1
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
2
|
Kowal J, Ni D, Jackson SM, Manolaridis I, Stahlberg H, Locher KP. Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. J Mol Biol 2021; 433:166980. [PMID: 33838147 DOI: 10.1016/j.jmb.2021.166980] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
ABCG2 is an ATP-binding cassette (ABC) transporter whose function affects the pharmacokinetics of drugs and contributes to multidrug resistance of cancer cells. While its interaction with the endogenous substrate estrone-3-sulfate (E1S) has been elucidated at a structural level, the recognition and recruitment of exogenous compounds is not understood at sufficiently high resolution. Here we present three cryo-EM structures of nanodisc-reconstituted, human ABCG2 bound to anticancer drugs tariquidar, topotecan and mitoxantrone. To enable structural insight at high resolution, we used Fab fragments of the ABCG2-specific monoclonal antibody 5D3, which binds to the external side of the transporter but does not interfere with drug-induced stimulation of ATPase activity. We observed that the binding pocket of ABCG2 can accommodate a single tariquidar molecule in a C-shaped conformation, similar to one of the two tariquidar molecules bound to ABCB1, where tariquidar acts as an inhibitor. We also found single copies of topotecan and mitoxantrone bound between key phenylalanine residues. Mutagenesis experiments confirmed the functional importance of two residues in the binding pocket, F439 and N436. Using 3D variability analyses, we found a correlation between substrate binding and reduced dynamics of the nucleotide binding domains (NBDs), suggesting a structural explanation for drug-induced ATPase stimulation. Our findings provide additional insight into how ABCG2 differentiates between inhibitors and substrates and may guide a rational design of new modulators and substrates.
Collapse
Affiliation(s)
- Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| | - Dongchun Ni
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Switzerland
| | - Scott M Jackson
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | | | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| |
Collapse
|
3
|
Analysis of Sequence Divergence in Mammalian ABCGs Predicts a Structural Network of Residues That Underlies Functional Divergence. Int J Mol Sci 2021; 22:ijms22063012. [PMID: 33809494 PMCID: PMC8001107 DOI: 10.3390/ijms22063012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The five members of the mammalian G subfamily of ATP-binding cassette transporters differ greatly in their substrate specificity. Four members of the subfamily are important in lipid transport and the wide substrate specificity of one of the members, ABCG2, is of significance due to its role in multidrug resistance. To explore the origin of substrate selectivity in members 1, 2, 4, 5 and 8 of this subfamily, we have analysed the differences in conservation between members in a multiple sequence alignment of ABCG sequences from mammals. Mapping sets of residues with similar patterns of conservation onto the resolved 3D structure of ABCG2 reveals possible explanations for differences in function, via a connected network of residues from the cytoplasmic to transmembrane domains. In ABCG2, this network of residues may confer extra conformational flexibility, enabling it to transport a wider array of substrates.
Collapse
|
4
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
5
|
Khunweeraphong N, Kuchler K. The first intracellular loop is essential for the catalytic cycle of the human ABCG2 multidrug resistance transporter. FEBS Lett 2020; 594:4059-4075. [PMID: 33169382 PMCID: PMC7756363 DOI: 10.1002/1873-3468.13994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The human multidrug transporter ABCG2 is required for physiological detoxification and mediates anticancer drug resistance. Here, we identify pivotal residues in the first intracellular loop (ICL1), constituting an intrinsic part of the transmission interface. The architecture includes a triple helical bundle formed by the hot spot helix of the nucleotide‐binding domain, the elbow helix, and ICL1. We show here that the highly conserved ICL1 residues G462, Y463, and Y464 are essential for the proper cross talk of the closed nucleotide‐binding domain dimer with the transmembrane domains. Hence, ICL1 acts as a molecular spring, triggering the conformational switch of ABCG2 before substrate extrusion. These data suggest that the ABCG2 transmission interface may offer therapeutic options for the treatment of drug‐resistant malignancies.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria.,St. Anna Children's Cancer Research Institute-CCRI, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Campus Vienna Biocenter, Medical University of Vienna, Austria
| |
Collapse
|
6
|
Sarkadi B, Homolya L, Hegedűs T. The ABCG2/BCRP transporter and its variants - from structure to pathology. FEBS Lett 2020; 594:4012-4034. [PMID: 33015850 DOI: 10.1002/1873-3468.13947] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The ABCG2 protein has a key role in the transport of a wide range of structurally dissimilar endo- and xenobiotics in the human body, especially in the tissue barriers and the metabolizing or secreting organs. The human ABCG2 gene harbors a high number of polymorphisms and mutations, which may significantly modulate its expression and function. Recent high-resolution structural data, complemented with molecular dynamic simulations, may significantly help to understand intramolecular movements and substrate handling, as well as the effects of mutations on the membrane transporter function of ABCG2. As reviewed here, structural alterations may result not only in direct alterations in drug binding and transporter activity, but also in improper folding or problems in the carefully regulated process of trafficking, including vesicular transport, endocytosis, recycling, and degradation. Here, we also review the clinical importance of altered ABCG2 expression and function in general drug metabolism, cancer multidrug resistance, and impaired uric acid excretion, leading to gout.
Collapse
Affiliation(s)
- Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Khunweeraphong N, Mitchell-White J, Szöllősi D, Hussein T, Kuchler K, Kerr ID, Stockner T, Lee JY. Picky ABCG5/G8 and promiscuous ABCG2 - a tale of fatty diets and drug toxicity. FEBS Lett 2020; 594:4035-4058. [PMID: 32978801 PMCID: PMC7756502 DOI: 10.1002/1873-3468.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Structural data on ABCG5/G8 and ABCG2 reveal a unique molecular architecture for subfamily G ATP‐binding cassette (ABCG) transporters and disclose putative substrate‐binding sites. ABCG5/G8 and ABCG2 appear to use several unique structural motifs to execute transport, including the triple helical bundles, the membrane‐embedded polar relay, the re‐entry helices, and a hydrophobic valve. Interestingly, ABCG2 shows extreme substrate promiscuity, whereas ABCG5/G8 transports only sterol molecules. ABCG2 structures suggest a large internal cavity, serving as a binding region for substrates and inhibitors, while mutational and pharmacological analyses support the notion of multiple binding sites. By contrast, ABCG5/G8 shows a collapsed cavity of insufficient size to hold substrates. Indeed, mutational analyses indicate a sterol‐binding site at the hydrophobic interface between the transporter and the lipid bilayer. In this review, we highlight key differences and similarities between ABCG2 and ABCG5/G8 structures. We further discuss the relevance of distinct and shared structural features in the context of their physiological functions. Finally, we elaborate on how ABCG2 and ABCG5/G8 could pave the way for studies on other ABCG transporters.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria.,CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - James Mitchell-White
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dániel Szöllősi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Toka Hussein
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karl Kuchler
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Orlando BJ, Liao M. ABCG2 transports anticancer drugs via a closed-to-open switch. Nat Commun 2020; 11:2264. [PMID: 32385283 PMCID: PMC7210939 DOI: 10.1038/s41467-020-16155-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
ABCG2 is an ABC transporter that extrudes a variety of compounds from cells, and presents an obstacle in treating chemotherapy-resistant cancers. Despite recent structural insights, no anticancer drug bound to ABCG2 has been resolved, and the mechanisms of multidrug transport remain obscure. Such a gap of knowledge limits the development of novel compounds that block or evade this critical molecular pump. Here we present single-particle cryo-EM studies of ABCG2 in the apo state, and bound to the three structurally distinct chemotherapeutics. Without the binding of conformation-selective antibody fragments or inhibitors, the resting ABCG2 adopts a closed conformation. Our cryo-EM, biochemical, and functional analyses reveal the binding mode of three chemotherapeutic compounds, demonstrate how these molecules open the closed conformation of the transporter, and establish that imatinib is particularly effective in stabilizing the inward facing conformation of ABCG2. Together these studies reveal the previously unrecognized conformational cycle of ABCG2. ABCG2 is a human ABC transporter that actively extrudes a wide variety of compounds from cells but the mechanisms of multidrug transport remain obscure. Here authors present cryo-EM structures of ABCG2 in the apo state, and bound to the three structurally distinct chemotherapeutics and demonstrate how these molecules open the closed conformation of the transporter.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Gose T, Shafi T, Fukuda Y, Das S, Wang Y, Allcock A, Gavan McHarg A, Lynch J, Chen T, Tamai I, Shelat A, Ford RC, Schuetz JD. ABCG2 requires a single aromatic amino acid to "clamp" substrates and inhibitors into the binding pocket. FASEB J 2020; 34:4890-4903. [PMID: 32067270 DOI: 10.1096/fj.201902338rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette sub-family G member 2 (ABCG2) is a homodimeric ATP-binding cassette (ABC) transporter that not only has a key role in helping cancer cells to evade the cytotoxic effects of chemotherapy, but also in protecting organisms from multiple xeno- and endobiotics. Structural studies indicate that substrate and inhibitor (ligands) binding to ABCG2 can be differentiated quantitatively by the number of amino acid contacts, with inhibitors displaying more contacts. Although binding is the obligate initial step in the transport cycle, there is no empirical evidence for one amino acid being primarily responsible for ligand binding. By mutagenesis and biochemical studies, we demonstrated that the phylogenetically conserved amino acid residue, F439, was critical for both transport and the binding of multiple substrates and inhibitors. Structural modeling implied that the π-π interactions from each F439 monomer mediated the binding of a surprisingly diverse array of structurally unrelated substrates and inhibitors and that this symmetrical π-π interaction "clamps" the ligand into the binding pocket. Key molecular features of diverse ABCG2 ligands using the π-π clamp along with structural studies created a pharmacophore model. These novel findings have important therapeutic implications because key properties of ligands interacting with ABCG2 have been disovered. Furthermore, mechanistic insights have been revealed by demonstrating that for ABCG2 a single amino acid is essential for engaging and initiating transport of multiple drugs and xenobiotics.
Collapse
Affiliation(s)
- Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Talha Shafi
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alice Allcock
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ailsa Gavan McHarg
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ikumi Tamai
- Department of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert C Ford
- School of Biological Sciences, The University of Manchester, Manchester, UK
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
10
|
Horsey AJ, Briggs DA, Holliday ND, Briddon SJ, Kerr ID. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183218. [PMID: 32057756 PMCID: PMC7156912 DOI: 10.1016/j.bbamem.2020.183218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
ABCG2 is one of a trio of human ATP binding cassette transporters that have the ability to bind and transport a diverse array of chemical substrates out of cells. This so-called "multidrug" transport has numerous physiological consequences including effects on how drugs are absorbed into and eliminated from the body. Understanding how ABCG2 is able to interact with multiple drug substrates remains an important goal in transporter biology. Most drugs are believed to interact with ABCG2 through the hydrophobic lipid bilayer and experimental systems for ABCG2 study need to incorporate this. We have exploited styrene maleic acid to solubilise ABCG2 from HEK293T cells overexpressing the transporter, and confirmed by dynamic light scattering and fluorescence correlation spectroscopy (FCS) that this results in the extraction of SMA lipid copolymer (SMALP) particles that are uniform in size and contain a dimer of ABCG2, which is the predominant physiological state. FCS was further employed to measure the diffusion of a fluorescent ABCG2 substrate (BODIPY-prazosin) in the presence and absence of SMALP particles of purified ABCG2. Autocorrelation analysis of FCS traces enabled the mathematical separation of free BODIPY-prazosin from drug bound to ABCG2 and allowed us to show that combining SMALP extraction with FCS can be used to study specific drug: transporter interactions.
Collapse
Affiliation(s)
- Aaron J Horsey
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicholas D Holliday
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Stephen J Briddon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
11
|
Kapoor P, Briggs DA, Cox MH, Kerr ID. Disruption of the Unique ABCG-Family NBD:NBD Interface Impacts Both Drug Transport and ATP Hydrolysis. Int J Mol Sci 2020; 21:ijms21030759. [PMID: 31979415 PMCID: PMC7037313 DOI: 10.3390/ijms21030759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/03/2023] Open
Abstract
ABCG2 is one of a triumvirate of human multidrug ATP binding cassette (ABC) transporters that are implicated in the defense of cells and tissues against cytotoxic chemicals, but these transporters can also confer chemotherapy resistance states in oncology. Understanding the mechanism of ABCG2 is thus imperative if we are to be able to counter its deleterious activity. The structure of ABCG2 and its related family members (ABCG5/G8) demonstrated that there were two interfaces between the nucleotide binding domains (NBD). In addition to the canonical ATP “sandwich-dimer” interface, there was a second contact region between residues at the C-terminus of the NBD. We investigated this second interface by making mutations to a series of residues that are in close interaction with the opposite NBD. Mutated ABCG2 isoforms were expressed in human embryonic kidney (HEK) 293T cells and analysed for targeting to the membrane, drug transport, and ATPase activity. Mutations to this second interface had a number of effects on ABCG2, including altered drug specificity, altered drug transport, and, in two mutants, a loss of ATPase activity. The results demonstrate that this region is particularly sensitive to mutation and can impact not only direct, local NBD events (i.e., ATP hydrolysis) but also the allosteric communication to the transmembrane domains and drug transport.
Collapse
|
12
|
The ABCG2 multidrug transporter is a pump gated by a valve and an extracellular lid. Nat Commun 2019; 10:5433. [PMID: 31780715 PMCID: PMC6883074 DOI: 10.1038/s41467-019-13302-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022] Open
Abstract
The human ATP-binding cassette transporter ABCG2 is a key to anticancer resistance and physiological detoxification. However, the molecular mechanism of substrate transport remains enigmatic. A hydrophobic di-leucine motif in the ABCG2 core separates a large intracellular cavity from a smaller upper cavity. We show that the di-leucine motif acts as a valve that controls drug extrusion. Moreover, the extracellular structure engages the re-entry helix and all extracellular loops to form a roof architecture on top of the upper cavity. Disulfide bridges and a salt bridge limit roof flexibility, but provide a lid-like function to control drug release. We propose that drug translocation from the central to the upper cavities through the valve is driven by a squeezing motion, suggesting that ABCG2 operates similar to a peristaltic pump. Finally, the roof contains essential residues, offering therapeutic options to block ABCG2 by either targeting the valve or essential residues in the roof. The human ATP-binding cassette transporter ABCG2 plays critical roles in anticancer resistance but the molecular mechanism of ABCG2-mediated substrate transport remains enigmatic. Here authors use extensive mutagenesis and molecular dynamics simulations to reveal a mechanistic basis for the function of the di-leucine valve and the roof organization in the transport cycle.
Collapse
|
13
|
Toyoda Y, Mančíková A, Krylov V, Morimoto K, Pavelcová K, Bohatá J, Pavelka K, Pavlíková M, Suzuki H, Matsuo H, Takada T, Stiburkova B. Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort. Cells 2019; 8:E363. [PMID: 31003562 PMCID: PMC6523779 DOI: 10.3390/cells8040363] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette subfamily G member 2 (ABCG2) is a physiologically important urate transporter. Accumulating evidence demonstrates that congenital dysfunction of ABCG2 is an important genetic risk factor in gout and hyperuricemia; recent studies suggest the clinical significance of both common and rare variants of ABCG2. However, the effects of rare variants of ABCG2 on the risk of such diseases are not fully understood. Here, using a cohort of 250 Czech individuals of European descent (68 primary hyperuricemia patients and 182 primary gout patients), we examined exonic non-synonymous variants of ABCG2. Based on the results of direct sequencing and database information, we experimentally characterized nine rare variants of ABCG2: R147W (rs372192400), T153M (rs753759474), F373C (rs752626614), T421A (rs199854112), T434M (rs769734146), S476P (not annotated), S572R (rs200894058), D620N (rs34783571), and a three-base deletion K360del (rs750972998). Functional analyses of these rare variants revealed a deficiency in the plasma membrane localization of R147W and S572R, lower levels of cellular proteins of T153M and F373C, and null urate uptake function of T434M and S476P. Accordingly, we newly identified six rare variants of ABCG2 that showed lower or null function. Our findings contribute to deepening the understanding of ABCG2-related gout/hyperuricemia risk and the biochemical characteristics of the ABCG2 protein.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Andrea Mančíková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic.
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic.
| | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | | | - Jana Bohatá
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
| | - Karel Pavelka
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
| | - Markéta Pavlíková
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan.
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Blanka Stiburkova
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Saffari_Chaleshtori J, Shafiee SM, Ghatreh-Samani K, Jalilian N. The study of drug resistance properties of ABCG2 (ATP-binding cassette G2) in contact with thymoquinone, gallic acid, and hesperetin antioxidants. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: ATP-binding cassette (ABC) transporters are a group of intra membrane proteins that play key roles in the transmission and exchange of vital compounds on both sides of the membrane. These proteins can specially transport anti-cancer drugs out of cancer cells. ABCG2 is a member of this family that is extremely expressed in many cancers. This study, aims to evaluate the binding affinity of three antioxidants thymoquinone (TQ), gallic acid (GA), and hesperetin (HP) to ABCG2 compared with an anti-cancer drug, mitoxantrone (Mit), to export cells. Methods: The PDB file of ABCG2 was obtained from the protein data bank server (http://www.rcsb.org) with ID: 5NJ3. After 200 stages of molecular docking running on ABCG2 protein in AutoDock v.4.2 software, the amino acids involved in the binding site of each compound were identified using the LigPlot+ software. Results: HP had the lowest (-6.36 kcal/mol) and GA had the highest (-3.93 kcal/mol) binding energy in comparison with Mit (-0.06 kcal/mol) for binding to ABCG2. Effective concentration required to perform the reaction between ABCG2 was higher in GA (1.31 mM) than TQ (42.69 μM) and HP (21.74 μM). GA, HP, and TQ formed 17, 18, and 22 hydrogen and hydrophobic bonds at the binding site of ABCG2. Conclusion: It seems that GA has the lowest affinity to make contact with ABCG2 binding site. So, GA tends to remain in the cell but TQ and HP tend to leave the cell easily via ABCG2 transporter.
Collapse
Affiliation(s)
- Javad Saffari_Chaleshtori
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keihan Ghatreh-Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Narges Jalilian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
ABCG2: does resolving its structure elucidate the mechanism? Biochem Soc Trans 2018; 46:1485-1494. [PMID: 30464049 DOI: 10.1042/bst20180145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
ABCG2 is one of a few human membrane transporters which display the amazing ability to transport multiple different chemicals out of cells. These multidrug pumps, which have orthologues in all organisms, are important in humans in the context of drug pharmacokinetics, especially with respect to resistance to chemotherapy. In 2016, we presented a mini-review on ABCG2 which identified many areas of exciting research progress as well as many areas of frustrating ignorance. Just 2 years on the field has advanced, particularly with respect to structural biology as the cryo-electron microscopy revolution has brought us new insights into the structure and mechanism of ABCG2. In this update, we evaluate the degree to which new data have enhanced our understanding of the structure and mechanism of ABCG2 and whether we are now in a position to translate some of these findings into inhibitor design and development.
Collapse
|
16
|
Residues contributing to drug transport by ABCG2 are localised to multiple drug-binding pockets. Biochem J 2018; 475:1553-1567. [PMID: 29661915 PMCID: PMC5934980 DOI: 10.1042/bcj20170923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023]
Abstract
Multidrug binding and transport by the ATP-binding cassette transporter ABCG2 is a factor in the clinical resistance to chemotherapy in leukaemia, and a contributory factor to the pharmacokinetic profiles of many other prescribed drugs. Despite its importance, the structural basis of multidrug transport, i.e. the ability to transport multiple distinct chemicals, has remained elusive. Previous research has shown that at least two residues positioned towards the cytoplasmic end of transmembrane helix 3 (TM3) of the transporter play a role in drug transport. We hypothesised that other residues, either in the longitudinal span of TM3, or a perpendicular slice through the intracellular end of other TM helices would also contribute to drug binding and transport by ABCG2. Single-point mutant isoforms of ABCG2 were made at ∼30 positions and were analysed for effects on protein expression, localisation (western blotting, confocal microscopy) and function (flow cytometry) in a mammalian stable cell line expression system. Our data were interpreted in terms of recent structural data on the ABCG protein subfamily and enabled us to propose a surface-binding site for the drug mitoxantrone (MX) as well as a second, buried site for the same drug. Further mutational analysis of residues that spatially separate these two sites prompts us to suggest a molecular and structural pathway for MX transport by ABCG2.
Collapse
|
17
|
Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S, Bartholomaeus R, Bernhardt G, Koenig B, Buschauer A, Stahlberg H, Altmann KH, Locher KP. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol 2018; 25:333-340. [PMID: 29610494 DOI: 10.1038/s41594-018-0049-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 01/16/2023]
Abstract
ABCG2 is an ATP-binding cassette (ABC) transporter that protects tissues against xenobiotics, affects the pharmacokinetics of drugs and contributes to multidrug resistance. Although many inhibitors and modulators of ABCG2 have been developed, understanding their structure-activity relationship requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking access for substrates and preventing conformational changes required for ATP hydrolysis. The high resolutions allowed for de novo building of the entire transporter and also revealed tightly bound phospholipids and cholesterol interacting with the lipid-exposed surface of the transmembrane domains (TMDs). Extensive chemical modifications of the Ko143 scaffold combined with in vitro functional analyses revealed the details of ABCG2 interactions with this compound family and provide a basis for the design of novel inhibitors and modulators.
Collapse
Affiliation(s)
- Scott M Jackson
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ioannis Manolaridis
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Zechner
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nicholas M I Taylor
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Bause
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Stefanie Bauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Ruben Bartholomaeus
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Guenther Bernhardt
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Burkhard Koenig
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Armin Buschauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Khan AM, Rampal S, Sood NK. Effect of levofloxacin, pazufloxacin, enrofloxacin, and meloxicam on the immunolocalization of ABCG-2 transporter protein in rabbit retina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8853-8860. [PMID: 29330817 DOI: 10.1007/s11356-018-1216-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Adenosine triphosphate-binding cassette (ABC) sub-family G member-2 (ABCG-2) is a transporter protein, implicated for multi-drug efflux from tissues. This study evaluated the effect of fluoroquinolones; levofloxacin, pazufloxacin and enrofloxacin, and non-steroidal anti-inflammatory drug, meloxicam; on the immunolocalization of ABCG-2 transporter protein of rabbit retinas. Thirty-two male rabbits were randomly divided in to eight groups. Control group was gavaged, 2% benzyl alcohol in 5% dextrose since these chemicals are excipients of the drug preparations used in the treatment groups of this study. Four groups were exclusively gavaged, levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), pazufloxacin mesylate (10 mg/kg body weight b.i.d 12 h), enrofloxacin (20 mg/kg body weight o.d.), and meloxicam (0.2 mg/kg body weight o.d.), respectively. Three other groups were co-gavaged meloxicam with above fluoroquinolones, respectively. These drugs were administered for 21 days. ABCG-2 immunolocalization was mild in the retinas of control and levofloxacin-alone-treated groups. The immunolocalization intensity was significantly higher in meloxicam-alone-treated group when compared to control and levofloxacin-alone-treated groups. Immunolocalization of this transporter increased in the levofloxacin-meloxicam co-treated group when compared to the levofloxacin-alone-treated group. Highest immunolocalization was observed in the enrofloxacin-meloxicam co-treated group although the immunolocalization of all treatment groups, except the levofloxacin-alone-treated group, was significantly higher than the control and levofloxacin-alone-treated groups.
Collapse
Affiliation(s)
- Adil Mehraj Khan
- Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India.
- Division of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Satyavan Rampal
- Department of Veterinary Pharmacology and Toxicology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Naresh Kumar Sood
- Department of Veterinary Pathology, GADVASU, Ludhiana, Punjab, India
| |
Collapse
|
19
|
Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies. Sci Rep 2017; 7:15534. [PMID: 29138424 PMCID: PMC5686161 DOI: 10.1038/s41598-017-15452-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer was obtained. The role of important residues and motifs in the structural stability of the transporter was comprehensively studied and was found to be in good agreement with the available experimental data published in literature. Moreover, structural motifs potentially involved in signal transmission were identified, along with two symmetrical drug-binding sites that are herein described for the first time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2 homodimeric transporters.
Collapse
|
20
|
Khunweeraphong N, Stockner T, Kuchler K. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Sci Rep 2017; 7:13767. [PMID: 29061978 PMCID: PMC5653816 DOI: 10.1038/s41598-017-11794-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Center for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Währingerstrasse 13A, A-1090, Vienna, Austria
| | - Karl Kuchler
- Center for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030, Vienna, Austria.
| |
Collapse
|
21
|
Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 2017; 136:1-11. [DOI: 10.1016/j.bcp.2017.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
|
22
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
23
|
Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int 2017; 37:1074-1081. [PMID: 28097795 PMCID: PMC5479731 DOI: 10.1111/liv.13362] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression. METHODS Human liver samples diagnosed as healthy, steatosis, and non-alcoholic steatohepatitis (NASH) were analysed for gene expression of glycosylation-related genes and for protein glycosylation using immunoblot. RESULTS Genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for down-regulation in NAFLD progression. Included in the down regulated N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. N-glycan degradation genes were unaltered in the progression to NASH. Immunoblot analysis of the uptake transporters organic anion transporting polypeptide-1B1 (OATP1B1), OATP1B3, OATP2B1, and Sodium/Taurocholate Co-transporting Polypeptide (NTCP) and the efflux transporter multidrug resistance-associated protein 2 (MRP2) demonstrated a significant loss of glycosylation following the progression to NASH. CONCLUSIONS These data suggest that the loss of glycosylation of key uptake and efflux transporters in humans NASH may influence transporter function and contribute to altered drug disposition observed in NASH.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - April D Lake
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Rhiannon N Hardwick
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Abstract
ABCG2 is one of at least three human ATP binding cassette (ABC) transporters which can facilitate the export from cells of a wide range of chemically unrelated drug molecules. This capacity for multidrug transport is not only a confounding factor in chemotherapy, but is also one of the more perplexing phenomena in transporter biochemistry. Since its discovery in the last decade of the 20th century much has been revealed about ABCG2’s localization, physiological function and its broad substrate range. There have also been many investigations of its structure and molecular mechanism. In this mini review article we take a Rumsfeldian approach to ABCG2 and essentially ask what we do know about this transporter, and what we will need to know about this transporter if we wish to use modulation of ABCG2 activity as a therapeutic approach.
Collapse
|
25
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|