1
|
Bao X, Gänzle MG, Wu J. Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7219-7229. [PMID: 38507577 DOI: 10.1021/acs.jafc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
2
|
Zhang J, Yang W, Roy S, Liu H, Roberts R, Wang L, Shi L, Ma W. Tight junction protein occludin is an internalization factor for SARS-CoV-2 infection and mediates virus cell-to-cell transmission. Proc Natl Acad Sci U S A 2023; 120:e2218623120. [PMID: 37068248 PMCID: PMC10151465 DOI: 10.1073/pnas.2218623120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads efficiently by spike-mediated, direct cell-to-cell transmission. However, the underlying mechanism is poorly understood. Herein, we demonstrate that the tight junction protein occludin (OCLN) is critical to this process. SARS-CoV-2 infection alters OCLN distribution and expression and causes syncytium formation that leads to viral spread. OCLN knockdown fails to alter SARS-CoV-2 binding but significantly lowers internalization, syncytium formation, and transmission. OCLN overexpression also has no effect on virus binding but enhances virus internalization, cell-to-cell transmission, and replication. OCLN directly interacts with the SARS-CoV-2 spike, and the endosomal entry pathway is involved in OCLN-mediated cell-to-cell fusion rather than in the cell surface entry pathway. All SARS-CoV-2 strains tested (prototypic, alpha, beta, gamma, delta, kappa, and omicron) are dependent on OCLN for cell-to-cell transmission, although the extent of syncytium formation differs between strains. We conclude that SARS-CoV-2 utilizes OCLN as an internalization factor for cell-to-cell transmission.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Sawrab Roy
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - R. Michael Roberts
- Division of Animal Sciences, College of Agriculture, Food, & Natural Resources, University of Missouri, Columbia, MO65211
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| |
Collapse
|
3
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
4
|
High-Fat Diet Induces Disruption of the Tight Junction-Mediated Paracellular Barrier in the Proximal Small Intestine Before the Onset of Type 2 Diabetes and Endotoxemia. Dig Dis Sci 2021; 66:3359-3374. [PMID: 33104937 DOI: 10.1007/s10620-020-06664-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM A link between an impaired intestinal barrier, endotoxemia, and the pathogenesis of metabolic diseases, such as type 2 diabetes mellitus (T2DM), has been proposed. In previous work, we have demonstrated that the tight junction (TJ)-mediated intestinal barrier in ileum/colon was marginally changed in prediabetic mice; therefore, it does not seem to mainly contribute to the T2DM onset. In this study, the TJ-mediated epithelial barrier in the duodenum and jejunum was evaluated in mice during the development of type 2 prediabetes. METHODS/RESULTS HF diet induced prediabetes after 60 days associated with a significant rise in intestinal permeability to the small-sized marker Lucifer yellow in these mice, with no histological signs of mucosal inflammation or rupture of the proximal intestine epithelium. As revealed by immunofluorescence, TJ proteins, such as claudins-1, -2, -3, and ZO-1, showed a significant decrease in junctional content in duodenum and jejunum epithelia, already after 15 days of treatment, suggesting a rearrangement of the TJ structure. However, no significant change in total cell content of these proteins was observed in intestinal epithelium homogenates, as assessed by immunoblotting. Despite the changes in intestinal permeability and TJ structure, the prediabetic mice showed similar LPS, zonulin, and TNF-α levels in plasma or adipose tissue, and in intestinal segments as compared to the controls. CONCLUSION Disruption of the TJ-mediated paracellular barrier in the duodenum and jejunum is an early event in prediabetes development, which occurs in the absence of detectable endotoxemia/inflammation and may contribute to the HF diet-induced increase in intestinal permeability.
Collapse
|
5
|
Li E, Ajuwon KM. Mechanism of endocytic regulation of intestinal tight junction remodeling during nutrient starvation in jejunal IPEC-J2 cells. FASEB J 2021; 35:e21356. [PMID: 33484473 DOI: 10.1096/fj.202002098r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells are tightly bound by tight junction proteins (TJP) which are dynamic and sensitive to environmental stress. However, the role of the endocytic pathway in the regulation of TJP abundance and tight junction integrity during nutrient stress is poorly understood. Therefore, this study was conducted to investigate the regulation of TJP abundance during nutrient starvation and the role of the endocytic mechanism in this process. IPEC-J2 cells were subjected to nutrient starvation in Krebs-Ringer bicarbonate buffer (KRB) and abundance of TJP, an indication of tight junction remodeling, was characterized with RT-PCR, western blotting and immunofluorescence. Abundance of TJP was dynamically regulated by nutrient starvation. The protein levels of claudin-1, 3, and 4 were initially downregulated within the first 6 hours of starvation, and then, increased thereafter (P < .01). However, there was no change in occludin and ZO-1. Lysosome and proteasome inhibitors were used to determine the contribution of these protein degradation pathways to the TJP remodeling. Short-term starvation-induced degradation of claudin-1, 3, and 4 was found to be lysosome dependent. Specifically, the downregulation of claudin-3 and 4 was via a dynamin-dependent, but clathrin and caveolae independent, endocytic pathway and this downregulation was partly reversed by amino acids supplementation. Interestingly, the re-synthesis of TJP with prolonged starvation partly depended on proteasome function. Collectively, this study, for the first time, elucidated a major role for dynamin-dependent endocytosis of claudin-3 and 4 during nutrient stress in intestinal epithelial cells. Therefore, transient endocytosis inhibition may be a potential mechanism for preserving tight junction integrity and function in metabolic or pathological states such as inflammatory bowel disease that involves destruction of intestinal epithelial TJP.
Collapse
Affiliation(s)
- Enkai Li
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
6
|
Impact of food-derived bioactive peptides on gut function and health. Food Res Int 2021; 147:110485. [PMID: 34399481 DOI: 10.1016/j.foodres.2021.110485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is the largest interface between our body and the environment. It is an organ system extending from the mouth to the anus and functions for food intake, digestion, transport and absorption of nutrients, meanwhile providing protection from environmental factors, like toxins, antigens, and pathogens. Diet is one of the leading factors modulating the function of the GIT. Bioactive peptides presenting naturally in food or derived from food proteins during digestion or processing have been revealed multifunctional in diverse biological processes, including maintaining gut health and function. This review summarizes the available evidence regarding the effects of food-derived bioactive peptides on gut function and health. Findings and insights from studies based on in vitro and animal models are discussed. The gastrointestinal mucosa maintains a delicate balance between immune tolerance to nutrients and harmful components, which is crucial for the digestive system's normal functions. Dietary bioactive peptides positively impact gastrointestinal homeostasis by modulating the barrier function, immune responses, and gut microbiota. However, there is limited clinical evidence on the safety and efficacy of bioactive peptides, much less on the applications of dietary peptides for the treatment or prevention of diseases related to the GIT. Further study is warranted to establish the applications of bioactive peptides in regulating gut health and function.
Collapse
|
7
|
Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch Toxicol 2021; 95:2065-2079. [PMID: 33847777 DOI: 10.1007/s00204-021-03044-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Mycotoxin contamination in foods is a major risk factor for human and animal health due to its prevalence in cereals and their by-products. Deoxynivalenol (DON), mainly produced by Fusarium genera, is the most common mycotoxin detected in cereal products. Deoxynivalenol disrupts intestinal barrier function and decreases protein levels of tight junction proteins (TJP). However, the overall mechanism by which DON regulates specific TJP turnover and epithelial cell integrity remains unclear. Herein, we show that DON (2 μM) decreases the protein stability and accelerates the degradation of TJP in the lysosome. Interestingly, pretreatment of cells with dynasore (a dynamin-dependent endocytosis inhibitor) protected against DON-induced degradation of claudin-3 and 4. Immunofluorescence analysis also shows that the decreased membrane presence of claudin-4 and ZO-1 induced by DON is reversible with dynamin inhibition, whereas the pretreatment with cytochalasin D (an actin-dependent endocytosis inhibitor) reverses the degradation of claudin-1 and 4 induced by DON. We also show that the endocytosis and degradation of claudin-1 is regulated by p38 mitogen-activated protein kinase (MAPK), whereas the endocytosis of claudin-4 and ZO-1 is mediated by c-Jun-N-terminal kinase (JNK). Resveratrol, with JNK inhibitory activity, also prevents the endocytosis and degradation of claudin-4 and ZO-1 and protects against DON-induced decrease in transepithelial electrical resistance (TEER) and increase in FITC-dextran permeability. Collectively, this study, for the first time, shows that DON accelerates the endocytosis and degradation of TJP and this is regulated by the activation of p38 MAPK and JNK signaling pathways. Therefore, natural bioactive compounds with p38 MAPK and JNK inhibitory activities may be effective in preventing the DON-induced TJP disruption and preserve gut barrier function in vivo.
Collapse
|
8
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Dowdell AS, Cartwright IM, Goldberg MS, Kostelecky R, Ross T, Welch N, Glover LE, Colgan SP. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Mol Biol Cell 2020; 31:2249-2258. [PMID: 32726170 PMCID: PMC7550696 DOI: 10.1091/mbc.e20-05-0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells (IECs) exist in a metabolic state of low oxygen tension termed "physiologic hypoxia." An important factor in maintaining intestinal homeostasis is the transcription factor hypoxia-inducible factor (HIF), which is stabilized under hypoxic conditions and mediates IEC homeostatic responses to low oxygen tension. To identify HIF transcriptional targets in IEC, chromatin immunoprecipitation (ChIP) was performed in Caco-2 IECs using HIF-1α- or HIF-2α-specific antibodies. ChIP-enriched DNA was hybridized to a custom promoter microarray (termed ChIP-chip). This unbiased approach identified autophagy as a major HIF-1-targeted pathway in IEC. Binding of HIF-1 to the ATG9A promoter, the only transmembrane component within the autophagy pathway, was particularly enriched by exposure of IEC to hypoxia. Validation of this ChIP-chip revealed prominent induction of ATG9A, and luciferase promoter assays identified a functional hypoxia response element upstream of the TSS. Hypoxia-mediated induction of ATG9A was lost in cells lacking HIF-1. Strikingly, we found that lentiviral-mediated knockdown (KD) of ATG9A in IECs prevents epithelial barrier formation by >95% and results in significant mislocalization of multiple tight junction (TJ) proteins. Extensions of these findings showed that ATG9A KD cells have intrinsic abnormalities in the actin cytoskeleton, including mislocalization of the TJ binding protein vasodilator-stimulated phosphoprotein. These results implicate ATG9A as essential for multiple steps of epithelial TJ biogenesis and actin cytoskeletal regulation. Our findings have novel applicability for disorders that involve a compromised epithelial barrier and suggest that targeting ATG9A may be a rational strategy for future therapeutic intervention.
Collapse
Affiliation(s)
- Alexander S. Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Ian M. Cartwright
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Matthew S. Goldberg
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Rachael Kostelecky
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Tyler Ross
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Nichole Welch
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| | - Louis E. Glover
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Sean P. Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
10
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
11
|
de Oliveira RB, Matheus VA, Canuto LP, De Sant'ana A, Collares-Buzato CB. Time-dependent alteration to the tight junction structure of distal intestinal epithelia in type 2 prediabetic mice. Life Sci 2019; 238:116971. [PMID: 31634462 DOI: 10.1016/j.lfs.2019.116971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
AIM High-fat diet (HFD) intake has been associated with changes in intestinal microbiota composition, increased intestinal permeability, and onset of type 2 diabetes mellitus (T2DM). The aim of this work was twofold: 1) to investigate the structural and functional alterations of the tight junction (TJ)-mediated intestinal epithelial barrier of ileum and colon, that concentrate most of the microbiota, after exposure to a HFD for 15, 30 and 60 days, and 2) to assess the effect of in vitro exposure to free fatty acids (FFAs), one of the components of HFD, on paracellular barrier of colon-derived Caco-2 cells. METHODS/KEY FINDINGS HFD exposure induced progressive metabolic changes in male mice that culminated in prediabetes after 60d. Morphological analysis of ileum and colon mucosa showed no signs of epithelial rupture or local inflammation but changes in the junctional content/distribution and/or cellular content of TJ-associated proteins (claudins-1, -2, -3, and occludin) in intestinal epithelia were seen mainly after a prediabetes state has been established. This impairment in TJ structure was not associated with significant changes in intestinal permeability to FITC-dextran. Exposure of Caco-2 monolayers to palmitic or linoleic acids seems to induce a reinforcement of TJ structure while treatment with oleic acid had a more diverse effect on TJ protein distribution. SIGNIFICANCE TJ structure in distal intestinal epithelia can be specifically impaired by HFD intake at early stage of T2DM, but not by FFAs in vitro. Since the TJ change in ileum/colon was marginal, probably it does not contribute to the disease onset.
Collapse
Affiliation(s)
- Ricardo Beltrame de Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valquiria Aparecida Matheus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leandro Pereira Canuto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariane De Sant'ana
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carla Beatriz Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Han SW, Kim JM, Lho Y, Cho HJ, Jung YK, Kim JA, Lee H, Lee YJ, Kim ES. DICAM Attenuates Experimental Colitis via Stabilizing Junctional Complex in Mucosal Barrier. Inflamm Bowel Dis 2019; 25:853-861. [PMID: 30534988 DOI: 10.1093/ibd/izy373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Adhesion molecules maintain the intestinal barrier function that is crucial to prevent intestinal inflammation. Dual immunoglobulin domain-containing adhesion molecule (DICAM) has been recently identified and known for the involvement in cell-cell adhesion through homophilic interaction and heterophilic interaction with integrin αVβ3. We tested whether the change of DICAM expression affects the severity of colonic inflammation. METHODS Colitis was induced with oral administration of 2.5% dextran sulfate sodium (DSS) in 8-week-old male mice for 5 days. The function of DICAM under inflammatory condition was investigated using loss-of-function and gain-of-function models such as DICAM-deficient mice and adenoviral transduction of DICAM into Caco-2 colonic epithelial cells. RESULTS DICAM increased in parallel with the degree of inflammation after 5-day administration of DSS and decreased with the resolution of inflammation. DICAM was expressed in the epithelial junctional complex and colocalized with ZO-1. Treatment with TNF-α or IFN-γ in Caco-2 cells significantly increased DICAM in protein and RNA level. The DICAM knockout mice showed more severe DSS-induced colitis compared with WT littermates. Adenoviral transduction of DICAM into Caco-2 cells significantly attenuated the inflammation-mediated decrease of adhesion molecules, including ZO-1 and occludin. Furthermore, Caco-2 cells with DICAM overexpression maintained intestinal barrier function under IFN-γ treatment as estimated by transepithelial electrical resistance. CONCLUSION Our study demonstrates that DICAM which is increased in an inflammatory condition has a protective role in experimental colitis by stabilizing the integrity of junctional complex in the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Seung-Woo Han
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Min Kim
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Yunmee Lho
- Department of Biochemistry, Pain Research Center, School of Medicine, Keimyung University, Daegu, Korea
| | - Hyun Jung Cho
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Youn-Kwan Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Daegu, Korea
| | - Hoyul Lee
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu-Jeong Lee
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Tempesta C, Hijazi A, Moussian B, Roch F. Boudin trafficking reveals the dynamic internalisation of specific septate junction components in Drosophila. PLoS One 2017; 12:e0185897. [PMID: 28977027 PMCID: PMC5627947 DOI: 10.1371/journal.pone.0185897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The maintenance of paracellular barriers in invertebrate epithelia depends on the integrity of specific cell adhesion structures known as septate junctions (SJ). Multiple studies in Drosophila have revealed that these junctions have a stereotyped architecture resulting from the association in the lateral membrane of a large number of components. However, little is known about the dynamic organisation adopted by these multi-protein complexes in living tissues. We have used live imaging techniques to show that the Ly6 protein Boudin is a component of these adhesion junctions and can diffuse systemically to associate with the SJ of distant cells. We also observe that this protein and the claudin Kune-kune are endocytosed in epidermal cells during embryogenesis. Our data reveal that the SJ contain a set of components exhibiting a high membrane turnover, a feature that could contribute in a tissue-specific manner to the morphogenetic plasticity of these adhesion structures.
Collapse
Affiliation(s)
- Camille Tempesta
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Assia Hijazi
- Lebanese University, Faculty of Sciences I and V—Doctorate School of Science and Technology-PRASE, Campus Rafic Hariri, Hadath-Beirut, Lebanon
| | - Bernard Moussian
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Fernando Roch
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
14
|
Stamatovic SM, Johnson AM, Sladojevic N, Keep RF, Andjelkovic AV. Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci 2017; 1397:54-65. [PMID: 28415156 DOI: 10.1111/nyas.13346] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Internalization of tight junction (TJ) proteins from the plasma membrane is a pivotal mechanism regulating TJ plasticity and function in both epithelial and endothelial barrier tissues. Once internalized, the TJ proteins enter complex vesicular machinery, where further trafficking is directly dependent on the initiating stimulus and downstream signaling pathways that regulate the sorting and destiny of TJ proteins, as well as on cell and barrier responses. The destiny of internalized TJ proteins is recycling to the plasma membrane or sorting to late endosomes and degradation. This review highlights recent advances in our knowledge of endocytosis and vesicular trafficking of TJ proteins in both epithelial and endothelial cells. A greater understanding of these processes may allow for the development of methods to modulate barrier permeability for drug delivery or prevent barrier dysfunction in disease states.
Collapse
Affiliation(s)
| | | | | | - Richard F Keep
- Neurosurgery.,Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
15
|
Hagen SJ. Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers 2017; 5:e1327839. [PMID: 28548895 PMCID: PMC5501131 DOI: 10.1080/21688370.2017.1327839] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Tight junctions form a barrier to the diffusion of apical and basolateral membrane proteins thus regulating membrane polarity. They also regulate the paracellular movement of ions and water across epithelial and endothelial cells so that functionally they constitute an important permselective barrier. Permselectivity at tight junctions is regulated by claudins, which confer anion or cation permeability, and tightness or leakiness, by forming several highly regulated pores within the apical tight junction complex. One interesting feature of claudins is that they are, more often than not, localized to the basolateral membrane, in intracellular cytoplasmic vesicles, or in the nucleus rather than to the apical tight junction complex. These intracellular pools of claudin molecules likely serve important functions in the epithelium. This review will address the widespread prevalence of claudins that are not associated with the apical tight junction complex and discuss the important and emerging non-traditional functions of these molecules in health and disease.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2016; 6:87. [PMID: 27606286 PMCID: PMC4995211 DOI: 10.3389/fcimb.2016.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Octavio Gonzalez-Lugo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
17
|
Huang LY, Stuart C, Takeda K, D’Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS One 2016; 11:e0160875. [PMID: 27504984 PMCID: PMC4978501 DOI: 10.1371/journal.pone.0160875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelial monolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Together, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies.
Collapse
Affiliation(s)
- Li-Yun Huang
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Christine Stuart
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| | - Basil Golding
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| |
Collapse
|
18
|
Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014; 36:157-65. [PMID: 25171873 DOI: 10.1016/j.semcdb.2014.08.011] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022]
Abstract
The tight junction creates an intercellular barrier limiting paracellular movement of solutes and material across epithelia. Currently many proteins have been identified as components of the tight junction and understanding their architectural organization and interactions is critical to understanding the biology of the barrier. In general the architecture can be conceptualized into compartments with the transmembrane barrier proteins (claudins, occludin, JAM-A, etc.), linked to peripheral scaffolding proteins (such as ZO-1, afadin, MAGI1, etc.) which are in turned linked to actin and microtubules through numerous linkers (cingulin, myosins, protein 4.1, etc.). Within this complex network are associated many signaling proteins that affect the barrier and broader cell functions. The PDZ domain is a commonly used motif to specifically link individual junction protein pairs. Here we review some of the key proteins defining the tight junction and general themes of their organization with the perspective that much will be learned about function by characterizing the detailed architecture and subcompartments within the junction.
Collapse
Affiliation(s)
- Christina M Van Itallie
- The Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA.
| | - James M Anderson
- The Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 4525, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Brignone MS, Lanciotti A, Visentin S, De Nuccio C, Molinari P, Camerini S, Diociaiuti M, Petrini S, Minnone G, Crescenzi M, Laudiero LB, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis. Neurobiol Dis 2014; 66:1-18. [PMID: 24561067 PMCID: PMC4003525 DOI: 10.1016/j.nbd.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Marco Diociaiuti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefania Petrini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Gaetana Minnone
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Bracci Laudiero
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso Cavaliere 100, 00133 Rome, Italy.
| | - Enrico Bertini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
20
|
Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Short SS, Wang J, Castle SL, Fernandez GE, Smiley N, Zobel M, Pontarelli EM, Papillon SC, Grishin AV, Ford HR. Low doses of celecoxib attenuate gut barrier failure during experimental peritonitis. J Transl Med 2013; 93:1265-75. [PMID: 24126890 PMCID: PMC3966546 DOI: 10.1038/labinvest.2013.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier becomes compromised during systemic inflammation, leading to the entry of luminal bacteria into the host and gut origin sepsis. Pathogenesis and treatment of inflammatory gut barrier failure is an important problem in critical care. In this study, we examined the role of cyclooxygenase-2 (COX-2), a key enzyme in the production of inflammatory prostanoids, in gut barrier failure during experimental peritonitis in mice. I.p. injection of LPS or cecal ligation and puncture (CLP) increased the levels of COX-2 and its product prostaglandin E2 (PGE2) in the ileal mucosa, caused pathologic sloughing of the intestinal epithelium, increased passage of FITC-dextran and bacterial translocation across the barrier, and increased internalization of the tight junction (TJ)-associated proteins junction-associated molecule-A and zonula occludens-1. Luminal instillation of PGE2 in an isolated ileal loop increased transepithelial passage of FITC-dextran. Low doses (0.5-1 mg/kg), but not a higher dose (5 mg/kg) of the specific COX-2 inhibitor Celecoxib partially ameliorated the inflammatory gut barrier failure. These results demonstrate that high levels of COX-2-derived PGE2 seen in the mucosa during peritonitis contribute to gut barrier failure, presumably by compromising TJs. Low doses of specific COX-2 inhibitors may blunt this effect while preserving the homeostatic function of COX-2-derived prostanoids. Low doses of COX-2 inhibitors may find use as an adjunct barrier-protecting therapy in critically ill patients.
Collapse
Affiliation(s)
- Scott S. Short
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| | - Jin Wang
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Shannon L. Castle
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| | | | - Nancy Smiley
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Michael Zobel
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Elizabeth M. Pontarelli
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| | - Stephanie C. Papillon
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| | - Anatoly V. Grishin
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| | - Henri R. Ford
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA,Department of Surgery, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Stammler A, Müller D, Tabuchi Y, Konrad L, Middendorff R. TGFβs modulate permeability of the blood-epididymis barrier in an in vitro model. PLoS One 2013; 8:e80611. [PMID: 24236189 PMCID: PMC3827453 DOI: 10.1371/journal.pone.0080611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022] Open
Abstract
The blood-epididymis barrier (BEB) is formed by epithelial tight junctions mediating selective permeability of the epididymal epithelium. Defective barrier function can disturb the balance of the epididymal milieu, which may result in infertility. The stroma of the epididymis contains high amounts of cytokines of the TGFβ family of unknown function. We screened possible effects of all three TGFβ isoforms on paracellular tightness in a BEB in vitro model based on the strongly polarized mouse epididymal epithelial MEPC5 cells in the transwell system. In this model we found a robust transepithelial electrical resistance (TER) of about 840 Ω x cm2. Effects on the paracellular permeability were evaluated by two methods, TER and FITC-Dextran-based tracer diffusion assays. Both assays add up to corresponding results indicating a time-dependent disturbance of the BEB differentially for the three TGFβ isoforms (TGFβ3>TGFβ1>TGFβ2) in a TGFβ-recetor-1 kinase- and Smad-dependent manner. The tight junction protein claudin-1 was found to be reduced by the treatment with TGFβs, whereas occludin was not influenced. Epididymal epithelial cells are predominantly responsive to TGFβs from the basolateral side, suggesting that TGFβ may have an impact on the epididymal epithelium from the stroma in vivo. Our data show for the first time that TGFβs decrease paracellular tightness in epididymal epithelial cells, thus establishing a novel mechanism of regulation of BEB permeability, which is elementary for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Angelika Stammler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail: (RM); (LK)
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail: (RM); (LK)
| |
Collapse
|
23
|
Bodammer P, Kerkhoff C, Maletzki C, Lamprecht G. Bovine colostrum increases pore-forming claudin-2 protein expression but paradoxically not ion permeability possibly by a change of the intestinal cytokine milieu. PLoS One 2013; 8:e64210. [PMID: 23717570 PMCID: PMC3662709 DOI: 10.1371/journal.pone.0064210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023] Open
Abstract
An impaired intestinal barrier function is involved in the pathogenesis of inflammatory bowel disease (IBD). Several nutritional factors are supposed to be effective in IBD treatment but scientific data about the effects on the intestinal integrity remain scarce. Bovine colostrum was shown to exert beneficial effects in DSS-induced murine colitis, and the present study was undertaken to explore the underlying molecular mechanisms. Western blot revealed increased claudin-2 expression in the distal ileum of healthy mice after feeding with colostrum for 14 days, whereas other tight junction proteins (claudin-3, 4, 10, 15) remained unchanged. The colostrum-induced claudin-2 induction was confirmed in differentiated Caco-2 cells after culture with colostrum for 48 h. Paradoxically, the elevation of claudin-2, which forms a cation-selective pore, was neither accompanied by increased ion permeability nor impaired barrier function. In an in situ perfusion model, 1 h exposure of the colonic mucosa to colostrum induced significantly increased mRNA levels of barrier-strengthening cytokine transforming growth factor-β, while interleukine-2, interleukine-6, interleukine-10, interleukine-13, and tumor-necrosis factor-α remained unchanged. Thus, modulation of the intestinal transforming growth factor-β expression might have compensated the claudin-2 increase and contributed to the observed barrier strengthening effects of colostrum in vivo and in vitro.
Collapse
Affiliation(s)
- Peggy Bodammer
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Immunology, Project group Extracorporal Immunomodulation, Rostock, Germany.
| | | | | | | |
Collapse
|
24
|
Barrera M, Bahamondes V, Sepúlveda D, Quest A, Castro I, Cortés J, Aguilera S, Urzúa U, Molina C, Pérez P, Ewert P, Alliende C, Hermoso M, González S, Leyton C, González M. Sjögren's syndrome and the epithelial target: A comprehensive review. J Autoimmun 2013; 42:7-18. [DOI: 10.1016/j.jaut.2013.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
|
25
|
D'Agnillo F, Williams MC, Moayeri M, Warfel JM. Anthrax lethal toxin downregulates claudin-5 expression in human endothelial tight junctions. PLoS One 2013; 8:e62576. [PMID: 23626836 PMCID: PMC3633853 DOI: 10.1371/journal.pone.0062576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/22/2013] [Indexed: 01/22/2023] Open
Abstract
Vascular leakage pathologies such as pleural effusion and hemorrhage are hallmarks of anthrax pathogenesis. We previously reported that anthrax lethal toxin (LT), the major virulence factor of anthrax, reduces barrier function in cultured primary human microvascular endothelial cells. Here, we show that LT-induced barrier dysfunction is accompanied by the reduced expression of the endothelial tight junction (TJ) protein claudin-5 but no change in the expression of other TJ components occludin, ZO-1, ZO-2, or the adherens junction (AJ) protein VE-cadherin. The downregulation of claudin-5 correlated temporally and dose-dependently with the reduction of transendothelial electrical resistance. LT-induced loss of claudin-5 was independent of cell death and preceded the appearance of actin stress fibers and altered AJ morphology. Pharmacological inhibition of MEK-1/2, two kinases that are proteolytically inactivated by LT, showed a similar reduction in claudin-5 expression. We found that LT reduced claudin-5 mRNA levels but did not accelerate the rate of claudin-5 degradation. Mice challenged with LT also showed significant reduction in claudin-5 expression. Together, these findings support a possible role for LT disruption of endothelial TJs in the vascular leakage pathologies of anthrax.
Collapse
Affiliation(s)
- Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|