1
|
Tone D, Ode KL, Zhang Q, Fujishima H, Yamada RG, Nagashima Y, Matsumoto K, Wen Z, Yoshida SY, Mitani TT, Arisato Y, Ohno RI, Ukai-Tadenuma M, Yoshida Garçon J, Kaneko M, Shi S, Ukai H, Miyamichi K, Okada T, Sumiyama K, Kiyonari H, Ueda HR. Distinct phosphorylation states of mammalian CaMKIIβ control the induction and maintenance of sleep. PLoS Biol 2022; 20:e3001813. [PMID: 36194579 PMCID: PMC9531794 DOI: 10.1371/journal.pbio.3001813] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)β as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIβ supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIβ can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIβ as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIβ. A CaMKIIβ mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIβ differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.
Collapse
Affiliation(s)
- Daisuke Tone
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji L. Ode
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Qianhui Zhang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Yoshiki Nagashima
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Thermo Fisher Scientific K.K., Yokohama, Kanagawa, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Zhiqing Wen
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shota Y. Yoshida
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomoki T. Mitani
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Graduate school of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Arisato
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rei-ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Junko Yoshida Garçon
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Shoi Shi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connections, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, the University of Tokyo, Minato-city, Tokyo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
2
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
3
|
Chen WC, Simanjuntak Y, Chu LW, Ping YH, Lee YL, Lin YL, Li WS. Benzenesulfonamide Derivatives as Calcium/Calmodulin-Dependent Protein Kinase Inhibitors and Antiviral Agents against Dengue and Zika Virus Infections. J Med Chem 2020; 63:1313-1327. [PMID: 31972088 DOI: 10.1021/acs.jmedchem.9b01779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Emerging and resurging mosquito-borne flaviviruses are an important public health challenge. The increased prevalence of dengue virus (DENV) infection has had a significant socioeconomic impact on epidemic countries. The recent outbreak of Zika virus (ZIKV) has created an international public health emergency because ZIKV infection has been linked to congenital defects and Guillain-Barré syndrome. To develop potentially prophylactic antiviral drugs for combating these acute infectious diseases, we have targeted the host calcium/calmodulin-dependent kinase II (CaMKII) for inhibition. By using CaMKII structure-guided inhibitor design, we generated four families of benzenesulfonamide (BSA) derivatives for SAR analysis. Among these substances, N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (9) showed superior properties as a lead CaMKII inhibitor and antiviral agent. BSA 9 inhibited CaMKII activity with an IC50 value of 0.79 μM and displayed EC50 values of 1.52 μM and 1.91 μM against DENV and ZIKV infections of human neuronal BE(2)C cells, respectively. Notably, 9 significantly reduced the viremia level and increased animal survival time in mouse-challenge models.
Collapse
Affiliation(s)
- Wei-Chia Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan.,Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Yogy Simanjuntak
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Li-Wei Chu
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Reseach Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yueh-Hsin Ping
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Department and Institute of Pharmacology , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan.,Genomic Research Center , Academia Sinica , Taipei 11529 , Taiwan
| | - Wen-Shan Li
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan.,Doctoral Degree Program in Marine Biotechnology , National Sun Yat-Sen University , Kaohsiung 80424 , Taiwan.,Ph.D Program in Biotechnology Research and Development , Taipei Medical University , Taipei 11031 , Taiwan.,Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan
| |
Collapse
|
4
|
Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease (Review). Mol Med Rep 2019; 20:863-870. [PMID: 31173191 DOI: 10.3892/mmr.2019.10309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
CaMKII is a calcium‑activated kinase, proved to be modulated by oxidation. Currently, the oxidative activation of CaMKII exists in several models of asthma, chronic rhinosinusitis with nasal polyps, cardiovascular disease, diabetes mellitus, acute ischemic stroke and cancer. Oxidized CaMKII (ox‑CaMKII) may be important in several of these diseases. The present review examines the mechanism underlying the oxidative activation of CaMKII and summarizes the current findings associated with the function of ox‑CaMKII in inflammatory diseases. Taken together, the findings of this review aim to improve current understanding of the function of ox‑CaMKII and provide novel insights for future research.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410008, P.R. China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan 410005, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
5
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
6
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|