1
|
Zhao Y, Xu L, Peng C, Deng J, Huang C, Lu L. Clinical and prognostic significance of Hec1 expression in patients with Cervical Cancer. Front Oncol 2024; 14:1438734. [PMID: 39544289 PMCID: PMC11560765 DOI: 10.3389/fonc.2024.1438734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Hec1 is a component of the Ndc80 kinetochore complex and is frequently upregulated in various cancers. However, the clinical significance of Hec1 in cervical cancer remains largely unknown. This study aimed to investigate the expression patterns of Hec1 in cervical cancer and its relationship with the clinicopathological characteristics of patients diagnosed with the disease. Methods Immunohistochemistry was used to assess the expression of Hec1 in 136 cervical cancer tissue samples and 82 normal cervical tissue samples. The relationship between Hec1 protein expression and the clinicopathological characteristics of cervical cancer patients was analyzed using the Chi-square test. Additionally, the association between Hec1 protein expression and patient survival was examined using Kaplan-Meier survival curves. Independent risk factors affecting the prognosis of cervical cancer patients were analyzed using the Cox proportional hazards regression model. Results The positive expression rate of Hec1 protein in cervical cancer tissues was 83.82%, significantly higher than the 7.31% in normal cervical tissues. Compared to patients with negative Hec1 expression, those with positive expression exhibited significantly higher FIGO staging, increased lymph node metastasis, greater depth of tumor stromal infiltration, and larger tumor diameter. Multivariable analysis using the Cox proportional hazards regression model indicated that Hec1 positive expression was an independent risk factor for both overall survival (HR = 2.79, 95% CI: 1.65-4.05, p = 0.012) and progression-free survival (HR = 1.81, 95% CI: 1.22-3.18, p = 0.002) in cervical cancer patients. Kaplan-Meier survival curve analysis showed that patients with positive Hec1 expression experienced a lower overall survival (HR: 2.72, 95% CI: 1.15-4.52, p = 0.004) and progression-free survival (HR: 3.12, 95% CI: 1.62-5.03, p = 0.002) when compared to those with negative Hec1 expression. Conclusion Hec1 is significantly upregulated in cervical cancer tissues and associated with poor prognosis in cervical cancer patients. Therefore, Hec1 could be a novel biomarker, not only for the diagnosis and treatment evaluation of cervical cancer but also as an indicator for predicting the prognosis of cervical cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Chaolin Huang
- Department of Gynaecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ling Lu
- Department of Gynaecology and Obstetrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Ye W, Liang X, Chen G, Chen Q, Zhang H, Zhang N, Huang Y, Cheng Q, Chen X. NDC80/HEC1 promotes macrophage polarization and predicts glioma prognosis via single-cell RNA-seq and in vitro experiment. CNS Neurosci Ther 2024; 30:e14850. [PMID: 39021287 PMCID: PMC11255415 DOI: 10.1111/cns.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Glioma is the most frequent and lethal form of primary brain tumor. The molecular mechanism of oncogenesis and progression of glioma still remains unclear, rendering the therapeutic effect of conventional radiotherapy, chemotherapy, and surgical resection insufficient. In this study, we sought to explore the function of HEC1 (highly expressed in cancer 1) in glioma; a component of the NDC80 complex in glioma is crucial in the regulation of kinetochore. METHODS Bulk RNA and scRNA-seq analyses were used to infer HEC1 function, and in vitro experiments validated its function. RESULTS HEC1 overexpression was observed in glioma and was indicative of poor prognosis and malignant clinical features, which was confirmed in human glioma tissues. High HEC1 expression was correlated with more active cell cycle, DNA-associated activities, and the formation of immunosuppressive tumor microenvironment, including interaction with immune cells, and correlated strongly with infiltrating immune cells and enhanced expression of immune checkpoints. In vitro experiments and RNA-seq further confirmed the role of HEC1 in promoting cell proliferation, and the expression of DNA replication and repair pathways in glioma. Coculture assay confirmed that HEC1 promotes microglial migration and the transformation of M1 phenotype macrophage to M2 phenotype. CONCLUSION Altogether, these findings demonstrate that HEC1 may be a potential prognostic marker and an immunotherapeutic target in glioma.
Collapse
Affiliation(s)
- Weijie Ye
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ge Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Qiao Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical PharmacologyCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Guo X, Gu Y, Guo C, Pei L, Hao C. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β. J Steroid Biochem Mol Biol 2023; 225:106193. [PMID: 36162632 DOI: 10.1016/j.jsbmb.2022.106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
The effect of long intergenic non-protein coding RNAs (lncRNAs) was verified in prostate cancer (PCa), but the mechanism of LINC01146 in PCa is unclear. Bioinformatics was applied to analyze LINC01146 expression in PCa and predict target genes of LINC01146, followed by the verification of qRT-PCR, RNA pull-down and co-immunoprecipitation (Co-IP). The correlation between LINC01146 expression and clinicopathological characteristics was investigated. The location of LINC01146 in PCa cells was detected by fluorescence in situ hybridization (FISH). After interference with LINC01146 or/and F11 receptor (F11R) or treated with transforming growth factor beta 1 (TGF-β1), the function of LINC01146 in PCa in vitro or in vivo was determined by CCK-8, colony formation, flow cytometry, scratch test, transwell assay, xenograft experiment and western blot. LINC01146 and F11R were over-expressed in PCa and positively correlated with poor prognosis. LINC01146 located in the cytoplasm and combined with F11R. LINC01146 overexpression impeded apoptosis, facilitated viability, proliferation, migration and invasion in PCa cells in vitro, promoted tumor growth in vivo, downregulated E-cadherin, Bax and Cleaved caspase-3, and upregulated N-cadherin, Vimentin and PCNA, but LINC01146 silencing did the opposite. F11R was positively regulated by LINC01146 and F11R depletion negated the effect of LINC01146 overexpression on malignant phenotypes of PCa cells. The expression of LINC01146 and F11R was regulated by TGF-β1. The promoting role of TGF-β1 in migration, invasion and F11R in PCa cells was reversed by LINC01146 silencing. LINC01146 upregulated F11R to facilitate malignant phenotypes of PCa cells, which was regulated by TGF-β.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China.
| | - Yong Gu
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chao Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Liang Pei
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chuan Hao
- Department of Urology, Second Hospital of Shanxi Medical University, China
| |
Collapse
|
4
|
Wei Z, Han D, Zhang C, Wang S, Liu J, Chao F, Song Z, Chen G. Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer. Front Oncol 2022; 12:893424. [PMID: 35814412 PMCID: PMC9259796 DOI: 10.3389/fonc.2022.893424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePost-operative biochemical relapse (BCR) continues to occur in a significant percentage of patients with localized prostate cancer (PCa). Current stratification methods are not adequate to identify high-risk patients. The present study exploits the ability of deep learning (DL) algorithms using the H2O package to combine multi-omics data to resolve this problem.MethodsFive-omics data from 417 PCa patients from The Cancer Genome Atlas (TCGA) were used to construct the DL-based, relapse-sensitive model. Among them, 265 (63.5%) individuals experienced BCR. Five additional independent validation sets were applied to assess its predictive robustness. Bioinformatics analyses of two relapse-associated subgroups were then performed for identification of differentially expressed genes (DEGs), enriched pathway analysis, copy number analysis and immune cell infiltration analysis.ResultsThe DL-based model, with a significant difference (P = 6e-9) between two subgroups and good concordance index (C-index = 0.767), were proven to be robust by external validation. 1530 DEGs including 678 up- and 852 down-regulated genes were identified in the high-risk subgroup S2 compared with the low-risk subgroup S1. Enrichment analyses found five hallmark gene sets were up-regulated while 13 were down-regulated. Then, we found that DNA damage repair pathways were significantly enriched in the S2 subgroup. CNV analysis showed that 30.18% of genes were significantly up-regulated and gene amplification on chromosomes 7 and 8 was significantly elevated in the S2 subgroup. Moreover, enrichment analysis revealed that some DEGs and pathways were associated with immunity. Three tumor-infiltrating immune cell (TIIC) groups with a higher proportion in the S2 subgroup (p = 1e-05, p = 8.7e-06, p = 0.00014) and one TIIC group with a higher proportion in the S1 subgroup (P = 1.3e-06) were identified.ConclusionWe developed a novel, robust classification for understanding PCa relapse. This study validated the effectiveness of deep learning technique in prognosis prediction, and the method may benefit patients and prevent relapse by improving early detection and advancing early intervention.
Collapse
Affiliation(s)
- Ziwei Wei
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jinke Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Zhenyu Song
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Gang Chen, ; Zhenyu Song,
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Gang Chen, ; Zhenyu Song,
| |
Collapse
|
5
|
Giridharan M, Rupani V, Banerjee S. Signaling Pathways and Targeted Therapies for Stem Cells in Prostate Cancer. ACS Pharmacol Transl Sci 2022; 5:193-206. [PMID: 35434534 PMCID: PMC9003388 DOI: 10.1021/acsptsci.2c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Collapse
Affiliation(s)
- Madhuvanthi Giridharan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Vasu Rupani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| |
Collapse
|
6
|
Wang C, Wang Y, Liu C, Meng X, Hang Z. Kinetochore-associated protein 1 promotes the invasion and tumorigenicity of cervical cancer cells via matrix metalloproteinase-2 and matrix metalloproteinase-9. Bioengineered 2022; 13:9495-9507. [PMID: 35389773 PMCID: PMC9161993 DOI: 10.1080/21655979.2022.2061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer, a common cancer in women, has become a serious social burden. Kinetochore-associated protein 1 (KNTC1) that regulates the cell cycle by regulating mitosis is related to the malignant behavior of different types of tumors. However, its role in the development of cervical cancer remains unclear. In this study, we initially explored the role of KNTC1 in cervical cancer. KNTC1 expression and relevant information were downloaded from The Cancer Genome Atlas (TCGA) and dataset GSE63514 in the Gene Expression Omnibus (GEO) database for bioinformatics analyses. Cell proliferation was detected by cell counting kit-8 (CCK8) and colony formation assays. Wound healing and Transwell assays were used to evaluate cell migration and invasion abilities. Protein expression levels of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) were measured by western blotting. Nude mouse models of subcutaneous xenograft tumor were constructed to analyze tumor growth in vivo. CCK8 and colony formation assay results demonstrated that the proliferation rate of SiHa and C-33A cells decreased when KNTC1 was silenced. Western blot and Transwell assays indicated that KNTC1 knockdown weakened the invasion and migration abilities of SiHa and C-33A cells and decreased the expression of MMP-2 and MMP-9. In-vivo experiments suggested that the inhibition of KNTC1 reduced tumor growth. Taken together, our study showed that KNTC1 plays an important role in cervical cancer. Further, we verified the promotional effect of KNTC1 on cervical cancer through in-vivo and in-vitro experiments and speculated that KNTC1 might mediate tumor invasion via MMP9 and MMP2.
Collapse
Affiliation(s)
- Caimei Wang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Yiyuan Wang
- Department of Stomatology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China.,School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Congrong Liu
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Xiaoyu Meng
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| | - Zhongxia Hang
- Obstetrics and Gynecology, Yulin Second Hospital, Yulin, Shaanxi Province, China
| |
Collapse
|
7
|
Venkatraman DL, Pulimamidi D, Shukla HG, Hegde SR. Tumor relevant protein functional interactions identified using bipartite graph analyses. Sci Rep 2021; 11:21530. [PMID: 34728699 PMCID: PMC8563864 DOI: 10.1038/s41598-021-00879-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
An increased surge of -omics data for the diseases such as cancer allows for deriving insights into the affiliated protein interactions. We used bipartite network principles to build protein functional associations of the differentially regulated genes in 18 cancer types. This approach allowed us to combine expression data to functional associations in many cancers simultaneously. Further, graph centrality measures suggested the importance of upregulated genes such as BIRC5, UBE2C, BUB1B, KIF20A and PTH1R in cancer. Pathway analysis of the high centrality network nodes suggested the importance of the upregulation of cell cycle and replication associated proteins in cancer. Some of the downregulated high centrality proteins include actins, myosins and ATPase subunits. Among the transcription factors, mini-chromosome maintenance proteins (MCMs) and E2F family proteins appeared prominently in regulating many differentially regulated genes. The projected unipartite networks of the up and downregulated genes were comprised of 37,411 and 41,756 interactions, respectively. The conclusions obtained by collating these interactions revealed pan-cancer as well as subtype specific protein complexes and clusters. Therefore, we demonstrate that incorporating expression data from multiple cancers into bipartite graphs validates existing cancer associated mechanisms as well as directs to novel interactions and pathways.
Collapse
Affiliation(s)
| | - Deepshika Pulimamidi
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560 100, India
| | - Harsh G Shukla
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560 100, India
| | - Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, 560 100, India.
| |
Collapse
|
8
|
Chen S, Wang X, Zheng S, Li H, Qin S, Liu J, Jia W, Shao M, Tan Y, Liang H, Song W, Lu S, Liu C, Yang X. Increased SPC24 in prostatic diseases and diagnostic value of SPC24 and its interacting partners in prostate cancer. Exp Ther Med 2021; 22:923. [PMID: 34306192 PMCID: PMC8281004 DOI: 10.3892/etm.2021.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
SPC24 is a crucial component of the mitotic checkpoint machinery in tumorigenesis. High levels of SPC24 have been found in various cancers, including breast cancer, lung cancer, liver cancer, osteosarcoma and thyroid cancer. However, to the best of our knowledge, the impact of SPC24 on prostate cancer (PCa) and other prostate diseases remains unclear. In the present study expression of global SPC24 messenger RNA (mRNA) was assessed in a subset of patients with PCa included in The Cancer Genome Atlas (TCGA) database. Increased levels of SPC24 expression were found in PCa patients >60 years old compared to patients <60 and increased SPC24 expression was also associated with higher levels of prostate specific antigen (P<0.05) and lymph node metastasis (P<0.05). Higher levels of SPC24 expression were associated with negative outcomes in PCa patients (P<0.05). Furthermore, in Chinese patients with prostatitis, benign prostatic hypertrophy (BPH) and PCa, SPC24 was expressed at significantly higher levels than that in adjacent/normal tissues, as assessed by reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. High expression of SPC24 was associated with high Gleason stages (IV and V; P<0.05). Further analysis, based on Gene Ontology and pathway functional enrichment analysis, suggested that nuclear division cycle 80 (NDC80), an SPC24 protein interaction partner, and mitotic spindle checkpoint serine/threonine-protein kinase BUB1 (BUB1), a core subunit of the spindle assembly checkpoint, may be associated with SPC24 in PCa development. Finally, using binary logistic regression, algorithms combining the receiver operating characteristic between SPC24 and BUB1 or NDC80 indicated that a combination of these markers may provide better PCa diagnosis ability than other PCa diagnosis markers. Taken together, these findings suggest that SPC24 may be a promising prostate disease biomarker.
Collapse
Affiliation(s)
- Suixia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hongwen Li
- Department of Anatomy, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Shouxu Qin
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Mengnan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Hui Liang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Weiru Song
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaoming Lu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250200, P.R. China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
9
|
Colón-Marrero S, Jusino S, Rivera-Rivera Y, Saavedra HI. Mitotic kinases as drivers of the epithelial-to-mesenchymal transition and as therapeutic targets against breast cancers. Exp Biol Med (Maywood) 2021; 246:1036-1044. [PMID: 33601912 DOI: 10.1177/1535370221991094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.
Collapse
Affiliation(s)
- Stephanie Colón-Marrero
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Shirley Jusino
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, 6650Ponce Health Sciences University/Ponce Research Institute, Ponce, PR 00732, USA
| |
Collapse
|
10
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
11
|
ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed Pharmacother 2019; 122:109557. [PMID: 31918265 DOI: 10.1016/j.biopha.2019.109557] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a destructive malignancy with a bad prognosis. LncRNA VPS9D1-AS1 has recently been delineated as an oncogene in some kinds of tumor, whereas, the function of VPS9D1-AS1 in PCa remains to be clarified. In this study, we researched its underlying role in PCa. The expression of VPS9D1-AS1 was conspicuously upregulated in PCa tissues and cells. And absence of VPS9D1-AS1 inhibited cell proliferation, migration and invasion, and promoted cell apoptosis in PCa. In addition, VPS9D1-AS1 overexpression led to opposite results. Furthermore, VPS9D1-AS1/MEF2D could sponge with miR-4739. VPS9D1-AS1/MEF2D and miR-4739 were inversely correlated in tumor cells. And the expression of miR-4739 is markedly downregulated in PCa, meanwhile, that of MEF2D exhibited the opposite tendency. However, MEF2D was positively regulated by VPS9D1-AS1. Moreover, MEF2D upregulation offset the suppressive effects of VPS9D1-AS1 deficiency on cell proliferation, migration and invasion in PCa. Additionally, ZEB1 contained the binding sites of VPS9D1-AS1 promoter, and there existed positive relation between them. Taken together, above results illustrated that ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of PCa by sponging miR-4739 to upregulate MEF2D, which offering a new useful reference for studying the development process of PCa.
Collapse
|
12
|
Chen X, Li W, Xiao L, Liu L. Nuclear division cycle 80 complex is associated with malignancy and predicts poor survival of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1233-1247. [PMID: 31933938 PMCID: PMC6947052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
The NDC80 (nuclear division cycle 80) complex takes part in chromosome segregation by forming an outer kinetochore and providing a platform for the interaction between chromosomes and microtubules, thus impacting the progression of mitosis and the cell cycle. The clinical significance of its components, NDC80, nuf2, spc24, and spc25, were widely explored in various malignancies respectively, yet seldom were they studied from the perspective of a complex. This paper explores the clinical importance of the NDC80 kinetochore complex components in terms of their expression level, prognostic value, and therapeutic potential in HCC (hepatocellular carcinoma) patients. With the data from several paired HCC samples from Nanfang Hospital, HCC patients from the TCGA database and other cases from GSE89377, we analyzed the expression levels of the NDC80 complex components, NDC80/nuf2/spc24/spc25, along with the survival data as well as other clinical features using statistical methods and GSEA. The study found that a high expression of NDC80 complex predicts poor survival, and these components have the potential to be used as therapeutic targets.
Collapse
Affiliation(s)
- Xiaowei Chen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Lushan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
13
|
Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem 2018; 399:387-395. [PMID: 29261512 DOI: 10.1515/hsz-2017-0255] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023]
Abstract
We investigated thoroughly the effect of lncRNA PART1 on prostate cancer cells proliferation and apoptosis, through regulating toll-like receptor (TLR) pathways. LncRNA PART1 expression was also examined by quantitative real-time polymerase chain reactions (qRT-PCR) in human tissues and the cells lines LNCaP and PC3. After transfection with si-PART1 or control constructs, the cell viability was measured by MTS and colony formation assays. In addition, the apoptosis rate of the prostate cancer cells was validated by TUNEL staining. Relationships between lncRNA PART1 expression and TLR pathway genes were demonstrated by qRT-PCR and Western blotting. High levels of lncRNA PART1 expression were correlated with advanced cancer stage and predication of poor survival. LncRNA PART1 levels was increased in PCa cells treated with 5α-dihydrotestosterone (DHT), confirming PART1 was directly induced by androgen. Moreover, down-regulation of lncRNA PART1 inhibited prostate cancer cell proliferation and accelerated cell apoptosis. In addition, lncRNA PART1 induced downstream genes expression in TLR pathways including TLR3, TNFSF10 and CXCL13 to further influence prostate cancer cells, indicating its carcinogenesis on prostate cancer. LncRNA PART1 promoted cell proliferation ability and apoptosis via the inhibition of TLR pathways in prostate cancer. LncRNA PART1 could hence be considered as a new target in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ming Sun
- Department of Urology, China Medical University Affiliated Shengjing Hospital, Shenyang 110004, Liaoning, China
| | - Donghua Geng
- Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Shuqiang Li
- Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| | - Zhaofu Chen
- Department of Urology, China Medical University Affiliated Shengjing Hospital, Shenyang 110004, Liaoning, China
| | - Wenyan Zhao
- Department of General Surgery, China Medical University Affiliated Shengjing Hospital, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China
| |
Collapse
|
14
|
Yan X, Huang L, Liu L, Qin H, Song Z. Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med 2018; 7:420-432. [PMID: 29341479 PMCID: PMC5806104 DOI: 10.1002/cam4.1284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignancy worldwide and increasing studies have attributed its malignant progression to abnormal molecular changes in cancer cells. Nuclear division cycle 80 (NDC80) is a newly discovered oncoprotein that regulates cell proliferation and cycle in numerous malignancies. However, its clinical significance and biological role in CRC remain unclear. Therefore, in this study, we firstly analyze its expression in a retrospective cohort enrolling 224 CRC patients and find its overexpression is significantly correlated with advanced tumor stage and poor prognosis in CRC patients. In addition, our result reveals it is an independent adverse prognostic factor affecting CRC-specific and disease-free survival. The subgroup analysis indicates NDC80 expression can stratify the clinical outcome in stage II and III patients, but fails in stage I and IV patients. In cellular assays, we find knockdown of NDC80 dramatically inhibits the proliferative ability, apoptosis resistance, cell cycle progression, and clone formation of CRC cells in vitro. Using xenograft model, we further prove knockdown of NDC80 also inhibits the tumorigenic ability of CRC cells in vivo. Finally, the microarray analysis is utilized to preliminarily clarify the oncogenic molecular mechanisms regulated by NDC80 and the results suggest it may promote CRC progression partly by downregulating tumor suppressors such as dual specificity phosphatase 5 and Forkhead box O1. Taken together, our study provides novel evidences to support that NDC80 is not only a promising clinical biomarker but also a potential therapeutical target for CRC precise medicine.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| | - Linsheng Huang
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Liguo Liu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalNo. 600, Yi‐shan RoadShanghai200233China
| | - Huanlong Qin
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Zhenshun Song
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| |
Collapse
|
15
|
Wu XL, Zhang JW, Li BS, Peng SS, Yuan YQ. The prognostic value of abnormally expressed lncRNAs in prostatic carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e9279. [PMID: 29390487 PMCID: PMC5758189 DOI: 10.1097/md.0000000000009279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Several long noncoding RNAs (lncRNAs) are abnormally expressed in prostate cancer (PCa), suggesting that they could serve as novel prognostic markers. The current meta-analysis was undertaken to better define the prognostic value of various lncRNAs in PCa. METHODS The PubMed, Embase, Medline, and Cochrane Library databases were systematically searched up to February 19, 2017, to retrieve eligible articles. Outcomes analyzed were biochemical recurrence-free survival (BRFS), overall survival (OS), metastasis-free survival (MFS), and prostate cancer-specific survival (PCSS). Pooled hazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated using fixed-effects or random-effects models. RESULTS A total of 10 studies, evaluating 11 PCa-related lncRNAs, were included in the meta-analysis. Pooled results indicate that the abnormal expression of candidate lncRNAs in PCa samples predicted poor BRFS (HR: 1.67, 95%CI: 1.37-2.04, P < .05), without significant heterogeneity among studies (I = 44%, P = .06). Low PCAT14 expression was negatively associated with OS (HR: 0.66, 95%CI: 0.54-0.79, P < .05), MFS (HR: 0.59, 95%CI: 0.48-0.72, P < .05), and PCSS (HR: 0.50, 95%CI: 0.38-0.66, P < .05). Again, there was no significant heterogeneity among studies. The robustness of our results was confirmed by sensitivity and publication bias analyses. CONCLUSION We conclude that expression analysis of selected lncRNAs may be of prognostic value in PCa patients.
Collapse
Affiliation(s)
- Xian-Lan Wu
- Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University
| | - Ji-Wang Zhang
- Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University
| | - Bai-Song Li
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Shu-Sheng Peng
- Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University
| | - Yong-Qiang Yuan
- Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University
| |
Collapse
|
16
|
Heger Z, Merlos Rodrigo MA, Michalek P, Polanska H, Masarik M, Vit V, Plevova M, Pacik D, Eckschlager T, Stiborova M, Adam V. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS One 2016; 11:e0165830. [PMID: 27824899 PMCID: PMC5100880 DOI: 10.1371/journal.pone.0165830] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022] Open
Abstract
The effects of sarcosine on the processes driving prostate cancer (PCa) development remain still unclear. Herein, we show that a supplementation of metastatic PCa cells (androgen independent PC-3 and androgen dependent LNCaP) with sarcosine stimulates cells proliferation in vitro. Similar stimulatory effects were observed also in PCa murine xenografts, in which sarcosine treatment induced a tumor growth and significantly reduced weight of treated mice (p < 0.05). Determination of sarcosine metabolism-related amino acids and enzymes within tumor mass revealed significantly increased glycine, serine and sarcosine concentrations after treatment accompanied with the increased amount of sarcosine dehydrogenase. In both tumor types, dimethylglycine and glycine-N-methyltransferase were affected slightly, only. To identify the effects of sarcosine treatment on the expression of genes involved in any aspect of cancer development, we further investigated expression profiles of excised tumors using cDNA electrochemical microarray followed by validation using the semi-quantitative PCR. We found 25 differentially expressed genes in PC-3, 32 in LNCaP tumors and 18 overlapping genes. Bioinformatical processing revealed strong sarcosine-related induction of genes involved particularly in a cell cycle progression. Our exploratory study demonstrates that sarcosine stimulates PCa metastatic cells irrespectively of androgen dependence. Overall, the obtained data provides valuable information towards understanding the role of sarcosine in PCa progression and adds another piece of puzzle into a picture of sarcosine oncometabolic potential.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Hana Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masarik
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Vitezslav Vit
- Department of Urology, University Hospital Brno, Jihlavska 20, Brno, CZ-625 00, Czech Republic
| | - Mariana Plevova
- Department of Urology, University Hospital Brno, Jihlavska 20, Brno, CZ-625 00, Czech Republic
| | - Dalibor Pacik
- Department of Urology, University Hospital Brno, Jihlavska 20, Brno, CZ-625 00, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06, Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40, Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
- * E-mail:
| |
Collapse
|
17
|
Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY, Zhou WQ. Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma. Oncol Rep 2016; 36:10-22. [PMID: 27176634 PMCID: PMC4899005 DOI: 10.3892/or.2016.4791] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified to be critical mediators in various tumors associated with cancer progression. Long non-coding RNA activated by TGF-β (lncRNA-ATB) is a stimulator of epithelial-mesenchymal transition (EMT) and serves as a novel prognostic biomarker for hepatocellular carcinoma. However, the biological role and clinical significance of lncRNA-ATB in human prostate cancer have yet to be fully elucidated. The present study was designed to explore the expression of lncRNA-ATB in human prostate cancer patients and the role of lncRNA-ATB in prostate cancer cells. We showed that lncRNA-ATB expression was significantly upregulated in tumor tissues in patients with prostate cancer in comparison with adjacent non-tumor tissues. Further analysis indicted that high lncRNA-ATB expression may be an independent prognostic factor for biochemical recurrence (BCR)-free survival in prostate cancer patients. Overexpression of lncRNA-ATB promoted, and knockdown of lncRNA-ATB inhibited the growth of prostate cancer cells via regulations of cell cycle regulatory protein expression levels. In addition, lncRNA-ATB stimulated epithelial-mesenchymal transition (EMT) associated with ZEB1 and ZNF217 expression levels via ERK and PI3K/AKT signaling pathways. These results indicated that lncRNA-ATB may be considered as a new predictor in the clinical prognosis of patients with prostate cancer. Overexpression of lncRNA-ATB exerts mitogenic and EMT effects of prostate cancer via activation of ERK and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Song Xu
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Ming Yi
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Chao-Peng Tang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jing-Ping Ge
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zheng-Yu Zhang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Wen-Quan Zhou
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|