1
|
Zhen Y, Zhu J, Yue M, Mi T. Impacts of phosphoenolpyruvate carboxylase gene silencing on photosynthetic efficiency and carbon fixation in Skeletonema costatum. Gene 2025; 933:148915. [PMID: 39244167 DOI: 10.1016/j.gene.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Diatoms play a crucial role in marine primary productivity through carbon fixation, which is essential for understanding the operation of marine biological pumps and carbon sinks. This study focuses on the phosphoenolpyruvate carboxylase (PEPC) gene, a key enzyme in the carbon assimilation pathway of diatoms, by investigating the consequences of its silencing in Skeletonema costatum. Through this approach, we aimed to clarify the distinct contributions of PEPC to the overall carbon fixation process. The mutant strains of S. costatum were subjected to thorough analysis to identify any shifts in physiological behavior, alterations in the gene expression of key carbon-fixing enzymes, and changes in the associated enzyme activities. Notably, the inhibition of the PEPC gene did not significantly affect the growth rate of S. costatum; however, it did have a notable impact on the photosynthetic apparatus, as evidenced by a reduction in the maximal electron transport rate and a decline in light utilization efficiency. A significant decrease was observed in both the enzymatic activity and gene expression of PEPCase. This down-regulation also affected other enzymes integral to the carbon fixation pathway, such as phosphoenolpyruvate carboxykinase and pyruvate-phosphate dikinase, indicating a wider metabolic perturbation. In contrast, the expression and activity of the Rubisco enzyme suggested that some facets of carbon fixation remained resilient. Furthermore, the substantial upregulation of carbonic anhydrase expression and activity probably represented an adaptive mechanism to sustain the inorganic carbon supply necessary for the carboxylation process of Rubisco. This research not only underscores the pivotal role of the PEPC gene in the carbon fixation of S. costatum but also expands our comprehension of carbon fixation mechanisms in diatoms.
Collapse
Affiliation(s)
- Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Jiwei Zhu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ming Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Gonzalez DI, Ynalvez RA. Comparison of the effects of nitrogen-, sulfur- and combined nitrogen- and sulfur-deprivations on cell growth, lipid bodies and gene expressions in Chlamydomonas reinhardtii cc5373-sta6. BMC Biotechnol 2023; 23:35. [PMID: 37684579 PMCID: PMC10492388 DOI: 10.1186/s12896-023-00808-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Biofuel research that aims to optimize growth conditions in microalgae is critically important. Chlamydomonas reinhardtii is a green microalga that offers advantages for biofuel production research. This study compares the effects of nitrogen-, sulfur-, and nitrogen and sulfur- deprivations on the C. reinhardtii starchless mutant cc5373-sta6. Specifically, it compares growth, lipid body accumulation, and expression levels of acetyl-CoA carboxylase (ACC) and phosphoenolpyruvate carboxylase (PEPC). RESULTS Among nutrient-deprived cells, TAP-S cells showed significantly higher total chlorophyll, cell density, and protein content at day 6 (p < 0.05). Confocal analysis showed a significantly higher number of lipid bodies in cells subjected to nutrient deprivation than in the control over the course of six days; N deprivation for six days significantly increased the size of lipid bodies (p < 0.01). In comparison with the control, significantly higher ACC expression was observed after 8 and 24 h of NS deprivation and only after 24 h with N deprivation. On the other hand, ACC and PEPC expression at 8 and 24 h of S deprivation was not significantly different from that in the control. A significantly lower PEPC expression was observed after 8 h of N and NS deprivation (p < 0.01), but a significantly higher PEPC expression was observed after 24 h (p < 0.01). CONCLUSIONS Based on our findings, it would be optimum to cultivate cc5373-sta6 cells in nutrient deprived conditions (-N, -S or -NS) for four days; whereby there is cell growth, and both a high number of lipid bodies and a larger size of lipid bodies produced.
Collapse
Affiliation(s)
- David I Gonzalez
- Department of Biological Science, Vanderbilt University, 465 21st Ave S, Nashville, TN, 37240, USA
| | - Ruby A Ynalvez
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd, Laredo, TX, 78041, USA.
| |
Collapse
|
3
|
Durall C, Kanchugal P S, Selmer M, Lindblad P. Oligomerization and characteristics of phosphoenolpyruvate carboxylase in Synechococcus PCC 7002. Sci Rep 2020; 10:3607. [PMID: 32107404 PMCID: PMC7046716 DOI: 10.1038/s41598-020-60249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPc) is an essential enzyme in plants. A photosynthetic form is present both as dimer and tetramer in C4 and CAM metabolism. Additionally, non-photosynthetic PEPcs are also present. The single, non-photosynthetic PEPc of the unicellular cyanobacterium Synechococcus PCC 7002 (Synechococcus), involved in the TCA cycle, was examined. Using size exclusion chromatography (SEC) and small angle X-ray scattering (SAXS), we observed that PEPc in Synechococcus exists as both a dimer and a tetramer. This is the first demonstration of two different oligomerization states of a non-photosynthetic PEPc. High concentration of Mg2+, the substrate PEP and a combination of low concentration of Mg2+ and HCO3- induced the tetramer form of the carboxylase. Using SEC-SAXS analysis, we showed that the oligomerization state of the carboxylase is concentration dependent and that, among the available crystal structures of PEPc, the scattering profile of PEPc of Synechococcus agrees best with the structure of PEPc from Escherichia coli. In addition, the kinetics of the tetramer purified in presence of Mg2+ using SEC, and of the mixed population purified in presence of Mg2+ using a Strep-tagged column were examined. Moreover, the enzyme showed interesting allosteric regulation, being activated by succinate and inhibited by glutamine, and not affected by either malate, 2-oxoglutarate, aspartic acid or citric acid.
Collapse
Affiliation(s)
- Claudia Durall
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, P.O. Box 523, SE-751 20, Uppsala, Sweden
| | - Sandesh Kanchugal P
- Department of Cell and Molecular Biology, BMC, Uppsala University, P.O. Box 596, SE-751 24, Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, BMC, Uppsala University, P.O. Box 596, SE-751 24, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, P.O. Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
4
|
Ting MKY, She YM, Plaxton WC. Transcript profiling indicates a widespread role for bacterial-type phosphoenolpyruvate carboxylase in malate-accumulating sink tissues. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5857-5869. [PMID: 29240945 PMCID: PMC5854131 DOI: 10.1093/jxb/erx399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing castor oil seeds where it tightly interacts with co-expressed PTPC polypeptides to form unusual hetero-octameric Class-2 PEPC complexes that are desensitized to allosteric inhibition by L-malate. Analysis of RNA-Seq and microarray transcriptome datasets revealed two distinct patterns of tissue-specific BTPC expression in vascular plants. Species such as Arabidopsis thaliana, strawberry, rice, maize, and poplar mainly exhibited pollen- or floral-specific BTPC expression. By contrast, BTPC transcripts were relatively abundant in developing castor, cotton, and soybean seeds, cassava tubers, as well as immature tomato, cucumber, grape, and avocado fruit. Immunoreactive 118 kDa BTPC polypeptides were detected on immunoblots of cucumber and tomato fruit extracts. Co-immunoprecipitation established that as in castor, BTPCs physically interact with endogenous PTPCs to form Class-2 PEPC complexes in tomato and cucumber fruit. We hypothesize that Class-2 PEPCs simultaneously maintain rapid anaplerotic PEP carboxylation and respiratory CO2 refixation in diverse, biosynthetically active sinks that accumulate high malate levels.
Collapse
Affiliation(s)
- Michael K Y Ting
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Yi-Min She
- Centre for Biologics Evaluation Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | - William C Plaxton
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Correspondence:
| |
Collapse
|
5
|
Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 2016; 19:1065-1076. [PMID: 27907245 DOI: 10.1111/1462-2920.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, I-44121, Italy
| | - Jochen Vermander
- Odisee Technologiecampus, Gebroeders de Smetstraat 1, Ghent, 9000, Belgium
| | - Paweł Kafarski
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| |
Collapse
|
6
|
Gomaa M, Al-Haj L, Abed R. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol 2016; 121:919-31. [DOI: 10.1111/jam.13232] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/25/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- M.A. Gomaa
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - L. Al-Haj
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - R.M.M. Abed
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| |
Collapse
|
7
|
Enhanced growth at low light intensity in the cyanobacterium Synechocystis PCC 6803 by overexpressing phosphoenolpyruvate carboxylase. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
|
9
|
Characterization of Phosphoenolpyruvate Carboxylase from Oceanimonas smirnovii in Escherichia coli. Appl Biochem Biotechnol 2015; 177:217-25. [PMID: 26142903 DOI: 10.1007/s12010-015-1739-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
In this study, phosphoenolpyruvate carboxylase (PEPC) derived from Oceanimonas smirnovii (OS) was expressed as a soluble protein in Escherichia coli BL21(DE3). We isolated OS-PEPC (a recombinant PEPC protein) by his-tag purification. The purified protein showed a single band upon analysis with SDS-PAGE, and it had an apparent molecular mass of 98 kDa. Pufied OS-PEPC showed a specific activity value of 21.8 ± 0.495 U/mg protein. Especially, OS-PEPC showed the enzymatic activity between 40 and 50 °C. It maintained enzymatic activity in basic pH conditions (pH value, 9-10). We also measured OS-PEPC PEP and HCO3 (-) saturation kinetics and confirmed the effect of divalent cation on OS-PEPC activity.
Collapse
|
10
|
Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol Lett 2014; 36:2199-208. [PMID: 24966045 DOI: 10.1007/s10529-014-1593-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
The regulation of lipid biosynthesis is important in photosynthetic eukaryotic cells. This regulation is facilitated by the direct synthesis of fatty acids and triacylglycerol (TAG), and by other controls of the main carbon metabolic pathway. In this study, knockdown of the mRNA expression of the Chlamydomonas phosphoenolpyruvate carboxylase isoform 1 (CrPEPC1) gene by RNA interference increased TAG level by 20 % but decreased PEPC activities in the corresponding transgenic algae by 39-50 %. The decrease in CrPEPC1 expression increased the expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, CrPEPC1 over-expression decreased TAG level by 37 % and increased PEPC activities by 157-184 %. These observations suggest that the lipid content of algal cells can be controlled by regulating the CrPEPC1 gene.
Collapse
|
11
|
Chang KS, Jeon H, Seo S, Lee Y, Jin E. Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering. Enzyme Microb Technol 2014; 60:64-71. [PMID: 24835101 DOI: 10.1016/j.enzmictec.2014.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022]
Abstract
In order to mitigate CO2 accumulation and decrease the rate of global warming and climate change, we previously presented a strategy for the development of an efficient CO2 capture and utilization system. The system employs two recombinant enzymes, carbonic anhydrase and phosphoenolpyruvate carboxylase, which were originated from microalgae. Although utilization of this integrated system would require a large quantity of high quality PEPCase protein, such quantities could be produced by increasing the solubility of the Phaeodactylum tricornutum PEPCase 1 (PtPEPCase 1) protein in the Escherichia coli heterologous expression system. We first expressed the putative mitochondria targeting peptide- and chloroplast transit peptide-truncated proteins of PtPEPCase 1, mPtPEPCase 1 and cPtPEPCase 1, respectively, in E. coli. After affinity chromatography, the amount of purified PEPCase protein from 500mL of E. coli culture was greatest for cPtPEPCase 1 (1.99mg), followed by mPtPEPCase 1 (0.82mg) and PtPEPCase 1 (0.61mg). Furthermore, the enzymatic activity of mPtPEPCase 1 and cPtPEPCase 1 showed approximately 1.6-fold (32.19 units/mg) and 3-fold (59.48 units/mg) increases, respectively. Therefore, cPtPEPCase 1 purified using the E. coli heterogeneous expression system could be a strong candidate for a platform technology to capture CO2 and produce value-added four-carbon platform chemicals.
Collapse
Affiliation(s)
- Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hancheol Jeon
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Seungbeom Seo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yew Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
12
|
Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem J 2014; 458:109-18. [PMID: 24266766 DOI: 10.1042/bj20131191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.
Collapse
|
13
|
Park S, Hong S, Pack SP, Lee J. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate. Bioprocess Biosyst Eng 2013; 37:331-5. [PMID: 23719931 DOI: 10.1007/s00449-013-0981-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.
Collapse
Affiliation(s)
- Soohyun Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | | | | | | |
Collapse
|
14
|
Park J, Khuu N, Howard ASM, Mullen RT, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact in vivo and associate with the surface of mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:251-62. [PMID: 22404138 DOI: 10.1111/j.1365-313x.2012.04985.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.
Collapse
Affiliation(s)
- Joonho Park
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
15
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
16
|
The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451. FEBS Lett 2012; 586:1049-54. [PMID: 22569262 DOI: 10.1016/j.febslet.2012.02.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/08/2012] [Accepted: 02/26/2012] [Indexed: 11/22/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.
Collapse
|
17
|
O’Leary B, Fedosejevs ET, Hill AT, Bettridge J, Park J, Rao SK, Leach CA, Plaxton WC. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5485-95. [PMID: 21841182 PMCID: PMC3223045 DOI: 10.1093/jxb/err225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism.
Collapse
Affiliation(s)
- Brendan O’Leary
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Eric T. Fedosejevs
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Allyson T. Hill
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - James Bettridge
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Joonho Park
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Srinath K. Rao
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Craig A. Leach
- Progenra Inc., 271A Great Valley Parkway, Malvern, Pennsylvania 19355, USA
| | - William C. Plaxton
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|
19
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
20
|
O'Leary B, Rao S, Plaxton W. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds. Biochem J 2011; 433:65-74. [PMID: 20950272 PMCID: PMC3010082 DOI: 10.1042/bj20101361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107 kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118 kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.
Collapse
Key Words
- oil seed metabolism
- phosphoenolpyruvate carboxylase (pepc)
- phosphorylation site-specific antibodies
- protein phosphorylation
- ricinus communis (castor oil plant)
- site-directed mutagenesis
- atppc, plant-type phosphoenolpyruvate carboxylase isozyme from arabidopsis thaliana
- btpc, bacterial-type phosphoenolpyruvate carboxylase
- cos, castor (ricinus communis) oil seed(s)
- i50, inhibitor concentration producing 50% inhibition of enzyme activity
- pep, phosphoenolpyruvate
- pepc, pep carboxylase
- pp2a, protein phosphatase type-2a
- pp2ac, catalytic subunit of pp2a
- ptpc, plant-type pepc
- rcppc, btpc from ricinus communis
Collapse
Affiliation(s)
- Brendan O'Leary
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Srinath K. Rao
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - William C. Plaxton
- *Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
- †Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
21
|
Perotti VE, Figueroa CM, Andreo CS, Iglesias AA, Podestá FE. Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:527-535. [PMID: 21802611 DOI: 10.1016/j.plantsci.2010.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 08/02/2010] [Indexed: 05/31/2023]
Abstract
Phosphoenolpyruvate (PEP) carboxylase (PEPCase) from orange fruit juice sacs has been cloned and heterogously expressed in high yield. The purified recombinant enzyme displays properties typical of plant PEPCase, including activation by sugar phosphates and inhibition by malate and citrate. Malate inhibition is weak in the physiological pH range, and the enzyme is also poorly affected by Glu and Asp, known inhibitors of C(3) plants PEPCases. However, it is strongly inhibited by citrate. Orange fruit PEPCase phosphorylation by mammalian protein kinase A decreased inhibition by malate. The enzyme presents an unusual high molecular mass in the absence of PEP, while in its presence it displays a more common tetrameric arrangement. The overall properties of the enzyme suggest that it is suited for organic acid synthesis and NADH reoxidation in the mature fruit. The present study provides the first analysis of a recombinant fruit PEPCase.
Collapse
Affiliation(s)
- Valeria E Perotti
- Centro de Estudios Fotosintéticos y Bioquímicos and Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET-UNR), Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | |
Collapse
|
22
|
O'Leary B, Rao SK, Kim J, Plaxton WC. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 2009; 284:24797-805. [PMID: 19605358 DOI: 10.1074/jbc.m109.022863] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated anaplerotic enzyme situated at a major branch point of the plant C metabolism. Two distinct oligomeric classes of PEPC occur in the triglyceride-rich endosperm of developing castor oil seeds (COS). Class-1 PEPC is a typical homotetramer composed of identical 107-kDa plant-type PEPC (PTPC) subunits (encoded by RcPpc3), whereas the novel Class-2 PEPC 910-kDa hetero-octameric complex arises from a tight interaction between Class-1 PEPC and distantly related 118-kDa bacterial-type PEPC (BTPC) polypeptides (encoded by RcPpc4). Here, COS BTPC was expressed from full-length RcPpc4 cDNA in Escherichia coli as an active PEPC that exhibited unusual properties relative to PTPCs, including a tendency to form large aggregates, enhanced thermal stability, a high K(m)((PEP)), and insensitivity to metabolite effectors. A chimeric 900-kDa Class-2 PEPC hetero-octamer having a 1:1 stoichiometry of BTPC:PTPC subunits was isolated from a mixture of clarified extracts containing recombinant RcPPC4 and an Arabidopsis thaliana Class-1 PEPC (the PTPC, AtPPC3). The purified Class-2 PEPC exhibited biphasic PEP saturation kinetics with high and low affinity sites attributed to its AtPPC3 and RcPPC4 subunits, respectively. The RcPPC4 subunits: (i) catalyzed the majority of the Class-2 PEPC V(max), particularly in the presence of the inhibitor l-malate, and (ii) also functioned as Class-2 PEPC regulatory subunits by modulating PEP binding and catalytic potential of its AtPPC3 subunits. BTPCs appear to associate with PTPCs to form stable Class-2 PEPC complexes in vivo that are hypothesized to maintain high flux from PEP under physiological conditions that would otherwise inhibit Class-1 PEPCs.
Collapse
Affiliation(s)
- Brendan O'Leary
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
23
|
Feria AB, Alvarez R, Cochereau L, Vidal J, García-Mauriño S, Echevarría C. Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. PLANT PHYSIOLOGY 2008; 148:761-74. [PMID: 18753284 PMCID: PMC2556803 DOI: 10.1104/pp.108.124982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 05/20/2023]
Abstract
During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca(2+)-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages.
Collapse
Affiliation(s)
- Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Gennidakis S, Rao S, Greenham K, Uhrig RG, O'Leary B, Snedden WA, Lu C, Plaxton WC. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:839-49. [PMID: 17894783 DOI: 10.1111/j.1365-313x.2007.03274.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two classes of phosphoenolpyruvate carboxylase (PEPC) sharing the same 107-kDa catalytic subunit (p107) were previously purified from developing castor oil seed (COS) endosperm. The association of p107 with an immunologically unrelated 64-kDa polypeptide (p64) causes pronounced physical and kinetic differences between the Class-1 PEPC p107 homotetramer and Class-2 PEPC p107/p64 hetero-octamer. Tryptic peptide sequencing matched p64 to the deduced C-terminal half of several bacterial-type PEPCs (BTPCs) of vascular plants. Immunoblots probed with anti-(COS p64 peptide or p107)-IgG established that: (i) BTPC exists in vivo as an approximately 118-kDa polypeptide (p118) that is rapidly truncated to p64 by an endogenous cysteine endopeptidase during incubation of COS extracts on ice, and (ii) mature and germinated COS contain Class-1 PEPC and p107, but no detectable Class-2 PEPC nor p118. Non-denaturing PAGE, in-gel PEPC activity staining and immunoblotting of developing COS extracts demonstrated that p118 and p107 are subunits of the non-proteolysed approximately 910-kDa Class-2 PEPC complex. As total PEPC activity of clarified COS extracts was unaffected following p118 truncation to p64, the BTPC p118 may function as a regulatory rather than catalytic subunit of the Class-2 PEPC. Moreover, recombinant AtPPC3 and AtPPC4 (Arabidopsis orthologs of COS p107 and p118) expressed as active and inactive PEPCs, respectively. Cloning of cDNAs encoding p118 (RcPpc4) and p107 (RcPpc3) confirmed their respective designation as bacterial- and plant-type PEPCs. Levels of RcPpc3 and RcPpc4 transcripts generally mirrored the respective amounts of p107 and p118. The collective findings provide insights into the molecular features and functional significance of vascular plant BTPCs.
Collapse
Affiliation(s)
- Sam Gennidakis
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Murmu J, Plaxton WC. Phosphoenolpyruvate carboxylase protein kinase from developing castor oil seeds: partial purification, characterization, and reversible control by photosynthate supply. PLANTA 2007; 226:1299-310. [PMID: 17624549 DOI: 10.1007/s00425-007-0551-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/09/2007] [Indexed: 05/16/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) protein kinase (PPCK) was purified approximately 1,500-fold from developing castor oil seeds (COS). Gel filtration and immunoblotting with anti-(rice PPCK2)-immune serum indicated that this Ca2+-insensitive PPCK exists as a 31-kDa monomer. COS PPCK-mediated rephosphorylation of the 107-kDa subunit (p107) of COS PEPC1 (Km = 2.2 microM) activated PEPC1 by approximately 80% when assayed under suboptimal conditions (pH 7.3, 0.2 mM PEP, and 0.125 mM malate). COS PPCK displayed remarkable selectivity for phosphorylating COS PEPC1 (relative to tobacco, sorghum, or maize PEPCs), exhibited a broad pH-activity optima of approximately pH 8.5, and at pH 7.3 was activated 40-65% by 1 mM PEP, or 10 mM Gln or Asn, but inhibited 65% by 10 mM L-malate. The possible control of COS PPCK by disulfide-dithiol interconversion was suggested by its rapid inactivation and subsequent reactivation when incubated with oxidized glutathione and then dithiothreitol. In vitro PPCK activity correlated with in vivo p107 phosphorylation status, with both peaking in mid-cotyledon to full-cotyledon developing COS. Notably, PPCK activity and p107 phosphorylation of developing COS were eliminated following pod excision or prolonged darkness of intact plants. Both effects were fully reversed 12 h following reillumination of darkened plants. These results implicate a direct relationship between the up-regulation of COS PPCK and p107 phosphorylation during the recommencement of photosynthate delivery from illuminated leaves to the non-photosynthetic COS. Overall, the results support the hypothesis that PEPC and PPCK participate in the control of photosynthate partitioning into C-skeletons needed as precursors for key biosynthetic pathways of developing COS.
Collapse
Affiliation(s)
- Jhadeswar Murmu
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | |
Collapse
|
26
|
Moellering ER, Ouyang Y, Mamedov TG, Chollet R. The two divergent PEP-carboxylase catalytic subunits in the green microalga Chlamydomonas reinhardtii respond reversibly to inorganic-N supply and co-exist in the high-molecular-mass, hetero-oligomeric Class-2 PEPC complex. FEBS Lett 2007; 581:4871-6. [PMID: 17888908 DOI: 10.1016/j.febslet.2007.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
Our recent molecular studies revealed two divergent PEP-carboxylase (PEPC [Ppc]) encoding genes in the green microalga Chlamydomonas reinhardtii, CrPpc1 and CrPpc2, which are coordinately responsive to changes in inorganic-N and -C supply at the transcript level [Mamedov, T.G., Moellering, E.R. and Chollet, R. (2005) Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga C. reinhardtii, Plant J. 42, 832-843]. Here, we report the distribution of these two encoded catalytic subunits in the minor Class-1 and predominant Class-2 PEPC enzyme-forms, the latter of which is a novel high-molecular-mass, hetero-oligomeric complex containing both CrPpc1 (p109) and CrPpc2 (p131) polypeptides. The Class-1 enzyme, however, is a typical PEPC homotetramer comprised solely of p109. We also document that the amount of both CrPpc1/2 catalytic subunits is up-/down-regulated by varying levels of NH(4)(+) supplied to the culture medium.
Collapse
Affiliation(s)
- Eric R Moellering
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|
27
|
Dorion S, Matton DP, Rivoal J. Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato. PLANTA 2006; 224:108-24. [PMID: 16395585 DOI: 10.1007/s00425-005-0199-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
A cDNA encoding Solanum chacoense cytosolic NDPK (NDPK1, EC 2.7.4.6) was isolated. The open reading frame encoded a 148 amino acid protein that shares homology with other cytosolic NDPKs including a conserved N-terminal domain. S. chacoense NDPK1 was expressed in Escherichia coli as a 6xHis-tagged protein and purified by affinity chromatography. The recombinant protein exhibited a pattern of abortive complex formation suggesting that the enzyme is strongly regulated by the NTP/NDP ratio. A polyclonal antibody generated against recombinant NDPK1 was specific for the cytosolic isoform in Solanum tuberosum as shown from immunoprecipitation experiments and immunoblot analysis of chloroplasts and mitochondria preparations. NDPK activity and NDPK1 protein were found at different levels in various vegetative and reproductive tissues. DEAE fractogel analyses of NDPK activity in root tips, leaves, tubers and cell cultures suggest that NDPK1 constitutes the bulk of extractable NDPK activity in all these organs. NDPK activity and NDPK1 protein levels raised during the exponential growth phase of potato cell cultures whereas no rise in activity or NDPK1 protein was observed when sucrose concentration in the culture was manipulated to limit growth. Activity measurements, immunoblot analysis as well as immunolocalization experiments performed on potato root tips and shoot apical buds demonstrated that NDPK1 was predominantly localized in the meristematic zones and provascular tissues of the apical regions. These data suggest that NDPK1 plays a specific role in the supply of UTP during early growth of plant meristematic and provascular tissues.
Collapse
Affiliation(s)
- Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, PQ, Canada, H1X 2B2
| | | | | |
Collapse
|
28
|
Crowley V, Gennidakis S, Plaxton WC. In vitro proteolysis of phosphoenolpyruvate carboxylase from developing castor oil seeds by an endogenous thiol endopeptidase. PLANT & CELL PHYSIOLOGY 2005; 46:1855-62. [PMID: 16188875 DOI: 10.1093/pcp/pci203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two novel phosphoenolpyruvate carboxylase (PEPC) isoforms have been biochemically characterized from endosperm of developing castor oil seeds (COS). The association of a 107 kDa PEPC subunit (p107) with an immunologically unrelated bacterial PEPC-type 64 kDa polypeptide leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. COS p107 is quite susceptible to limited proteolysis during PEPC purification. An endogenous asparaginyl endopeptidase appears to catalyze the in vitro cleavage of an approximately 120 amino acid polypeptide from the N-terminal end of p107, producing a truncated 98 kDa polypeptide (p98). Immunoblotting was used to estimate proteolytic activity by following the disappearance of p107 and concomitant appearance of p98 during incubation of clarified COS extracts at 4 degrees C. The in vitro proteolysis of p107 to p98 only occurred in the combined presence of 2 mM dithiothreitol and high salt concentrations (particularly SO(4) (2-) and PO(4) (2-) salts). Although p107-degrading activity was present throughout COS development, it was most pronounced in endosperm extracts from older beans. Several protease inhibitors, including two commercially available protease inhibitor cocktails, were tested for their ability to prevent p107 proteolysis. All of the inhibitors were ineffective except for 2,2'-dipyridyl disulfide (DPDS), a relatively inexpensive and underutilized active site inhibitor of plant thiol proteases. Asparaginyl endopeptidase activity of COS extracts was unaffected by 20% (NH(4))(2)SO(4) when determined in the presence or absence of 2 mM dithiothreitol using a spectrophotometric assay based upon the hydrolysis of benzoyl-L-Asn-p-nitroanilide. Thus, we propose that the combined presence of 2 mM dithiothreitol and 20% (NH(4))(2)SO(4) promotes a p107 conformational change that exposes the N-terminal region asparaginyl residue where p107 hydrolysis is believed to occur.
Collapse
Affiliation(s)
- Valerie Crowley
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
29
|
Tripodi KE, Turner WL, Gennidakis S, Plaxton WC. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. PLANT PHYSIOLOGY 2005; 139:969-78. [PMID: 16169958 PMCID: PMC1256010 DOI: 10.1104/pp.105.066647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.
Collapse
Affiliation(s)
- Karina E Tripodi
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Mamedov TG, Moellering ER, Chollet R. Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:832-43. [PMID: 15941397 DOI: 10.1111/j.1365-313x.2005.02416.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC [Ppc]) has been previously purified and characterized in biochemical and immunological terms from two green microalgae, Chlamydomonas reinhardtii and Selenastrum minutum. The findings indicate that these algae possess at least two distinct PEPC enzyme-forms, homotetrameric Class-1 and heteromeric Class-2, that differ significantly from each other and their plant and prokaryotic counterparts. Surprisingly, however, green-algal PEPC has been unexplored to date in molecular terms. This study reports the molecular cloning of the two Ppc genes in C. reinhardtii (CrPpc1, CrPpc2), each of which is transcribed in vivo and encodes a fully active, recombinant PEPC that lacks the regulatory, N-terminal seryl-phosphorylation domain that typifies the vascular-plant enzyme. These distinct catalytic subunit-types differ with respect to their (i) predicted molecular mass ( approximately 108.9 [CrPpc1] versus approximately 131.2 kDa [CrPpc2]) and critical C-terminal tetrapeptide; and (ii) immunoreactivity with antisera against the p102 and p130 polypeptides of S. minutum PEPC1/PEPC2 and PEPC2, respectively. Only the Ppc1 transcript encodes the p102 catalytic subunits common to both Class-1 and Class-2 enzyme-forms in C. reinhardtii. The steady-state transcript levels of both CrPpc1/2 are coordinately up-/down-regulated by changes in [CO2] or [NH] during growth, and generally mirror the response of cytoplasmic glutamine synthetase (Gs1) transcript abundance to changes in inorganic [N] at 5% CO2. These collective findings provide key molecular insight into the Ppc genes and corresponding PEPC catalytic subunits in the eukaryotic algae.
Collapse
Affiliation(s)
- Tarlan G Mamedov
- Department of Biochemistry, University of Nebraska-Lincoln, George W. Beadle Center, Lincoln, NE 68588-0664, USA
| | | | | |
Collapse
|
31
|
Reinfelder JR, Milligan AJ, Morel FMM. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. PLANT PHYSIOLOGY 2004; 135:2106-11. [PMID: 15286292 PMCID: PMC520782 DOI: 10.1104/pp.104.041319] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/27/2004] [Accepted: 04/29/2004] [Indexed: 05/17/2023]
Abstract
The role of a C(4) pathway in photosynthetic carbon fixation by marine diatoms is presently debated. Previous labeling studies have shown the transfer of photosynthetically fixed carbon through a C(4) pathway and recent genomic data provide evidence for the existence of key enzymes involved in C(4) metabolism. Nonetheless, the importance of the C(4) pathway in photosynthesis has been questioned and this pathway is seen as redundant to the known CO(2) concentrating mechanism of diatoms. Here we show that the inhibition of phosphoenolpyruvate carboxylase (PEPCase) by 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate resulted in a more than 90% decrease in whole cell photosynthesis in Thalassiosira weissflogii cells acclimated to low CO(2) (10 microm), but had little effect on photosynthesis in the C(3) marine Chlorophyte, Chlamydomonas sp. In 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate-treated T. weissflogii cells, elevated CO(2) (150 microm) or low O(2) (80-180 microm) restored photosynthesis to the control rate linking PEPCase inhibition with CO(2) supply in this diatom. In C(4) organic carbon-inorganic carbon competition experiments, the (12)C-labeled C(4) products of PEPCase, oxaloacetic acid and its reduced form malic acid suppressed the fixation of (14)C-labeled inorganic carbon by 40% to 50%, but had no effect on O(2) evolution in photosynthesizing diatoms. Oxaloacetic acid-dependent O(2) evolution in T. weissflogii was twice as high in cells acclimated to 10 microm rather than 22 microm CO(2), indicating that the use of C(4) compounds for photosynthesis is regulated over the range of CO(2) concentrations observed in marine surface waters. Short-term (14)C uptake (silicone oil centrifugation) and CO(2) release (membrane inlet mass spectrometry) experiments that employed a protein denaturing cell extraction solution containing the PEPCKase inhibitor mercaptopicolinic acid revealed that much of the carbon taken up by diatoms during photosynthesis is stored as organic carbon before being fixed in the Calvin cycle, as expected if the C(4) pathway functions as a CO(2) concentrating mechanism. Together these results demonstrate that the C(4) pathway is important in carbon accumulation and photosynthetic carbon fixation in diatoms at low (atmospheric) CO(2).
Collapse
Affiliation(s)
- John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
32
|
Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 2003; 414:170-9. [PMID: 12781768 DOI: 10.1016/s0003-9861(03)00170-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate and Pi using Mg2+ or Mn2+ as a cofactor. PEPC plays a key role in photosynthesis by C4 and Crassulacean acid metabolism plants, in addition to its many anaplerotic functions. Recently, three-dimensional structures of PEPC from Escherichia coli and the C4 plant maize (Zea mays) were elucidated by X-ray crystallographic analysis. These structures reveal an overall square arrangement of the four identical subunits, making up a "dimer-of-dimers" and an eight-stranded beta barrel structure. At the C-terminal region of the beta barrel, the Mn2+ and a PEP analog interact with catalytically essential residues, confirmed by site-directed mutagenesis studies. At about 20A from the beta barrel, an allosteric inhibitor (aspartate) was found to be tightly bound to down-regulate the activity of the E. coli enzyme. In the case of maize C4-PEPC, the putative binding site for an allosteric activator (glucose 6-phosphate) was also revealed. Detailed comparison of the various structures of E. coli PEPC in its inactive state with maize PEPC in its active state shows that the relative orientations of the two subunits in the basal "dimer" are different, implicating an allosteric transition. Dynamic movements were observed for several loops due to the binding of either an allosteric inhibitor, a metal cofactor, a PEP analog, or a sulfate anion, indicating the functional significance of these mobile loops in catalysis and regulation. Information derived from these three-dimensional structures, combined with related biochemical studies, has established models for the reaction mechanism and allosteric regulation of this important C-fixing enzyme.
Collapse
|
33
|
Blonde JD, Plaxton WC. Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oilseeds. J Biol Chem 2003; 278:11867-73. [PMID: 12519778 DOI: 10.1074/jbc.m211269200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is believed to play an important role in producing malate as a substrate for fatty acid synthesis by leucoplasts of the developing castor oilseed (COS) endosperm. Two kinetically distinct isoforms of COS PEPC were resolved by gel filtration chromatography and purified. PEPC1 is a typical 410-kDa homotetramer composed of 107-kDa subunits (p107). In contrast, PEPC2 exists as an unusual 681-kDa hetero-octamer composed of the same p107 found in PEPC1 and an associated 64-kDa polypeptide (p64) that is structurally and immunologically unrelated to p107. Relative to PEPC1, PEPC2 demonstrated significantly enhanced thermal stability and a much lower sensitivity to allosteric activators (Glc-6-P, Glc-1-P, Fru-6-P, glycerol-3-P) and inhibitors (Asp, Glu, malate) and pH changes within the physiological range. Nondenaturing PAGE of clarified extracts followed by in-gel PEPC activity staining indicated that the ratio of PEPC1:PEPC2 increases during COS development such that only PEPC1 is detected in mature COS. Dissimilar developmental profiles and kinetic properties support the hypotheses that (i) PEPC1 functions to replenish dicarboxylic acids consumed through transamination reactions required for storage protein synthesis, whereas (ii) PEPC2 facilitates PEP flux to malate in support of fatty acid synthesis. Interestingly, the respective physical and kinetic properties of COS PEPC1 and PEPC2 are remarkably comparable with those of the homotetrameric low M(r) Class 1 and heteromeric high M(r) Class 2 PEPC isoforms of unicellular green algae.
Collapse
Affiliation(s)
- James D Blonde
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
34
|
Norici A, Dalsass A, Giordano M. Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. PHYSIOLOGIA PLANTARUM 2002; 116:186-191. [PMID: 12354194 DOI: 10.1034/j.1399-3054.2002.1160207.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anaplerosis plays a very important role in providing C for N assimilation. In green algae and higher plants, phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) is the main anaplerotic carboxylase. On this basis we hypothesize that N availability affects PEPC expression. In order to test this hypothesis, the model organism Dunaliella salina was cultured under a variety of N growth regimes. Our results show that the level of PEC activity was unaffected by the N form in which N was supplied to the cells, when N concentration was low (0.5-0.01 mM). When cells were adapted to growth at 5 mM N, however, PEPC activity on a per cell basis was substantially higher in NH4+-adapted cells as compared to their NO3--adapted counterparts; however, the same difference was not observed on a protein basis. This notwithstanding, even at low N, PEPC of cells cultured in the presence of either NH4+ or NO3- appeared to differ in their molecular masses. These results suggest that cells adapted to different N-form express distinct PEPC isoforms. In addition to this, we observed that, in algae adapted to high (5 mM) NH4+ concentration, a PEPC isoform was induced that differed from the isoforms observed in algae adapted to lower concentrations of the same N-source. These findings lead us to conclude that the expression of PEPC isoforms in D. salina responds to the variation in the C-skeleton demand deriving from changes in the chemical form and availability of N.
Collapse
Affiliation(s)
- Alessandra Norici
- Istituto di Scienze del Mare, Facoltà di Scienze, Università di Ancona, Via Brecce ianche, 6013 Ancona, Italy Corresponding author, e-mail:
| | | | | |
Collapse
|
35
|
Rivoal J, Turpin DH, Plaxton WC. In vitro phosphorylation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum. PLANT & CELL PHYSIOLOGY 2002; 43:785-92. [PMID: 12154141 DOI: 10.1093/pcp/pcf092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we described two distinct classes of phosphoenolpyruvate carboxylase (PEPC) isoforms in the green alga Selenastrum minutum. Class 1 PEPC (PEPC1) is a homotetramer composed of 102 kDa subunits (p102), whereas Class 2 PEPCs exist as three large protein complexes (PEPC2-PEPC4) containing varying proportions of structurally dissimilar p102 and 130 kDa (p130) PEPC catalytic subunits. In the current study, a p102 calcium-independent protein kinase was shown to co-purify with PEPC1, but not PEPC2. However, the p130 subunit of PEPC2 was phosphorylated in vitro during its incubation in the presence of [gamma-(32)P]ATP and a clarified algal extract. Treatment of purified PEPC2 with protein phosphatase 2A(2) increased its apparent M(r) as judged by Superose 6 gel filtration chromatography. The presence of the protein phosphatase inhibitors NaF and microcystin-LR throughout PEPC purification significantly influenced the activity and structural organization of Class 2, but not Class 1, PEPC isoforms. The results are consistent with the notion that under the culture conditions employed: (i) Class 1 and Class 2 PEPC isoforms exist in vivo mainly in their dephosphorylated and phosphorylated forms, respectively, and (ii) phosphorylation of Class 2 PEPCs leads to a significant reduction in their activity and native M(r). We propose that protein kinase-mediated phosphorylation is involved in the control and structural organization of green algal PEPC.
Collapse
Affiliation(s)
- Jean Rivoal
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | | | |
Collapse
|
36
|
Chen LM, Omiya T, Hata S, Izui K. Molecular characterization of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties. PLANT & CELL PHYSIOLOGY 2002; 43:159-169. [PMID: 11867695 DOI: 10.1093/pcp/pcf019] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A gene for phosphoenolpyruvate carboxylase (PEPC) was isolated from a thermophilic cyanobacterium, Synechococcus vulcanus, by screening a genomic DNA library using the coding region of Anacystis nidulans 6301 PEPC as a probe. The S. vulcanus PEPC gene (SvPEPC) had an open reading frame for a polypeptide of 1,011 amino acid residues with a calculated molecular mass of 116.4 kDa. SvPEPC was expressed in E. coli BL21 Codonplus (DE3), using pET32a as a vector. The purified recombinant SvPEPC protein with a tag showed a single band of 120 kDa on SDS-PAGE. The enzyme forms homotetramer as judged by gel filtration. SvPEPC retained full activity even after incubation at 50 degrees C for 60 min or exposure to 0.5 M guanidine-HCl at 30 degrees C for 20 h, being more stable than C4-form PEPC from Zea mays (ZmPEPC(C4)). SvPEPC activity showed a sharp optimum temperature of 42 degrees C at pH 7.5 and an optimum pH of 9.0 at 30 degrees C. The enzyme, unlike most plant PEPCs, was predominantly activated by fructose 1,6-bisphosphate (Fruc-1,6-P(2)), and slightly stimulated by 3-phosphoglycerate (3-PGA), glucose 6-phosphate (Gluc-6-P), glucose 1-phosphate, Glu and Gln. Acetyl-CoA known as a strong activator of most bacterial PEPCs but not of plant PEPCs, showed no effect on the enzyme activity. SvPEPC was more sensitive to the inhibition by Asp at higher pH (9.0) than lower pH (7.0), contrary to Coccochloris peniocystis PEPC and plant PEPCs. I(0.5) for Asp was increased about 2-fold by Gluc-6-P while markedly decreased by Fruc-1,6-P(2), Glu and Gln about 3- to 4-fold. The regulation mechanism of SvPEPC is not readily interpretable by conventional allosteric models.
Collapse
Affiliation(s)
- Li-mei Chen
- Laboratory of Plant Physiology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | |
Collapse
|
37
|
Rivoal J, Smith CR, Moraes TF, Turpin DH, Plaxton WC. A method for activity staining after native polyacrylamide gel electrophoresis using a coupled enzyme assay and fluorescence detection: application to the analysis of several glycolytic enzymes. Anal Biochem 2002; 300:94-9. [PMID: 11743696 DOI: 10.1006/abio.2001.5445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a method for the detection of isoforms of several glycolytic enzymes by activity staining after native PAGE. The staining is based on coupled enzyme assays carried out on the gel after electrophoresis and is linked to the disappearance of NADH, which is visualized by fluorescence. This method offers reliable and sensitive detection for phosphoenolpyruvate carboxylase, PPi-dependent phosphofructokinase, and pyruvate kinase from plant tissues. It can be applied to the detection of all enzymes which are normally detected spectrophotometrically using coupled enzyme assays consuming NAD(P)H.
Collapse
Affiliation(s)
- Jean Rivoal
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|
38
|
Rivoal J, Trzos S, Gage DA, Plaxton WC, Turpin DH. Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum. J Biol Chem 2001; 276:12588-97. [PMID: 11278626 DOI: 10.1074/jbc.m010150200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the chlorophyte Selenastrum minutum, phosphoenolpyruvate carboxylase (PEPC) exists as two kinetically distinct classes of isoforms sharing the same 102-kDa catalytic subunit (p102). Class 1 PEPC is homotetrameric, whereas Class 2 PEPCs consist of three large protein complexes. The different Class 2 PEPCs contain p102 and 130-, 73-, and 65-kDa polypeptides in different stoichiometric combinations. Immunoblot, immunoprecipitation, and chemical cross-linking studies indicated that p102 physically interacts with the 130-kDa polypeptide (p130) in Class 2 PEPCs. Immunological data and mass spectrometric and sequence analyses revealed that p102 and p130 are not closely related even if a p130 tryptic peptide had significant similarity to a conserved PEPC C-terminal domain from several sources. Evidence supporting the hypothesis that p130 has PEPC activity includes the following. (i) Specific activity expressed relative to the amount of p102 was lower in Class 1 than in Class 2 PEPCs; (ii) reductive pyridoxylation of both p102 and p130 was inhibited by magnesium-phosphoenolpyruvate; and (iii) biphasic phosphoenolpyruvate binding kinetics were observed with Class 2 PEPCs. These data support the view that unicellular green algae uniquely express, regulate, and assemble divergent PEPC polypeptides. This probably serves an adaptive purpose by poising these organisms for survival in different environments varying in nutrient content.
Collapse
Affiliation(s)
- J Rivoal
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|
39
|
Giordano M, Pezzoni V, Hell R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. PLANT PHYSIOLOGY 2000; 124:857-64. [PMID: 11027733 PMCID: PMC59189 DOI: 10.1104/pp.124.2.857] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 06/23/2000] [Indexed: 05/17/2023]
Abstract
The effect of sulfur limitation on the partitioning of carbon, nitrogen, and sulfur was investigated in Dunaliella salina. D. salina was able to adapt to 6 microM sulfate; under these conditions, the cells showed reduced growth and photosynthetic rates. Whereas intracellular sulfate was depleted, phosphate, nitrate, and ammonium increased. Amino acids showed a general increase, and alanine became the most abundant amino acid. The activities of four key enzymes of carbon, sulfur, and nitrogen metabolism were differentially regulated: Adenosine 5' triphosphate sulfurylase activity increased 4-fold, nitrate reductase and phosphoenolpyruvate (PEP) carboxylase activities decreased 4- and 11-fold, respectively, whereas carbonic anhydrase activity remained unchanged. Sulfur limitation elicited specific increase or decrease of the abundance of several proteins, such us Rubisco, PEP carboxylase, and a light harvesting complex protein. The accumulation of potentially toxic ammonium indicates an insufficient availability of carbon skeletons. Sulfur deficiency thus induces an imbalance between carbon and nitrogen. The dramatic reduction in PEP carboxylase activity suggests that carbon was diverted away from anaplerosis and possibly channeled into C3 metabolism. These results indicate that it is the coordination of key steps and components of carbon, nitrogen, and sulfur metabolism that allows D. salina to adapt to prolonged sulfur limitation.
Collapse
Affiliation(s)
- M Giordano
- Istituto di Scienze del Mare, Facoltà di Scienze, Università di Ancona, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | |
Collapse
|
40
|
Moraes TF, Plaxton WC. Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4465-76. [PMID: 10880970 DOI: 10.1046/j.1432-1327.2000.01495.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) specific activity increased by 250% following 8 to 10 days of Pi starvation of Brassica napus suspension cells. Densitometric scanning of PEPC immunoblots revealed a close correlation between PEPC activity and the amount of the antigenic 104-kDa PEPC subunit. To further assess the influence of Pi deprivation on PEPC, the enzyme was purified from Pi-sufficient (+Pi) and Pi-starved (-Pi) cells to electrophoretic homogeneity and final specific activities of 37-40 micromol phosphoenolpyruvate utilized per min per mg protein. Gel filtration, SDS/PAGE, and CNBr peptide mapping indicated that the +Pi and -Pi PEPCs are both homotetramers composed of an identical 104-kDa subunit. Respective pH-activity profiles, phosphoenolpyruvate saturation kinetics, and sensitivity to L-malate inhibition were also indistinguishable. Kinetic studies and phosphatase treatments revealed that PEPC of the +Pi and -Pi cells exists mainly in its dephosphorylated (L-malate sensitive) form. Thus, up-regulation of PEPC activity in -Pi cells appears to be solely due to the accumulation of the same PEPC isoform being expressed in +Pi cells. PEPC activity was modulated by several metabolites involved in carbon and nitrogen metabolism. At pH 7.3, marked activation by glucose 6-phosphate and inhibition by L-malate, L-aspartate, L-glutamate, DL-isocitrate, rutin and quercetin was observed. The following paper provides a model for the coordinate regulation of B. napus PEPC and cytosolic pyruvate kinase by allosteric effectors. L-Aspartate and L-glutamate appear to play a crucial role in the control of the phosphoenolpyruvate branchpoint in B. napus, particularly with respect to the integration of carbohydrate partitioning with the generation of carbon skeletons required during nitrogen assimilation.
Collapse
Affiliation(s)
- T F Moraes
- Departments of Biochemistry and Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|