1
|
Atser MG, Wenyonu CD, Rowe EM, Leung CLK, Cen HH, Queathem ED, Liu LT, Moravcova R, Rogalski J, Perrin D, Crawford P, Foster LJ, Alcazar A, Johnson JD. Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes. J Biol Chem 2025; 301:108398. [PMID: 40074083 PMCID: PMC11999607 DOI: 10.1016/j.jbc.2025.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization. In cardiomyocytes, metabolic flexibility is crucial for the fulfillment of high energy requirements. The PDK1 isoform is abundant in cardiomyocytes, but its specific contribution to cardiomyocyte metabolism is unclear. Here we show that PDK1 regulates cardiomyocyte fuel preference by mediating triacylglycerol turnover in differentiated H9c2 myoblasts using lentiviral shRNA to knockdown Pdk1 expression. Somewhat surprisingly, PDK1 loss did not affect overall PDH activity, basal glycolysis, or glucose oxidation revealed by oxygen consumption rate experiments and 13C6 glucose labeling. On the other hand, we observed decreased triacylglycerol turnover in H9c2 cells with PDK1 knockdown, which was accompanied by decreased mitochondrial fatty acid utilization following nutrient deprivation. 13C16 palmitate tracing of uniformly labeled acyl chains revealed minimal acyl chain shuffling within triacylglycerol, indicating that the triacylglycerol hydrolysis, and not re-esterification, was dysfunctional in PDK1 knockdown cells. Importantly, PDK1 loss did not significantly impact the cellular lipidome or triacylglycerol accumulation in the context of palmitic acid supplementation, suggesting that the effects of PDK1 on lipid metabolism were specific to the nutrient-deprived state. We validated that PDK1 loss decreased triacylglycerol turnover in Pdk1 knockout mice. Together, these findings implicate a novel role for PDK1 in lipid metabolism in cardiomyocytes, independent of its canonical roles in glucose metabolism.
Collapse
Affiliation(s)
- Michael G Atser
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea D Wenyonu
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyn M Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie L K Leung
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric D Queathem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leo T Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renata Moravcova
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Perrin
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leonard J Foster
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando Alcazar
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Atser MG, Wenyonu CD, Rowe EM, Leung CLK, Cen HH, Queathem ED, Liu LT, Moravcova R, Rogalski J, Perrin D, Crawford P, Foster LJ, Alcazar A, Johnson JD. Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618123. [PMID: 39464135 PMCID: PMC11507772 DOI: 10.1101/2024.10.14.618123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization. In cardiomyocytes, metabolic flexibility is crucial for the fulfillment of high energy requirements. The PDK1 isoform is abundant in cardiomyocytes, but its specific contribution to cardiomyocyte metabolism is unclear. Here we show that PDK1 regulates cardiomyocyte fuel preference by mediating triacylglycerol turnover in differentiated H9c2 myoblasts using lentiviral shRNA to knockdown Pdk1. Somewhat surprisingly, PDK1 loss did not affect overall PDH activity, basal glycolysis, or glucose oxidation revealed by oxygen consumption rate experiments and 13C6 glucose labelling. On the other hand, we observed decreased triacylglycerol turnover in H9c2 cells with PDK1 knockdown, which was accompanied by decreased mitochondrial fatty acid utilization following nutrient deprivation. 13C16 palmitate tracing of uniformly labelled acyl chains revealed minimal acyl chain shuffling within triacylglycerol, indicating that the triacylglycerol hydrolysis, and not re-esterification, was dysfunctional in PDK1 suppressed cells. Importantly, PDK1 loss did not significantly impact the cellular lipidome or triacylglycerol accumulation following palmitic acid treatment, suggesting that effects of PDK1 on lipid metabolism were specific to the nutrient-deprived state. We validated that PDK1 loss decreased triacylglycerol turnover in Pdk1 knockout mice. Together, these findings implicate a novel role for PDK1 in lipid metabolism in cardiomyocytes, independent of its canonical roles in glucose metabolism.
Collapse
Affiliation(s)
- Michael G. Atser
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chelsea D. Wenyonu
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Connie L. K. Leung
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric D. Queathem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Leo T. Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Renata Moravcova
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jason Rogalski
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
| | - David Perrin
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Peter Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Leonard J. Foster
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Armando Alcazar
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Vaniya A, Karlstaedt A, Gulkok D, Thottakara T, Liu Y, Fan S, Eades H, Vakrou S, Fukunaga R, Vernon HJ, Fiehn O, Abraham MR. Allele-specific dysregulation of lipid and energy metabolism in early-stage hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100073. [PMID: 39430912 PMCID: PMC11485168 DOI: 10.1016/j.jmccpl.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 10/22/2024]
Abstract
Introduction Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes that increase myocyte energy demand and lead to cardiac hypertrophy. However, it is unknown whether a common metabolic trait underlies cardiac phenotype at the early disease stage. To address this question and define cardiac biochemical pathology in early-stage HCM, we studied two HCM mouse models that express pathogenic variants in cardiac troponin T (Tnt2) or myosin heavy chain (Myh6) genes, and have marked differences in cardiac imaging phenotype, mitochondrial function at early disease stage. Methods We used a combination of echocardiography, transcriptomics, mass spectrometry-based untargeted metabolomics (GC-TOF, HILIC, CSH-QTOF), and computational modeling (CardioNet) to examine cardiac structural and metabolic remodeling at early disease stage (5 weeks of age) in R92W-TnT+/- and R403Q-MyHC+/- mutant mice. Data from mutants was compared with respective littermate controls (WT). Results Allele-specific differences in cardiac phenotype, gene expression and metabolites were observed at early disease stage. LV diastolic dysfunction was prominent in TnT mutants. Differentially-expressed genes in TnT mutant hearts were predominantly enriched in the Krebs cycle, respiratory electron transport, and branched-chain amino acid metabolism, whereas MyHC mutants were enriched in mitochondrial biogenesis, calcium homeostasis, and liver-X-receptor signaling. Both mutant hearts demonstrated significant alterations in levels of purine nucleosides, trisaccharides, dicarboxylic acids, acylcarnitines, phosphatidylethanolamines, phosphatidylinositols, ceramides and triglycerides; 40.4 % of lipids and 24.7 % of metabolites were significantly different in TnT mutants, whereas 10.4 % of lipids and 5.8 % of metabolites were significantly different in MyHC mutants. Both mutant hearts had a lower abundance of unsaturated long-chain acyl-carnitines (18:1, 18:2, 20:1), but only TnT mutants showed enrichment of FA18:0 in ceramide and cardiolipin species. CardioNet predicted impaired energy substrate metabolism and greater phospholipid remodeling in TnT mutants than in MyHC mutants. Conclusions Our systems biology approach revealed marked differences in metabolic remodeling in R92W-TnT and R403Q-MyHC mutant hearts, with TnT mutants showing greater derangements than MyHC mutants, at early disease stage. Changes in cardiolipin composition in TnT mutants could contribute to impairment of energy metabolism and diastolic dysfunction observed in this study, and predispose to energetic stress, ventricular arrhythmias under high workloads such as exercise.
Collapse
Affiliation(s)
- Arpana Vaniya
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Damla Gulkok
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Tilo Thottakara
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Hannah Eades
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hilary J. Vernon
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - M. Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
4
|
Vaniya A, Karlstaedt A, Gulkok DA, Thottakara T, Liu Y, Fan S, Eades H, Fukunaga R, Vernon HJ, Fiehn O, Roselle Abraham M. Lipid metabolism drives allele-specific early-stage hypertrophic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.564562. [PMID: 38014251 PMCID: PMC10680657 DOI: 10.1101/2023.11.10.564562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.
Collapse
|
5
|
Intracellular sodium elevation reprograms cardiac metabolism. Nat Commun 2020; 11:4337. [PMID: 32859897 PMCID: PMC7455741 DOI: 10.1038/s41467-020-18160-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 μM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic ‘fingerprint’. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure. The failing heart is characterised by both alterations in mitochondrial metabolism and an elevation of cytosolic sodium. Here, the authors use 23Na NMR and metabolic profiling to show these are related, and that elevation in intracellular Na reprograms cardiac substrate utilisation via effects on mitochondrial Na/Ca exchange.
Collapse
|
6
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
7
|
Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A 2016; 113:10436-41. [PMID: 27582470 DOI: 10.1073/pnas.1601650113] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematologic malignancies are frequently associated with cardiac pathologies. Mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a subset of acute myeloid leukemia patients, causing metabolic and epigenetic derangements. We have now discovered that altered metabolism in leukemic cells has a profound effect on cardiac metabolism. Combining mathematical modeling and in vivo as well as ex vivo studies, we found that increased amounts of the oncometabolite d-2-hydroxyglutarate (D2-HG), produced by IDH2 mutant leukemic cells, cause contractile dysfunction in the heart. This contractile dysfunction is associated with impaired oxidative decarboxylation of α-ketoglutarate, a redirection of Krebs cycle intermediates, and increased ATP citrate lyase (ACL) activity. Increased availability of D2-HG also leads to altered histone methylation and acetylation in the heart. We propose that D2-HG promotes cardiac dysfunction by impairing α-ketoglutarate dehydrogenase and induces histone modifications in an ACL-dependent manner. Collectively, our results highlight the impact of cancer cell metabolism on function and metabolism of the heart.
Collapse
|
8
|
Heier C, Haemmerle G. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1500-12. [PMID: 26924251 DOI: 10.1016/j.bbalip.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
9
|
Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Clin Sci (Lond) 2015; 129:561-74. [PMID: 26186741 DOI: 10.1042/cs20150204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/23/2022]
Abstract
In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function.
Collapse
|
10
|
Afolabi OK, Wusu AD, Ogunrinola OO, Abam EO, Babayemi DO, Dosumu OA, Onunkwor OB, Balogun EA, Odukoya OO, Ademuyiwa O. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol Toxicol 2015; 16:15. [PMID: 26044777 PMCID: PMC4455335 DOI: 10.1186/s40360-015-0015-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. However, the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic. Methods In order to investigate the effects of inorganic arsenic exposure on lipid metabolism, male albino rats were exposed to 50, 100 and 150 ppm arsenic as sodium arsenite and 100, 150 and 200 ppm arsenic as sodium arsenate respectively in their drinking water for 12 weeks. Results Dyslipidemia induced by the two arsenicals exhibited different patterns. Hypocholesterolemia characterised the effect of arsenite at all the doses, but arsenate induced hypercholesterolemia at the 150 ppm As dose. Hypertriglyceridemia was the hallmark of arsenate effect whereas plasma free fatty acids (FFAs) was increased by the two arsenicals. Reverse cholesterol transport was inhibited by the two arsenicals as evidenced by decreased HDL cholesterol concentrations whereas hepatic cholesterol was increased by arsenite (100 ppm As), but decreased by arsenite (150 ppm As) and arsenate (100 ppm As) respectively. Brain cholesterol and triglyceride were decreased by the two arsenicals; arsenate decreased the renal content of cholesterol, but increased renal content of triglyceride. Arsenite, on the other hand, increased the renal contents of the two lipids. The two arsenicals induced phospholipidosis in the spleen. Arsenite (150 ppm As) and arsenate (100 ppm As) inhibited hepatic HMG CoA reductase. At other doses of the two arsenicals, hepatic activity of the enzyme was up-regulated. The two arsenicals however up-regulated the activity of the brain enzyme. We observed positive associations between tissue arsenic levels and plasma FFA and negative associations between tissue arsenic levels and HDL cholesterol. Conclusion Our findings indicate that even though sub-chronic exposure to arsenite and arsenate through drinking water produced different patterns of dyslipidemia, our study identified two common denominators of dyslipidemia namely: inhibition of reverse cholesterol transport and increase in plasma FFA. These two denominators (in addition to other individual perturbations of lipid metabolism induced by each arsenical), suggest that in contrast to strengthening a dose-dependent effect phenomenon, the two forms of inorganic arsenic induced lipotoxic and non-lipotoxic dyslipidemia at “low” or “medium” doses and these might be responsible for the cardiovascular and other disease endpoints of inorganic arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Olusegun K Afolabi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria.
| | - Adedoja D Wusu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Olabisi O Ogunrinola
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, Lagos State University, Ojoo, Lagos, Nigeria.
| | - Esther O Abam
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Biochemistry Unit, Department of Chemical Sciences, Bells University of Technology, Ota, Nigeria.
| | - David O Babayemi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oluwatosin A Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Okechukwu B Onunkwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Elizabeth A Balogun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria. .,Department of Biochemistry, University of Ilorin, Ilorin, Nigeria.
| | - Olusegun O Odukoya
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Oladipo Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
11
|
Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol 2013; 366:180-93. [PMID: 22750050 DOI: 10.1016/j.mce.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One important serine/threonine protein kinase that monitors cellular energy status in the heart is adenosine monophosphate activated protein kinase (AMPK). AMPK is also a key enzyme that controls multiple catabolic and anabolic biochemical pathways in the heart and indirectly plays a crucial role in regulating cardiac function in both physiological and pathophysiological conditions. Herein, we review the involvement of AMPK in myocardial fatty acid and glucose transport and utilization, as it relates to basal cardiac function. We also assess the literature amassed on cardiac AMPK and discuss the controversies surrounding the role of AMPK in physiological and pathophysiological processes in the heart. The work reviewed herein also emphasizes areas that require further investigation for the purpose of eventually translating this information into improved patient care.
Collapse
Affiliation(s)
- Jeevan Nagendran
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
12
|
Chatham JC, Young ME. Regulation of myocardial metabolism by the cardiomyocyte circadian clock. J Mol Cell Cardiol 2013; 55:139-46. [PMID: 22766272 PMCID: PMC4107417 DOI: 10.1016/j.yjmcc.2012.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022]
Abstract
On a daily basis, the heart is subjected to dramatic fluctuations in energetic demand and neurohumoral influences, many of which occur in a temporally predictable manner. In order to preserve cardiac performance, the heart must therefore maintain metabolic flexibility, even within the confines of a single day. Recent studies have established mechanistic links between time-of-day-dependent oscillations in myocardial metabolism and the cardiomyocyte circadian clock. More specifically, evidence suggests that this cell autonomous molecular mechanism regulates myocardial glucose uptake, flux through both glycolysis and the hexosamine biosynthetic pathway, and pyruvate oxidation, as well as glycogen, triglyceride, and protein turnover. These observations have led to the hypothesis that the cardiomyocyte circadian clock confers the selective advantage of anticipation of increased energetic demand during the awake period. Here, we review the accumulative evidence in support of this hypothesis thus far, and discuss the possibility that attenuation of these metabolic rhythms, through disruption of the cardiomyocyte circadian clock, contributes towards the etiology of cardiac dysfunction in various disease states. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Kok BPC, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin 2012; 8:643-61. [PMID: 22999246 DOI: 10.1016/j.hfc.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, 11207 87th Avenue, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 2012; 55:101-10. [PMID: 22789525 DOI: 10.1016/j.yjmcc.2012.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Myocardial triacylglycerol (TAG) constitutes a highly dynamic fatty acid (FA) storage pool that can be used for an energy reserve in the cardiomyocyte. However, derangements in myocardial TAG metabolism and accumulation are commonly associated with cardiac disease, suggesting an important role of intramyocardial TAG turnover in the regulation of cardiac function. In cardiomyocytes, TAG is synthesized by acyltransferases and phosphatases at the sarcoplasmic reticulum and mitochondrial membrane and then packaged into cytosolic lipid droplets for temporary storage or into lipoproteins for secretion. A complex interplay among lipases, lipase regulatory proteins, and lipid droplet scaffold proteins leads to the controlled release of FAs from the cardiac TAG pool for subsequent mitochondrial β-oxidation and energy production. With the identification and characterization of proteins involved in myocardial TAG metabolism as well as the identification of the importance of cardiac TAG turnover, it is now evident that adequate regulation of myocardial TAG metabolism is critical for both cardiac energy metabolism and function. In this article, we review the current understanding of myocardial TAG metabolism and discuss the potential role of myocardial TAG turnover in cardiac health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
15
|
5'-AMP-activated protein kinase is inactivated by adrenergic signalling in adult cardiac myocytes. Biosci Rep 2012; 32:197-213. [PMID: 21851339 DOI: 10.1042/bsr20110076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In adult rat cardiac myocytes adrenaline decreased AMPK (AMP-activated protein kinase) activity with a half-time of approximately 4 min, decreased phosphorylation of AMPK (α-Thr172) and decreased phosphorylation of ACC (acetyl-CoA carboxylase). Inactivation of AMPK by adrenaline was through both α1- and β-ARs (adrenergic receptors), but did not involve cAMP or calcium signalling, was not blocked by the PKC (protein kinase C) inhibitor BIM I (bisindoylmaleimide I), by the ERK (extracellular-signal-regulated kinase) cascade inhibitor U0126 or by PTX (pertussis toxin). Adrenaline caused no measurable change in LKB1 activity. Adrenaline decreased AMPK activity through a process that was distinct from AMPK inactivation in response to insulin or PMA. Neither adrenaline nor PMA altered the myocyte AMP:ATP ratio although the adrenaline effect was attenuated by oligomycin and by AICAR (5-amino-4-imidazolecarboxamide-1-β-D-ribofuranoside), agents that mimic 'metabolic stress'. Inactivation of AMPK by adrenaline was abolished by 1 μM okadaic acid suggesting that activation of PP2A (phosphoprotein phosphatase 2A) might mediate the adrenaline effect. However, no change in PP2A activity was detected in myocyte extracts. Adrenaline increased phosphorylation of the AMPK β-subunit in vitro but there was no detectable change in vivo in phosphorylation of previously identified AMPK sites (β-Ser24, β-Ser108 or β-Ser182) suggesting that another site(s) is targeted.
Collapse
|
16
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
17
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1546] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
18
|
Kisrieva-Ware Z, Coggan AR, Sharp TL, Dence CS, Gropler RJ, Herrero P. Assessment of myocardial triglyceride oxidation with PET and 11C-palmitate. J Nucl Cardiol 2009; 16:411-21. [PMID: 19212800 PMCID: PMC2854568 DOI: 10.1007/s12350-009-9051-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND The goal of this study was to test whether myocardial triglyceride (TG) turnover including oxidation of TG-derived fatty acids (FA) could be assessed with PET and (11)C-palmitate. METHODS AND RESULTS A total of 26 dogs were studied fasted (FAST), during Intralipid infusion (IL), during a hyperinsulinemic-euglycemic clamp without (HIEG), or with Intralipid infusion (HIEG + IL). (11)C-palmitate was injected, and 45 minutes were allowed for labeling of myocardial TG pool. 3D PET data were then acquired for 60 minutes, with first 15 minutes at baseline followed by 45 minutes during cardiac work stimulated with constant infusion of either phenylephrine (FAST, n = 6; IL, n = 6; HIEG + IL, n = 6) or dobutamine (FAST, n = 4; HIEG, n = 4). Myocardial (11)C washout during adrenergic stimulation (AS) was fitted to a mono-exponential function (Km(PET)). To determine the source of this (11)C clearance, Km(PET) was compared to direct coronary sinus-arterial measurements of total (11)C activity, (11)C-palmitate, and (11)CO(2). Before AS, PET curves in all groups were flat indicating absence of net clearance of (11)C activity from heart. In both FAST groups, AS resulted in negligible net (11)C activity and (11)CO(2) production higher than net (11)C-palmitate uptake. AS with phenylephrine resulted in net myocardial uptake of total (11)C activity and (11)C-palmitate in IL and HIEG + IL, and (11)CO(2) production lower than (11)C-palmitate uptake. In contrast, AS with dobutamine in HIEG resulted in net clearance of all (11)C metabolites (total (11)C activity, (11)C-palmitate and (11)CO(2)) with (11)CO(2) contributing 66% to endogenous FA oxidation. The AS resulted in significant Km(PET) in all the groups, except HIEG + IL. However, positive correlation between Km(PET) and (11)CO(2) was observed only in HIEG (R (2) = 0.83, P = .09). CONCLUSIONS This is the first study to demonstrate that using PET and pre-labeling of intracardiac TG pool with (11)C-palmitate, noninvasive assessment of myocardial TG use is feasible under metabolic conditions that favor endogenous TG use such as increased metabolic demand (beta-adrenergic stimulation of cardiac work) with limited availability of exogenous substrate (HIEG).
Collapse
Affiliation(s)
- Zulfia Kisrieva-Ware
- Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2008; 50:3-21. [PMID: 18952573 DOI: 10.1194/jlr.r800031-jlr200] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fatty acids (FAs) are essential components of all lipid classes and pivotal substrates for energy production in all vertebrates. Additionally, they act directly or indirectly as signaling molecules and, when bonded to amino acid side chains of peptides, anchor proteins in biological membranes. In vertebrates, FAs are predominantly stored in the form of triacylglycerol (TG) within lipid droplets of white adipose tissue. Lipid droplet-associated TGs are also found in most nonadipose tissues, including liver, cardiac muscle, and skeletal muscle. The mobilization of FAs from all fat depots depends on the activity of TG hydrolases. Currently, three enzymes are known to hydrolyze TG, the well-studied hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL), discovered more than 40 years ago, as well as the relatively recently identified adipose triglyceride lipase (ATGL). The phenotype of HSL- and ATGL-deficient mice, as well as the disease pattern of patients with defective ATGL activity (due to mutation in ATGL or in the enzyme's activator, CGI-58), suggest that the consecutive action of ATGL, HSL, and MGL is responsible for the complete hydrolysis of a TG molecule. The complex regulation of these enzymes by numerous, partially uncharacterized effectors creates the "lipolysome," a complex metabolic network that contributes to the control of lipid and energy homeostasis. This review focuses on the structure, function, and regulation of lipolytic enzymes with a special emphasis on ATGL.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|
21
|
O'Donnell JM, Fields AD, Sorokina N, Lewandowski ED. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 2007; 44:315-22. [PMID: 18155232 DOI: 10.1016/j.yjmcc.2007.11.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/13/2022]
Abstract
Intramyocardial lipid handling in pressure-overload-induced heart failure remains poorly understood, and the balance between endogenous and exogenous lipid utilization for mitochondrial ATP production is essentially unknown. In this study, we determined the contribution of endogenous triacylglycerols (TAG) to mitochondrial oxidation relative to that of exogenous palmitate, glucose, and endogenous glycogen in the failing, pressure-overloaded rat heart. TAG content and turnover were also assessed to determine if lipid availability and mobility were altered. Dynamic-mode (13)C NMR was performed in intact hearts from aortic banded and sham operated Spraque-Dawley rats perfused with (13)C-labeled palmitate or glucose to assess TAG turnover rate and palmitate oxidation rate. The fractional contributions from palmitate, glucose, glycogen, and TAG to mitochondrial ATP production were determined from NMR analysis of heart extracts. TAG oxidation was not evident in HF, whereas the contribution of TAG to oxidative ATP production was significant in shams. TAG content was 39% lower in HF compared to sham, and TAG turnover rate was 60% lower in HF. During adrenergic challenge, TAG sources were again not oxidized in the HF group. In early cardiac failure, endogenous TAG oxidation was reduced in parallel to increased carbohydrate oxidation, with no change in exogenous palmitate oxidation. This finding was consistent with reduced TAG storage and mobilization. These data further elucidate the role of intermediary and lipid metabolism in the progression of LVH to failure, and contribute to emerging evidence linking the disruption of myocardial substrate use to cardiomyopathies.
Collapse
Affiliation(s)
- J Michael O'Donnell
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago IL, USA
| | | | | | | |
Collapse
|
22
|
Stowe KA, Burgess SC, Merritt M, Sherry AD, Malloy CR. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett 2006; 580:4282-7. [PMID: 16831433 DOI: 10.1016/j.febslet.2006.06.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/16/2006] [Accepted: 06/23/2006] [Indexed: 11/16/2022]
Abstract
Triglyceride turnover in the isolated C57/BL6 mouse heart was measured by dynamic 13C edit-(1)H observe NMR and the rate of fatty acid oxidation was determined by 13C NMR isotopomer analysis. In the presence of a physiological mixture of substrates, energy was produced in the citric acid cycle by oxidation of long-chain fatty acids (18%), ketones (34%), lactate (24%), pyruvate (7%), and other sources (17%). Exogenous fatty acids appeared in the triglyceride pool at 0.24 micromol/g dry wt/min, similar to the rate of oxidation of long-chain fatty acids, 0.16 micromol/g dry wt/min. Isoproterenol decreased the rate of de novo triglyceride synthesis and increased the rate of fatty acid oxidation.
Collapse
Affiliation(s)
- Kimberly A Stowe
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
23
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1466] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|
24
|
Lewin TM, Wang S, Nagle CA, Van Horn CG, Coleman RA. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am J Physiol Endocrinol Metab 2005; 288:E835-44. [PMID: 15598672 DOI: 10.1152/ajpendo.00300.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Because excess triacylglycerol (TAG) in nonadipose tissues is closely associated with the development of insulin resistance, interest has increased in the metabolism of long-chain acyl-CoAs toward beta-oxidation or the synthesis and storage of TAG. To learn whether a mitochondrial isoform of glycerol-3-phosphate acyltransferase (mtGPAT1) competes with carnitine palmitoyltransferase I (CPT I) for acyl-CoAs and whether it contributes to the formation of TAG, we overexpressed rat mtGPAT1 13-fold in primary hepatocytes obtained from fasted rats. When 100, 250, or 750 microM oleate was present, both TAG mass and the incorporation of [14C]oleate into TAG increased more than twofold in hepatocytes overexpressing mtGPAT1 compared with vector controls. Although the incorporation of [14C]oleate into CO2 and acid-soluble metabolites increased with increasing amounts of oleate in the media, these metabolites were approximately 40% lower in the Ad-mtGPAT1 infected cells, consistent with competition for acyl-CoAs between CPT I and mtGPAT1. A 50-60% decrease was also observed in [14C]oleate incorporation into cholesteryl ester. With increasing amounts of exogenous oleate, [14C]TAG secretion increased appropriately in vector control-infected hepatocytes, suggesting that the machinery for VLDL-TAG biogenesis and secretion was unaffected. Despite the marked increases in TAG synthesis and storage in the Ad-mtGPAT1 cells, however, the Ad-mtGPAT1 cells secreted the same amount of [14C]TAG as the vector control cells. Thus, in isolated hepatocytes, mtGPAT1 may synthesize a cytosolic pool of TAG that cannot be secreted.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
25
|
Labarthe F, Khairallah M, Bouchard B, Stanley WC, Des Rosiers C. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol Heart Circ Physiol 2005; 288:H1425-36. [PMID: 15550523 DOI: 10.1152/ajpheart.00722.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 μM).13C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 ± 118 vs. 825 ± 44 mU/min, P < 0.01). At the metabolic level, SHR hearts presented 1) a reduced exogenous LCFA contribution to the citric acid cycle flux (16 ± 1 vs. 44 ± 4%, P < 0.001) and an enhanced contribution of endogenous substrates (20 ± 4 vs. 1 ± 4%, P < 0.01); and 2) an increased lactate production from glycolysis, with a greater lactate-to-pyruvate production ratio. Addition of 0.2 mM octanoate reduced lactate dehydrogenase release (1,145 ± 155 vs. 1,890 ± 89 mU/min, P < 0.001) and increased exogenous fatty acid contribution to energy metabolism (23.7 ± 1.3 vs. 15.8 ± 0.8%, P < 0.01), which was accompanied by an equivalent decrease in unlabeled endogenous substrate contribution, possibly triglycerides (11.6 ± 1.5 vs. 19.0 ± 1.2%, P < 0.01). Taken altogether, these results demonstrate that the SHR heart shows an impaired capacity to withstand an acute adrenergic stress, which can be improved by increasing the contribution of exogenous fatty acid oxidation to energy production by MCFA supplementation.
Collapse
Affiliation(s)
- François Labarthe
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
Lewin TM, Coleman RA. Regulation of myocardial triacylglycerol synthesis and metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1634:63-75. [PMID: 14643794 DOI: 10.1016/j.bbalip.2003.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies showing a correlation of excess myocardial triacylglycerol stores with apoptosis, fibrosis, and contractile dysfunction indicate that dysregulation of triacylglycerol metabolism may contribute to cardiac disease. This review covers the regulation of heart triacylglycerol accumulation at the critical control points of fatty acid uptake, enzymes of triacylglycerol synthesis, lipolysis, and lipoprotein secretion. These pathways are discussed in the context of the central role myocardial triacylglycerol plays in cardiac energy metabolism and heart disease.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition, School of Public Health, University of North Carolina, CB #7400, Pittsboro Street, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
27
|
Abstract
The control of mitochondrial beta-oxidation, including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH(2). Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues.
Collapse
Affiliation(s)
- Simon Eaton
- Surgery Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
28
|
Chandler MP, Huang H, McElfresh TA, Stanley WC. Increased nonoxidative glycolysis despite continued fatty acid uptake during demand-induced myocardial ischemia. Am J Physiol Heart Circ Physiol 2002; 282:H1871-8. [PMID: 11959654 DOI: 10.1152/ajpheart.00976.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During stress, patients with coronary artery disease frequently fail to increase coronary flow and myocardial oxygen consumption (MVO(2)) in response to a greater demand for oxygen, resulting in "demand-induced" ischemia. We tested the hypothesis that dobutamine infusion with flow restriction stimulates nonoxidative glycolysis without a change in MVO(2) or fatty acid uptake. Measurements were made in the anterior wall of anesthetized open-chest swine hearts (n = 7). The left anterior descending (LAD) coronary artery flow was controlled via an extracorporeal perfusion circuit, and substrate uptake and oxidation were measured with radiotracers. Demand-induced ischemia was produced with intravenous dobutamine (15 microg x kg(-1) x min(-1)) and 20% reduction in LAD flow for 20 min. Despite no change in MVO(2), there was a switch from lactate uptake (5.9 +/- 3.1) to production (74.5 +/- 16.3 micromol/min), glycogen depletion (66%), and increased glucose uptake (105%), but no change in anterior wall power or the index of anterior wall energy efficiency. There was no change in the rate of tracer-measured fatty acid uptake; however, exogenous fatty acid oxidation decreased by 71%. Thus demand-induced ischemia stimulated nonoxidative glycolysis and lactate production, but did not effect fatty acid uptake despite a fall in exogenous fatty acid oxidation.
Collapse
Affiliation(s)
- Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
29
|
Decrock F, Groscolas R, Speake BK. FA composition of heart and skeletal muscle during embryonic development of the king penguin. Lipids 2002; 37:407-15. [PMID: 12030322 DOI: 10.1007/s1145-002-0909-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.
Collapse
Affiliation(s)
- Frederic Decrock
- Centre d'Ecologie et Physiologie Energétiques, Centre National de la Recherche Scientifique, Associé à l'Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
30
|
|
31
|
Hamilton C, Saggerson ED. Malonyl-CoA metabolism in cardiac myocytes. Biochem J 2000; 350 Pt 1:61-7. [PMID: 10926826 PMCID: PMC1221224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
(1) Malonyl-CoA is thought to play a signalling role in fuel-selection in cardiac muscle, but the rate at which the concentration of this potential signal can be changed has not previously been investigated. (2) Rapid changes in cellular malonyl-CoA could be observed when rat cardiac myocytes were incubated in glucose-free medium followed by re-addition of 5 mM glucose, or when cells were transferred from a medium containing glucose to a glucose-free medium. On addition of glucose, malonyl-CoA increased by 62% to a new steady-state level, at a rate of at least 0.4 nmol/g dry wt. per min. The half-time of this change was less than 3 min. After removal of glucose the malonyl-CoA content was estimated to decline by 0.43-0.55 nmol/g dry wt. per min. (3) Malonyl-CoA decarboxylase (MDC) is a possible route for disposal of malonyl-CoA. No evidence was obtained for a cytosolic activity of MDC in rat heart where most of the activity was found in the mitochondrial fraction. MDC in the mitochondrial matrix was not accessible to extramitochondrial malonyl-CoA. However, approx. 16% of the MDC activity in mitochondria was overt, in a manner that could not be explained by mitochondrial leakage. It is suggested that this, as yet uncharacterized, overt MDC activity could provide a route for disposal of cytosolic malonyl-CoA in the heart. (4) No activity of the condensing enzyme for the fatty acid elongation system could be detected in any heart subcellular fraction using two assay systems. A previous suggestion [Awan and Saggerson (1993) Biochem. J. 295, 61-66] that this could provide a route for disposal of cytosolic malonyl-CoA in heart should therefore be abandoned.
Collapse
Affiliation(s)
- C Hamilton
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | | |
Collapse
|
32
|
Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:37-57. [PMID: 10601694 DOI: 10.1016/s1388-1981(99)00182-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triacylglycerol (TAG) is an energy dense substance which is stored by several body tissues, principally adipose tissue and the liver. Utilisation of stored TAG as an energy source requires its mobilisation from these depots and transfer into the blood plasma. The means by which TAG is mobilised differs in adipose tissue and liver although the regulation of lipid metabolism in each of these organs is interdependent and synchronised in an integrated manner. This review deals principally with the mechanism of hepatic TAG mobilisation since this is a rapidly expanding area of research and may have important implications for the regulation of plasma very-low-density lipoprotein metabolism. TAG mobilisation plays an important role in fuel selection in non-hepatic tissues such as cardiac muscle and pancreatic islets and these aspects are also reviewed briefly. Finally, studies of certain rare inherited disorders of neutral lipid storage and mobilisation may provide useful information about the normal enzymology of TAG mobilisation in healthy tissues.
Collapse
Affiliation(s)
- G F Gibbons
- Metabolic Research Laboratory, Oxford Lipid Metabolism Group, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, UK.
| | | | | |
Collapse
|