignacio Blanco
- Biomedical Research Office (OIB-FICYT), Rosal, 7. 33009 Oviedo. Principality of Asturias. Spain
| | - Beatriz Lara
- Hospital Universitario Arnau de Vilanova. Avda. Alcalde Rovira Roure 80. 25198. Institut de Recerca Biomédica de Lleida (IRB). Lleida. CIBERES Instituto Salud Carlos III Madrid. Spain
| | - Frederick de Serres
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233 USA
| |
Collapse
|
4
|
Dacre KJ, McAleese SM, Knight P, McGorum BC, Pemberton AD. cDNA cloning and substrate specificity of equine tryptase, a possible mediator in equine heaves. Clin Exp Allergy 2007; 36:1303-9. [PMID: 17014440 DOI: 10.1111/j.1365-2222.2006.02571.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mast cell mediators are believed to play a central role in inflammatory lung disorders such as human allergic and occupational asthma. Equine heaves is characterized by reversible neutrophilic airway inflammation and airway obstruction, primarily due to bronchospasm and mucus hypersecretion, following exposure of susceptible horses to organic stable dusts. As such, heaves shares many similarities with human occupational dust-induced asthma and therefore it is proposed that mast cells may also be implicated in the pathogenesis of heaves. Tryptase, a mast cell-specific proteinase, can be used as an indicator of biological mast cell activity. OBJECTIVE The aim of this study was to determine the cDNA sequence of equine tryptase and to investigate its substrate specificity in order to rationalize its enzymatic activity. METHODS RT-PCR cloning was used to sequence equine tryptase. Substrate specificity of equine tryptase was investigated using arginine and lysine containing substrates. RESULTS The cDNA and deduced amino acid (Aa) sequences for equine tryptase shared strong identity with other tryptases. Unusually for a trypsin-like proteinase however, equine tryptase has alanine at residue 216, rather than glycine, which confers increased arginine substrate specificity in vitro and may restrict fibrinogenolysis in vivo. CONCLUSION Cloning and sequencing of the mast cell proteinase equine tryptase will allow molecular probing of its expression in the lung of control and heaves-affected horses. Further work is warranted to determine the biological relevance of the unique alanine 216 substitution in the molecular sequence of the equine tryptase substrate-binding pocket.
Collapse
Affiliation(s)
- K J Dacre
- Department of Veterinary Clinical Studies, Easter Bush Veterinary Centre, Royal Dick School of Veterinary Studies, Midlothian, UK.
| | | | | | | | | |
Collapse
|
5
|
Abstract
Mast cells (MCs) are traditionally thought of as a nuisance for its host, for example, by causing many of the symptoms associated with allergic reactions. In addition, recent research has put focus on MCs for displaying harmful effects during various autoimmune disorders. On the other hand, MCs can also be beneficial for its host, for example, by contributing to the defense against insults such as bacteria, parasites, and snake venom toxins. When the MC is challenged by an external stimulus, it may respond by degranulation. In this process, a number of powerful preformed inflammatory "mediators" are released, including cytokines, histamine, serglycin proteoglycans, and several MC-specific proteases: chymases, tryptases, and carboxypeptidase A. Although the exact effector mechanism(s) by which MCs carry out their either beneficial or harmful effects in vivo are in large parts unknown, it is reasonable to assume that these mediators may contribute in profound ways. Among the various MC mediators, the exact biological function of the MC proteases has for a long time been relatively obscure. However, recent progress involving successful genetic targeting of several MC protease genes has generated powerful tools, which will enable us to unravel the role of the MC proteases both in normal physiology as well as in pathological settings. This chapter summarizes the current knowledge of the biology of the MC proteases.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
6
|
Miller HRP, Pemberton AD. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 2002; 105:375-90. [PMID: 11985658 PMCID: PMC1782685 DOI: 10.1046/j.1365-2567.2002.01375.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine proteinases with trypsin-like (tryptase) and chymotrypsin-like (chymase) properties are major constituents of mast cell granules. Several tetrameric tryptases with differing specificities have been characterized in humans, but only a single chymase. In other species there are larger families of chymases with distinct and narrow proteolytic specificities. Expression of chymases and tryptases varies between tissues. Human pulmonary and gastrointestinal mast cells express chymase at lower levels than tryptase, whereas rodent and ruminant gastrointestinal mast cells express uniquely mucosa-specific chymases. Local and systemic release of chymases and tryptases can be quantified by immunoassay, providing highly specific markers of mast cell activation. The expression and constitutive extracellular secretion of the mucosa-specific chymase, mouse mast cell proteinase-1 (mMCP-1), is regulated by transforming growth factor-beta1 (TGF-beta1) in vitro, but it is not clear how the differential expression of chymases and tryptases is regulated in other species. Few native inhibitors have been identified for tryptases but the tetramers dissociate into inactive subunits in the absence of heparin. Chymases are variably inhibited by plasma proteinase inhibitors and by secretory leucocyte protease inhibitor (SLPI) that is expressed in the airways. Tryptases and chymases promote vascular permeability via indirect and possibly direct mechanisms. They contribute to tissue remodelling through selective proteolysis of matrix proteins and through activation of proteinase-activated receptors and of matrix metalloproteinases. Chymase may modulate vascular tissues through its ability to process angiotensin-I to angiotensin-II. Mucosa-specific chymases promote epithelial permeability and are involved in the immune expulsion of intestinal nematodes. Importantly, granule proteinases released extracellularly contribute to the recruitment of inflammatory cells and may thus be involved in innate responses to infection.
Collapse
Affiliation(s)
- Hugh R P Miller
- Department of Veterinary Clinical Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| | | |
Collapse
|
7
|
Pemberton AD, Zamolodchikova TS, Scudamore CL, Chilvers ER, Miller HRP, Walker TR. Proteolytic action of duodenase is required to induce DNA synthesis in pulmonary artery fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1171-80. [PMID: 11856353 DOI: 10.1046/j.1432-1033.2002.02747.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duodenase is a 29-kDa serine endopeptidase that displays selective trypsin- and chymotrypsin-like substrate specificity. This enzyme has been localized to epitheliocytes of Brunner's glands, and as described here, to mast cells within the intestinal mucosa and lungworm-infected lung, implying an important additional role in inflammation and tissue remodelling. In primary cultures of pulmonary artery fibroblasts, duodenase induced a concentration-dependent increase in [3H]thymidine incorporation with a maximal effect observed at 30 nm. Pretreating duodenase with soybean trypsin inhibitor abolished DNA synthesis, confirming that proteolytic activity was an essential requirement for this response. PAR1, PAR2 and PAR4 activating peptides were unable to induce [3H]thymidine incorporation in pulmonary artery fibroblasts. Likewise, pretreatment of fibroblasts with TNFalpha, known to up-regulate PAR2 expression in other systems, and IL-1beta, did not enhance the potential of duodenase to induce DNA synthesis. Furthermore, duodenase increased GTPgammaS binding to fibroblast membranes indicating that a G-protein-coupled receptor may mediate the effects of duodenase. Duodenase-induced DNA synthesis and GTPgammaS binding were both found to be inhibited by pertussis toxin, implying a role for Gi/o. Selective inhibitors of MEK1 (PD98059) and protein kinase C (GF109203X) only partially inhibited duodenase-induced DNA synthesis, but both wortmannin (100 nm) and LY294002 (10 microm) inhibited this response completely, indicating a key role for PtdIns 3-kinase. Furthermore, duodenase induced a 2.3 plus minus 0.1-fold increase in PtdIns 3-kinase activity in p85 immunoprecipitates, which was sensitive to inhibition by wortmannin. These results suggest that duodenase can induce pulmonary artery fibroblast DNA synthesis in a PtdIns 3-kinase-dependent manner via a G-protein-coupled receptor which is activated by a proteolytic mechanism.
Collapse
Affiliation(s)
- Alan D Pemberton
- Department of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
8
|
Mistry R, Snashall PD, Totty N, Guz A, Tetley TD. Purification and N-terminal amino acid sequence of sheep neutrophil cathepsin G and elastase. Arch Biochem Biophys 1999; 368:7-13. [PMID: 10415105 DOI: 10.1006/abbi.1999.1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sheep cathepsin G (CG) and neutrophil elastase (NE) were isolated from a crude leukocyte membrane preparation by elastin-Sepharose 4B and CM-Sepharose 4B chromatography, followed by native preparative PAGE. The N-termini of CG and NE were sequenced to 24 and 20 residues, showing 96 and 85% identity with human CG and NE, respectively. During SDS-PAGE, sheep CG and NE migrated parallel to human CG and NE and have apparent molecular masses of 28 and 26 kDa, respectively. Following incubation of sheep CG and NE with human alpha(1)-antichymotrypsin and alpha(1)-proteinase inhibitor, complexes with apparent molecular masses of 89 and 81 kDa respectively were observed by SDS-PAGE. Polyclonal antibodies to human CG and NE cross-reacted with purified sheep CG and NE, respectively. These results indicate that sheep neutrophils contain CG and elastase that are analogous to human CG and NE in terms of molecular mass, reactivity with endogenous inhibitors, immunocross-reactivity, and N-terminal sequence.
Collapse
Affiliation(s)
- R Mistry
- Department of Respiratory Medicine, Charing Cross Hospital, National Heart and Lung Institute, Imperial College School of Medicine, London, W6 8RF, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
McAleese SM, Pemberton AD, McGrath ME, Huntley JF, Miller HR. Sheep mast-cell proteinases-1 and -3: cDNA cloning, primary structure and molecular modelling of the enzymes and further studies on substrate specificity. Biochem J 1998; 333 ( Pt 3):801-9. [PMID: 9677343 PMCID: PMC1219647 DOI: 10.1042/bj3330801] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sheep mast-cell proteinase-1 (sMCP-1) is a serine proteinase expressed predominantly by mucosal mast cells, with specificity for cleavage C-terminal to basic and hydrophobic amino acid residues. A cDNA encoding sMCP-1 has been cloned using reverse transcriptase (RT)-PCR. It appears to be translated as a pre-proenzyme with a 17-amino-acid signal peptide, a basic 2-amino-acid propeptide and a 226-amino-acid catalytic domain. A second cDNA, encoding a serine proteinase 90% identical with sMCP-1, was also cloned and named sMCP-3. Molecular models were constructed for both enzymes using coordinates for the refined X-ray structures of human cathepsin G, chymase and rat mast-cell proteinase-2. The model for sMCP-1 suggests that the acidic Asp-226 side chain extends into the substrate-binding pocket, hydrogen-bonding with Ser-190 on the opposite side and bisecting the pocket. The location of an acidic moiety in this position would favour interaction with basic substrate residues and binding of aromatic residues is rationalized by interaction of the positively charged equatorial plane with Asp-226. The balance between chymotryptic and tryptic activities of sMCP-1 was found to be sensitive to salt concentration, with increasing univalent cation concentration favouring chymotryptic activity relative to the tryptic. Using a peptide substrate representing residues 36-59 of the human thrombin receptor, increasing salt concentration favoured cleavage at Phe-43 rather than at Arg-41.
Collapse
Affiliation(s)
- S M McAleese
- Department of Veterinary Clinical Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | | | | | | | | |
Collapse
|