1
|
Singh L, Karthikeyan S, Thakur KG. Biochemical and structural characterization reveals Rv3400 codes for β-phosphoglucomutase in Mycobacterium tuberculosis. Protein Sci 2024; 33:e4943. [PMID: 38501428 PMCID: PMC10949319 DOI: 10.1002/pro.4943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) adapt to various host environments and utilize a variety of sugars and lipids as carbon sources. Among these sugars, maltose and trehalose, also play crucial role in bacterial physiology and virulence. However, some key enzymes involved in trehalose and maltose metabolism in Mtb are not yet known. Here we structurally and functionally characterized a conserved hypothetical gene Rv3400. We determined the crystal structure of Rv3400 at 1.7 Å resolution. The crystal structure revealed that Rv3400 adopts Rossmann fold and shares high structural similarity with haloacid dehalogenase family of proteins. Our comparative structural analysis suggested that Rv3400 could perform either phosphatase or pyrophosphatase or β-phosphoglucomutase (β-PGM) activity. Using biochemical studies, we further confirmed that Rv3400 performs β-PGM activity and hence, Rv3400 encodes for β-PGM in Mtb. Our data also confirm that Mtb β-PGM is a metal dependent enzyme having broad specificity for divalent metal ions. β-PGM converts β-D-glucose-1-phosphate to β-D-glucose-6-phosphate which is required for the generation of ATP and NADPH through glycolysis and pentose phosphate pathway, respectively. Using site directed mutagenesis followed by biochemical studies, we show that two Asp residues in the highly conserved DxD motif, D29 and D31, are crucial for enzyme activity. While D29A, D31A, D29E, D31E and D29N mutants lost complete activity, D31N mutant retained about 30% activity. This study further helps in understanding the role of β-PGM in the physiology of Mtb.
Collapse
Affiliation(s)
- Latika Singh
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| | - Subramanian Karthikeyan
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| | - Krishan Gopal Thakur
- Division of Protein Science and EngineeringCouncil of Scientific and Industrial Research—Institute of Microbial Technology (CSIR‐IMTECH)ChandigarhIndia
| |
Collapse
|
2
|
Jackson SA, Duan M, Zhang P, Ihua MW, Stengel DB, Duan D, Dobson ADW. Isolation, identification, and biochemical characterization of a novel bifunctional phosphomannomutase/phosphoglucomutase from the metagenome of the brown alga Laminaria digitata. Front Microbiol 2022; 13:1000634. [PMID: 36212884 PMCID: PMC9537760 DOI: 10.3389/fmicb.2022.1000634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Macroalgae host diverse epiphytic bacterial communities with potential symbiotic roles including important roles influencing morphogenesis and growth of the host, nutrient exchange, and protection of the host from pathogens. Macroalgal cell wall structures, exudates, and intra-cellular environments possess numerous complex and valuable carbohydrates such as cellulose, hemi-cellulose, mannans, alginates, fucoidans, and laminarin. Bacterial colonizers of macroalgae are important carbon cyclers, acquiring nutrition from living macroalgae and also from decaying macroalgae. Seaweed epiphytic communities are a rich source of diverse carbohydrate-active enzymes which may have useful applications in industrial bioprocessing. With this in mind, we constructed a large insert fosmid clone library from the metagenome of Laminaria digitata (Ochrophyta) in which decay was induced. Subsequent sequencing of a fosmid clone insert revealed the presence of a gene encoding a bifunctional phosphomannomutase/phosphoglucomutase (PMM/PGM) enzyme 10L6AlgC, closely related to a protein from the halophilic marine bacterium, Cobetia sp. 10L6AlgC was subsequently heterologously expressed in Escherichia coli and biochemically characterized. The enzyme was found to possess both PMM and PGM activity, which had temperature and pH optima of 45°C and 8.0, respectively; for both activities. The PMM activity had a K m of 2.229 mM and V max of 29.35 mM min-1 mg-1, while the PGM activity had a K m of 0.5314 mM and a V max of 644.7 mM min-1 mg-1. Overall characterization of the enzyme including the above parameters as well as the influence of various divalent cations on these activities revealed that 10L6AlgC has a unique biochemical profile when compared to previously characterized PMM/PGM bifunctional enzymes. Thus 10L6AlgC may find utility in enzyme-based production of biochemicals with different potential industrial applications, in which other bacterial PMM/PGMs have previously been used such as in the production of low-calorie sweeteners in the food industry.
Collapse
Affiliation(s)
- Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Maohang Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Maureen W. Ihua
- School of Microbiology, University College Cork, Cork, Ireland
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Goto LS, Vessoni Alexandrino A, Malvessi Pereira C, Silva Martins C, D'Muniz Pereira H, Brandão-Neto J, Marques Novo-Mansur MT. Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1658-1666. [PMID: 27567706 DOI: 10.1016/j.bbapap.2016.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
Abstract
Citrus canker, caused by bacteria Xanthomonas citri subsp. citri, can affect all economically important varieties of citrus. Studying Xanthomonas genes related to the invasive capacity may improve the knowledge on how this works and ultimately use the information to avoid the disease. Some annotated genes from Xanthomonas citri subsp. citri published genome are addressed to an interesting class of genes named "pathogenicity, virulence and adaptation". One of them is xanA, which encodes a predicted phosphoglucomutase. Phosphoglucomutases are ubiquitous enzymes among the living kingdoms that play roles in carbohydrate metabolism, catalyzing the reversible conversion of 1- to 6-phosphoglucose. In Xanthomonas, phosphoglucomutase activity is required to synthesize precursors of the pathogenesis-related polysaccharide xanthan. In this work, a characterization of this gene product is presented by structural and functional studies. Molecular cloning was used for heterologous expression and deletion of xanA. A Michaelis-Menten kinetics model was obtained using the recombinant protein. The protein structure was also determined by X-ray diffraction on the recombinant enzyme substrate-free, bound to glucose-1,6-biphosphate and to glucose-1-phosphate. Deletion of xanA was done with a suicide plasmid construct and the obtained mutant was tested for pathogenic capacity. This study is the first describing the properties of the Xanthomonas citri subsp. citri phosphoglucomutase.
Collapse
Affiliation(s)
- Leandro Seiji Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Camila Malvessi Pereira
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carla Silva Martins
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
4
|
Identification and characterization of an archaeal kojibiose catabolic pathway in the hyperthermophilic Pyrococcus sp. strain ST04. J Bacteriol 2014; 196:1122-31. [PMID: 24391053 DOI: 10.1128/jb.01222-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea.
Collapse
|
5
|
Chhabra G, Mathur D, Dixit A, Garg LC. Heterologous expression and biochemical characterization of recombinant alpha phosphoglucomutase from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2012; 85:117-24. [PMID: 22809717 DOI: 10.1016/j.pep.2012.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 12/23/2022]
Abstract
Phosphoglucomutase (PGM) plays an important role in polysaccharide capsule formation and virulence in a number of bacterial pathogens. However, the enzyme has not yet been characterized from Mycobacterium tuberculosis (Mtb). Here, we report the biochemical properties of recombinant Mtb-PGM as well as the in silico structural analysis from Mtb H37Rv. The purified recombinant enzyme was enzymatically active with a specific activity of 67.5 U/mg and experimental k(cat) of 70.31 s(-1) for the substrate glucose-1-phosphate. The enzyme was stable in pH range 6.5-7.4 and exhibited temperature optima range between 30 and 40°C. Various kinetic parameters and constants of the rPGM were determined. A structural comparison of Modeller generated 3D Mtb-PGM structure with rabbit muscle PGM revealed that the two enzymes share the same overall heart shape and four-domain architecture, despite having only 17% sequence identity. However, certain interesting differences between the two have been identified, which provide an opportunity for designing new drugs to specifically target the Mtb-PGM. Also, in the absence of the crystal structure of the Mtb-PGM, the modeled structure could be further explored for in silico docking studies with suitable inhibitors.
Collapse
Affiliation(s)
- Gagan Chhabra
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
6
|
Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ. Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens. Proteins 2011; 79:1215-29. [PMID: 21246636 PMCID: PMC3066478 DOI: 10.1002/prot.22957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/11/2022]
Abstract
The crystal structure of the enzyme phosphoglucomutase from Salmonella typhimurium (StPGM) is reported at 1.7 A resolution. This is the first high-resolution structural characterization of a bacterial protein from this large enzyme family, which has a central role in metabolism and is also important to bacterial virulence and infectivity. A comparison of the active site of StPGM with that of other phosphoglucomutases reveals conserved residues that are likely involved in catalysis and ligand binding for the entire enzyme family. An alternate crystal form of StPGM and normal mode analysis give insights into conformational changes of the C-terminal domain that occur upon ligand binding. A novel observation from the StPGM structure is an apparent dimer in the asymmetric unit of the crystal, mediated largely through contacts in an N-terminal helix. Analytical ultracentrifugation and small-angle X-ray scattering confirm that StPGM forms a dimer in solution. Multiple sequence alignments and phylogenetic studies show that a distinct subset of bacterial PGMs share the signature dimerization helix, while other bacterial and eukaryotic PGMs are likely monomers. These structural, biochemical, and bioinformatic studies of StPGM provide insights into the large α-D-phosphohexomutase enzyme superfamily to which it belongs, and are also relevant to the design of inhibitors specific to the bacterial PGMs.
Collapse
Affiliation(s)
- Ritcha Mehra-Chaudhary
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - John J. Tanner
- Department of Chemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Michael T. Henzl
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Lesa J. Beamer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| |
Collapse
|
7
|
Kourtoglou E, Anasontzis GE, Mamma D, Topakas E, Hatzinikolaou DG, Christakopoulos P. Constitutive expression, purification and characterization of a phosphoglucomutase from Fusarium oxysporum. Enzyme Microb Technol 2011; 48:217-24. [DOI: 10.1016/j.enzmictec.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/20/2010] [Accepted: 10/23/2010] [Indexed: 10/18/2022]
|
8
|
Wang Y, Zhang YH. A highly active phosphoglucomutase from Clostridium thermocellum: cloning, purification, characterization and enhanced thermostability. J Appl Microbiol 2010; 108:39-46. [DOI: 10.1111/j.1365-2672.2009.04396.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Gao H, Petzold CJ, Leavell MD, Leary JA. Investigation of ion/molecule reactions as a quantification method for phosphorylated positional isomers. an FT-ICR approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:916-924. [PMID: 12892915 DOI: 10.1016/s1044-0305(03)00401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A rapid and accurate method of quantifying positional isomeric mixtures of phosphorylated hexose and N-acetylhexosamine monosacchrides by using gas-phase ion/molecule reactions coupled with FT-ICR mass spectrometry is described. Trimethyl borate, the reagent gas, reacts readily with the singly charged negative ions of phosphorylated monosaccharides to form two stable product ions corresponding to the loss of one or two neutral molecules of methanol from the original adduct. Product distribution in the ion/molecule reaction spectra differs significantly for isomers phosphorylated in either the 1- or the 6-position. As a result, the percents of total ion current of these product ions for a mixture of the two isomers vary with its composition. In order to determine the percentage of each isomer in an unknown mixture, a multicomponent quantification method is utilized in which the percents of total ion current of the two product ions for each pure monosaccharide phosphate and the mixture are used in a two-equation, two-unknown system. The applicability of this method is demonstrated by successfully quantifying mock mixtures of four different isomeric pairs: Glucose-1-phosphate and glucose-6-phosphate; mannose-1-phosphate and mannose-6-phosphate; galactose-1-phosphate and galactose-6-phosphate; N-acetylglucosamine-1-phosphate and N-acetylglucosamine-6-phosphate. The effects of mixture concentrations and ion/molecule reaction conditions on the quantification are also discussed. Our results demonstrate that this assay is a fast, sensitive, and robust method to quantify isomeric mixtures of phosphorylated monosaccharides.
Collapse
Affiliation(s)
- Hong Gao
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
10
|
Chae YK, Markley JL. Functional recombinant rabbit muscle phosphoglucomutase from Escherichia coli. Protein Expr Purif 2000; 20:124-7. [PMID: 11035960 DOI: 10.1006/prep.2000.1288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene coding for phosphoglucomutase (PGM) from Oryctolagus cuniculus (rabbit) has been expressed in Escherichia coli under a T7 expression system with a His-tag. About half of the expressed PGM protein was present in inclusion bodies, but this protein was inactive when solubilized. The protein in the soluble cell fraction was isolated and purified in one step on a Ni-NTA column. The eluate from this column was adjusted to 95% saturated ammonium sulfate, and the resulting protein precipitate was resuspended in sodium phosphate buffer and dialyzed against 2.5 M ammonium sulfate. The final yield of protein was about 10 mg per liter of LB medium. The protein was judged to be greater than 90% pure on the basis of gel electrophoresis and activity measurements (128 U per milligram). Our motivation for developing this bacterial production system for PGM has been to prepare sufficient quantities of stable-isotope-labeled protein for experiments that utilize recently developed NMR technologies suitable for proteins the size of PGM (61.6 kDa). Preliminary NMR studies indicate that the current level of purity is adequate for this work. The construct described here was designed to incorporate an N-terminal His-tag for ease of isolation. Although PGM is a metalloprotein, the His-tag does not appear to interfere with activity. The presence of the His-tag should not pose a problem for proposed (31)P NMR investigations of the protein and its complexes in aqueous solution or incorporated into reverse micelles. However, we plan to design a cleavable His-tag for later (1)H, (13)C, (15)N studies of the active site, which includes essential histidine residues.
Collapse
Affiliation(s)
- Y K Chae
- Department of Biochemistry, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
11
|
Videira PA, Cortes LL, Fialho AM, Sá-Correia I. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol 2000; 66:2252-8. [PMID: 10788412 PMCID: PMC101485 DOI: 10.1128/aem.66.5.2252-2258.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pgmG gene of Sphingomonas paucimobilis ATCC 31461, the industrial gellan gum-producing strain, was cloned and sequenced. It encodes a 50,059-Da polypeptide that has phosphoglucomutase (PGM) and phosphomannomutase (PMM) activities and is 37 to 59% identical to other bifunctional proteins with PGM and PMM activities from gram-negative species, including Pseudomonas aeruginosa AlgC. Purified PgmG protein showed a marked preference for glucose-1-phosphate (G1P); the catalytic efficiency was about 50-fold higher for G1P than it was for mannose-1-phosphate (M1P). The estimated apparent K(m) values for G1P and M1P were high, 0.33 and 1.27 mM, respectively. The pgmG gene allowed the recovery of alginate biosynthetic ability in a P. aeruginosa mutant with a defective algC gene. This result indicates that PgmG protein can convert mannose-6-phosphate into M1P in the initial steps of alginate biosynthesis and, together with other results, suggests that PgmG may convert glucose-6-phosphate into G1P in the gellan pathway.
Collapse
Affiliation(s)
- P A Videira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|
12
|
Brautaset T, Petersen SB, Valla S. In vitro determined kinetic properties of mutant phosphoglucomutases and their effects on sugar catabolism in Escherichia coli. Metab Eng 2000; 2:104-14. [PMID: 10935726 DOI: 10.1006/mben.1999.0145] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on primary amino acid sequence comparisons with other phosphoglucomutases, 12 conserved residues in the Acetobacter xylinum phosphoglucomutase (CelB) were substituted by site-directed mutagenesis, resulting in mutant enzymes with Kcat values [glucose-1-phosphate (G-1-P) to glucose-6-phosphate] ranging from 0 to 46% relative to that of the wild-type enzyme. In combination with a versatile set of plasmid expression vectors these proteins were used in a metabolic engineering study on sugar catabolism in Escherichia coli. Mutants of E. coli deficient in phosphoglucomutase synthesize intracellular amylose when grown on galactose, due to accumulation of G-1-P. Wild-type celB can complement this lesion, and we show here that the ability of the mutant enzymes to complement is sensitive to variations in their respective in vitro determined Kcat and Km G-1-P values. Reduced catalytic efficiencies could be compensated by increasing the CelB expression level, and in this way a mutant protein (substitution of Thr-45 to Ala) displaying a 7600-fold reduced catalytic efficiency could be used to eliminate the amylose accumulation. Complementation experiments with the homologous phosphoglucomutase indicated that a Km G-1-P value significantly below that of CelB is not critical for the in vivo conversion of the substrate.
Collapse
Affiliation(s)
- T Brautaset
- UNIGEN Center for Molecular Biology, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim
| | | | | |
Collapse
|