1
|
Tang W, Wu S, Tang Y, Ma J, Ao Y, Liu L, Wei K. Microarray analysis identifies lncFirre as a potential regulator of obesity-related acute lung injury. Life Sci 2024; 340:122459. [PMID: 38307237 DOI: 10.1016/j.lfs.2024.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
AIMS The inflammatory response in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is heightened in obesity. The aim of this study was to investigate whether lncRNAs are involved in the effects of obesity on acute lung injury and to find possible effector lncRNAs. MAIN METHODS Microarray analysis was used to assess the transcriptional profiles of lncRNAs and mRNAs in lung tissues from normal (CON), high-fat diet induced obese (DIO), and obese ALI mice (DIO-ALI). GO and KEGG analyses were employed to explore the biological functions of differentially expressed genes. A lncRNA-mRNA co-expression network was constructed to identify specific lncRNA. Lung tissues and peripheral blood samples from patients with obesity and healthy lean donors were utilized to confirm the expression characteristics of lncFirre through qRT-PCR. lncFirre was knocked down in MH-S macrophages to explore its function. ELISA and Griess reagent kit were used to detect PGE2 and NO. Flow cytometry was used to detect macrophages polarization. KEY FINDINGS There were 475 lncRNAs and 404 mRNAs differentially expressed between DIO and CON, while 1348 lncRNAs and 1349 mRNAs between DIO-ALI and DIO. Obesity increased lncFirre expression in both mice and patients, and PA elevated lncFirre in MH-S. PA exacerbated the inflammation and proinflammatory polarization of MH-S induced by LPS. LncFirre knockdown inhibited the secretion of PGE2 and NO, M1 differentiation while promoted the M2 differentiation in PA and LPS co-challenged MH-S. SIGNIFICANCE Interfering with lncFirre effectively inhibit inflammation in MH-S, lncFirre can serve as a promising target for treating obesity-related ALI.
Collapse
Affiliation(s)
- Wenjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siqi Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yin Tang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyue Ma
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yichan Ao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ling Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Yang Y, Zhang J, Xu R, Wang W, Wei L. Role of LncRNAs in the Pathogenesis of Sepsis and their Clinical Significance. Curr Mol Med 2024; 24:835-843. [PMID: 37431903 DOI: 10.2174/1566524023666230710121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Sepsis is a fatal organ dysfunction caused by the host's uncontrolled response to infection, with high morbidity and mortality. Early diagnosis and intervention are the most effective methods to reduce the mortality due to sepsis. However, there is still a lack of definite biomarkers or intervention targets for the diagnosis, evaluation, prognosis, and treatment of sepsis. Long non-coding RNAs (lncRNAs) are a type of noncoding transcript with a length ranging from 200 to 100,000 nucleotides. LncRNAs mainly locate in the cytoplasm and nucleus and participate in various signaling pathways related to inflammatory reactions and organ dysfunction. Recent studies have reported that lncRNAs are involved in regulating the pathophysiological process of sepsis. Some classical lncRNAs have been confirmed as promising biomarkers to evaluate the severity and prognosis of sepsis. This review summarizes the mechanical studies on lncRNAs in sepsis-induced acute lung, kidney, myocardial, and liver injuries, analyzes the role of lncRNAs in the pathogenesis of sepsis, and explores the possibility of lncRNAs as potential biomarkers and intervention targets for sepsis-induced multiple organ dysfunction.
Collapse
Affiliation(s)
- Yongpeng Yang
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Jianping Zhang
- Department of Neurosurgery, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Ruifeng Xu
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Weikai Wang
- Centre for Pediatric Emergency Unit 2, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Lin Wei
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| |
Collapse
|
3
|
Dutta S, Zhu Y, Han Y, Almuntashiri S, Wang X, Zhang D. Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J Clin Med 2023; 12:604. [PMID: 36675533 PMCID: PMC9861694 DOI: 10.3390/jcm12020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), represent an acute stage of lung inflammation where the alveolar epithelium loses its functionality. ALI has a devastating impact on the population as it not only has a high rate of incidence, but also has high rates of morbidity and mortality. Due to the involvement of multiple factors, the pathogenesis of ALI is complex and is not fully understood yet. Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts longer than 200 nucleotides. Growing evidence has shown that lncRNAs have a decisive role in the pathogenesis of ALI. LncRNAs can either promote or hinder the development of ALI in various cell types in the lungs. Mechanistically, current studies have found that lncRNAs play crucial roles in the pathogenesis of ALI via the regulation of small RNAs (e.g., microRNAs) or downstream proteins. Undoubtedly, lncRNAs not only have the potential to reveal the underlying mechanisms of ALI pathogenesis but also serve as diagnostic and therapeutic targets for the therapy of ALI.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Zhou J, Li L, Qu M, Tan J, Sun G, Luo F, Zhong P, He C. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization. Acupunct Med 2022:9645284221118588. [PMID: 36039902 DOI: 10.1177/09645284221118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Macrophage polarization toward the M2 phenotype may attenuate inflammation and have a therapeutic effect in acute lung injury (ALI). OBJECTIVE To investigate the role of electroacupuncture (EA) pretreatment on the inflammatory response and macrophage polarization in a septic rat model of lipopolysaccharide (LPS)-induced ALI. METHODS Male Sprague Dawley rats (n = 24) were randomly divided into three groups (n = 8 each): control (Ctrl), ALI (LPS) and pre-EA (LPS + EA pretreatment). ALI and pre-EA rats were injected with LPS via the caudal vein. Pulmonary edema was assessed by left upper pulmonary lobe wet-to-dry (W/D) ratios. Lung injury scores were obtained from paraffin-embedded and hematoxylin and eosin-stained sections of the left lower pulmonary lobe. Inflammatory activation was quantified using serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF)-β and IL-10 levels measured by enzyme linked immunosorbent assay (ELISA). Macrophage phenotype was determined by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Mean lung W/D ratio was significantly lower and serum IL-1β levels were decreased in pre-EA rats compared to ALI rats (P < 0.05). TNF-α mRNA expression was decreased and mannose receptor (MR) and Arg1 mRNA expression was increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.01). Arg1 protein expression was similarly increased in the lung tissues of pre-EA rats compared to ALI rats (P < 0.05). CONCLUSION EA pretreatment may play a protective role by promoting macrophage polarization to the M2 phenotype in a septic rat model of LPS-induced ALI.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Jinqu Tan
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Guanghua Sun
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Fu Luo
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Peirui Zhong
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zheng L, Zhang Z, Song K, Xu X, Tong Y, Wei J, Jiang L. Potential biomarkers for inflammatory response in acute lung injury. Open Med (Wars) 2022; 17:1066-1076. [PMID: 35795000 PMCID: PMC9186513 DOI: 10.1515/med-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disorder occurring in critical care medicine, with high rates of mortality and morbidity. This study aims to screen the potential biomarkers for ALI. Microarray data of lung tissues from lung-specific geranylgeranyl pyrophosphate synthase large subunit 1 knockout and wild-type mice treated with lipopolysaccharide were downloaded. Differentially expressed genes (DEGs) between ALI and wild-type mice were screened. Functional analysis and the protein-protein interaction (PPI) modules were analyzed. Finally, a miRNA-transcription factor (TF)-target regulation network was constructed. Totally, 421 DEGs between ALI and wild-type mice were identified. The upregulated DEGs were mainly enriched in the peroxisome proliferator-activated receptor signaling pathway, and fatty acid metabolic process, while downregulated DEGs were related to cytokine-cytokine receptor interaction and regulation of cytokine production. Cxcl5, Cxcl9, Ccr5, and Cxcr4 were key nodes in the PPI network. In addition, three miRNAs (miR505, miR23A, and miR23B) and three TFs (PU1, CEBPA, and CEBPB) were key molecules in the miRNA-TF-target network. Nine genes including ADRA2A, P2RY12, ADORA1, CXCR1, and CXCR4 were predicted as potential druggable genes. As a conclusion, ADRA2A, P2RY12, ADORA1, CXCL5, CXCL9, CXCR1, and CXCR4 might be novel markers and potential druggable genes in ALI by regulating inflammatory response.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Road 54#, Shangcheng District, Hangzhou City, 310006 Zhejiang Province, China
| | - Kang Song
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Yixin Tong
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| |
Collapse
|
6
|
Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Acute Respiratory Distress Syndrome Mouse Model. Pathogens 2022; 11:pathogens11050532. [PMID: 35631053 PMCID: PMC9143564 DOI: 10.3390/pathogens11050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Long noncoding RNAs (LncRNAs) play critical roles in many respiratory diseases. Acute respiratory distress syndrome (ARDS) is a destructive clinical syndrome of respiratory diseases. However, the potential mechanism of LncRNAs on ARDS remains largely unknown. Methods: To identify the profiles of LncRNAs and mRNAs in the LPS-induced ARDS mouse model, the microarray analyses were hired to detect the expression of LncRNAs and mRNAs in present study. Subsequently, microarray data were verified by quantitative qRT-PCR. Functional annotation on DE mRNAs and LncRNAs were carried out by bioinformatics analysis. Furthermore, the role of selected DE LncRNAs on correlated genes was confirmed by si-RNA and Western blot. Results: The expression of 2110 LncRNAs and 2690 mRNAs were significantly changed, which were further confirmed by qRT-PCR. GO and KEGG analysis indicated that the up-regulated mRNAs were mainly related to a defense response and tumor necrosis factor (TNF) signaling pathway, respectively. LncRNA-mRNA co-expression analyses showed that LncRNAs NR_003508, ENSMUST00000131638, ENSMUST00000119467, and ENSMUST00000124853 may correlate to MLKL, RIPK3, RIPK1, Caspase1, and NLRP3, respectively, or cooperatively, which were highly involved in the cell necroptosis process. Furthermore, siRNA for NR_003508 confirmed the co-expression analyses results. Conclusion: To summarize, this study implied that the DE LncRNAs could be potent regulators and target genes of ARDS and will provide a novel insight into the regulation of the pathogenesis of ARDS.
Collapse
|
7
|
Robinson EK, Worthington A, Poscablo D, Shapleigh B, Salih MM, Halasz H, Seninge L, Mosqueira B, Smaliy V, Forsberg EC, Carpenter S. lincRNA-Cox2 Functions to Regulate Inflammation in Alveolar Macrophages during Acute Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1886-1900. [PMID: 35365562 PMCID: PMC9038212 DOI: 10.4049/jimmunol.2100743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Our respiratory system is vital to protect us from the surrounding nonsterile environment; therefore, it is critical for a state of homeostasis to be maintained through a balance of inflammatory cues. Recent studies have shown that actively transcribed noncoding regions of the genome are emerging as key regulators of biological processes, including inflammation. lincRNA-Cox2 is one such example of an inflammatory inducible long intergenic noncoding RNA functioning to fine-tune immune gene expression. Using bulk and single-cell RNA sequencing, in addition to FACS, we find that lincRNA-Cox2 is most highly expressed in the lung and is most upregulated after LPS-induced lung injury (acute lung injury [ALI]) within alveolar macrophages, where it functions to regulate inflammation. We previously reported that lincRNA-Cox2 functions to regulate its neighboring protein Ptgs2 in cis, and in this study, we use genetic mouse models to confirm its role in regulating gene expression more broadly in trans during ALI. Il6, Ccl3, and Ccl5 are dysregulated in the lincRNA-Cox2-deficient mice and can be rescued to wild type levels by crossing the deficient mice with our newly generated lincRNA-Cox2 transgenic mice, confirming that this gene functions in trans. Many genes are specifically regulated by lincRNA-Cox2 within alveolar macrophages originating from the bone marrow because the phenotype can be reversed by transplantation of wild type bone marrow into the lincRNA-Cox2-deficient mice. In conclusion, we show that lincRNA-Cox2 is a trans-acting long noncoding RNA that functions to regulate immune responses and maintain homeostasis within the lung at baseline and on LPS-induced ALI.
Collapse
Affiliation(s)
- Elektra Kantzari Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Atesh Worthington
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
| | - Donna Poscablo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
| | - Barbara Shapleigh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Mays Mohammed Salih
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Benny Mosqueira
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - Valeriya Smaliy
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; and
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA;
| |
Collapse
|
8
|
Jiang ZY, Liu MZ, Fu ZH, Liao XC, Xu B, Shi LL, Li JQ, Guo GH. The expression profile of lung long non-coding RNAs and mRNAs in a mouse model of smoke inhalation injury. Bioengineered 2022; 13:4978-4990. [PMID: 35152840 PMCID: PMC8973775 DOI: 10.1080/21655979.2022.2037922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
To study the potential expression of lung long non-coding RNAs (lncRNAs) and mRNAs during smoke inhalation injury (SII), using a SII mouse model that we created in our previous work. Microarray was used to investigate the lncRNAs and mRNAs profiles. A bioinformatics analysis was performed. Changes in the top 10 down-regulated and 10 up-regulated lncRNAs were validated using Quantitative Reverse Transcription-PCR (RT-qPCR). The acute lung injury (ALI) mouse model was successfully induced by smoke inhalation, as confirmed by the aberrantly modified cell numbers of red blood cells and neutrophils counts, increased levels of TNF-α, IL-1β, Bax, caspase-7, caspase-3, and decreased Bcl-2 content in lung tissues. When compared to the control mice, 577 lncRNAs and 517 mRNAs were found to be aberrantly expressed in the SII mice. According to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, the altered mRNAs were enriched in acute-phase response, oxidoreductase activity, oxidation-reduction process, glutathione metabolism, the wnt signaling pathway, and ferroptosis. A lncRNA-related competitive endogenous RNA (ceRNA) network, including 383 lncRNAs, 318 MicroRNAs (miRNAs), and 421 mRNAs specific to SII, was established. The changes in NONMMUT026843.2, NONMMUT065071.2, ENSMUST00000235858.1, NONMMUT131395.1, NONMMUT122516.1, NONMMUT057916.2, and NONMMUT013388.2 in the lung matched the microarray results. Our findings help to provide a more comprehensive understanding of the pathogenesis of SII as well as new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Zheng-Ying Jiang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Ming-Zhuo Liu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Zhong-Hua Fu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xin-Cheng Liao
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Bin Xu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Liang-Liang Shi
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jia-Qi Li
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Guang-Hua Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
9
|
Jiang H, Wang S, Hou L, Huang JA, Su B. Resveratrol inhibits cell apoptosis by suppressing long noncoding RNA (lncRNA) XLOC_014869 during lipopolysaccharide-induced acute lung injury in rats. J Thorac Dis 2022; 13:6409-6426. [PMID: 34992821 PMCID: PMC8662516 DOI: 10.21037/jtd-21-1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Background Acute lung injury (ALI) is a common clinical complication with a high mortality rate. Resveratrol (Res) has been shown to protect against ALI, but the role of long noncoding RNAs (lncRNAs) in this process is still unclear. Methods Male rats (n=20) aged 7–8 weeks were randomly divided into four groups: control, lipopolysaccharide (LPS), LPS + Res, and LPS + dexamethasone (Dexa). Intragastric administration of Res (0.5 mg/kg) or Dexa (1.5 mg/kg) was performed 1 h before intraperitoneal injection of LPS (5 mg/kg). Lung tissue, serum, and bronchoalveolar lavage fluid were sampled 6 h after LPS treatment for inflammatory factor detection, pathological detection, lncRNA sequencing and bioinformatical analysis, and TdT-mediated dUTP Nick-End Labeling. Quantitative real time polymerase chain reaction and western blotting were used to verify the sequencing results. LPS, Res, and RNA interference were used in rat alveolar epithelial cells experiments to confirm the protective of Res/lncRNA against ALI. Results Res pretreatment inhibited lung injury and the increase of inflammatory cytokines induced by LPS. The differentially expressed lncRNAs and mRNAs (P<0.05 and |fold change| >2) were mainly involved in the signaling pathway of immunity, infection, signaling molecules and interactions. Among the lncRNAs and mRNAs, 26 mRNAs and 23 lncRNAs had high levels in lungs treated with LPS but decreased with Res, and 17 mRNAs and 27 lncRNAs were at lower levels in lungs treated with LPS but increased with Res. lncRNA and adjacent mRNA analysis showed that lncRNAs XLOC_014869 and the adjacent gene Fos, and the possible downstream genes Jun and Faslg were increased by LPS, but these changes were attenuated by Res. Pretreatment with Res reduced LPS-induced lung tissue apoptosis. Similarly, Res treatment and knockdown of lncRNA XLOC_014869 reduced LPS-induced apoptosis and the levels of Fos, c-Jun, and Fas-L. Conclusions Res can inhibit the increase of lncRNAs XLOC_014869 caused by LPS stimulation and inhibit lung cell apoptosis. These effects may be due to lncRNA XLOC_014869 mediation of the pro-apoptotic factors (Fos, c-Jun, and Fas-L).
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Li Y, Liang Z, He H, Huang X, Mo Z, Tan J, Guo W, Zhao Z, Wei S. The lncRNA HOTAIR regulates autophagy and affects lipopolysaccharide-induced acute lung injury through the miR-17-5p/ATG2/ATG7/ATG16 axis. J Cell Mol Med 2021; 25:8062-8073. [PMID: 34180119 PMCID: PMC8358883 DOI: 10.1111/jcmm.16737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Long non‐coding ribonucleic acids (lncRNAs) play critical roles in acute lung injury (ALI). We aimed to explore the involvement of lncRNA HOX transcript antisense intergenic ribonucleic acid (HOTAIR) in regulating autophagy in lipopolysaccharide (LPS)‐induced ALI. We obtained 1289 differentially expressed lncRNAs or messenger RNAs (mRNAs) via microarray analysis. HOTAIR was significantly upregulated in the LPS stimulation experimental group. HOTAIR knockdown (si‐HOTAIR) promoted cell proliferation in LPS‐stimulated A549 and BEAS‐2B cells, suppressing the protein expression of autophagy marker light chain 3B and Beclin‐1. Inhibition of HOTAIR suppressed LPS‐induced cell autophagy, apoptosis and arrested cells in the G0/G1 phase prior to S phase entry. Further, si‐HOTAIR alleviated LPS‐induced lung injury in vivo. We predicted the micro‐ribonucleic acid miR‐17‐5p to target HOTAIR and confirmed this via RNA pull‐down and dual luciferase reporter assays. miR‐17‐5p inhibitor treatment reversed the HOTAIR‐mediated effects on autophagy, apoptosis, cell proliferation and cell cycle. Finally, we predicted autophagy‐related genes (ATGs) ATG2, ATG7 and ATG16 as targets of miR‐17‐5p, which reversed their HOTAIR‐mediated protein upregulation in LPS‐stimulated A549 and BEAS‐2B cells. Taken together, our results indicate that HOTAIR regulated apoptosis, the cell cycle, proliferation and autophagy through the miR‐17‐5p/ATG2/ATG7/ATG16 axis, thus driving LPS‐induced ALI.
Collapse
Affiliation(s)
- Yujun Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhike Liang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hua He
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaomei Huang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zexun Mo
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinwen Tan
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weihong Guo
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Zhu L, Shi D, Cao J, Song L. LncRNA CASC2 Alleviates Sepsis-induced Acute Lung Injury by Regulating the miR-152-3p/PDK4 Axis. Immunol Invest 2021; 51:1257-1271. [PMID: 34165388 DOI: 10.1080/08820139.2021.1928693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Acute lung injury (ALI) is an early complication of sepsis and it is also considered as an important cause of high mortality in sepsis patients. This research aimed to explore the potential role and mechanism of long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) in sepsis-induced ALI. Methods: The levels of CASC2, microRNA-152-3p (miR-152-3p) and pyruvate dehydrogenase kinase 4 (PDK4) in sepsis patients and LPS-treated HPAEpiC were detected by quantitative real-time PCR and western blot. Cell viability and apoptosis were assessed by Counting Kit-8 (CCK-8) assay and flow cytometry. The concentrations of inflammatory factors were tested by Enzyme-linked immunosorbent assay. Oxidative stress was evaluated by the levels of reactive oxygen species and superoxide dismutase using corresponding commercial kits. The targeting relationship between miR-152-3p and CASC2 or PDK4 was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays.Results: CASC2 and PDK4 were down-regulated, while miR-152-3p was up-regulated in sepsis patients and LPS-stimulated HPAEpiC. Overexpression of CASC2 relieved the LPS-resulted cell viability inhibition, apoptosis promotion, inflammatory and oxidative damages in HPAEpiC. In addition, miR-152-3p was a miRNA target of CASC2 and CASC2 alleviated cell injury in LPS-disposed HPAEpiC by sponging miR-152-3p. Moreover, miR-152-3p directly targeted PDK4 and CASC2 increased the PDK4 expression by depending on the sponge effect on miR-152-3p. Meanwhile, inhibition of miR-152-3p attenuated LPS-triggered HPAEpiC injury by upregulating the level of PDK4.Conclusion: These results suggested that CASC2 ameliorated the LPS-induced injury in HPAEpiC via regulating miR-152-3p/PDK4 pathway.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dongwu Shi
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jianghong Cao
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Lu Song
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Luo D, Liu F, Zhang J, Shao Q, Tao W, Xiao R, Dai W, Ding C, Qian K. Comprehensive Analysis of LncRNA-mRNA Expression Profiles and the ceRNA Network Associated with Pyroptosis in LPS-Induced Acute Lung Injury. J Inflamm Res 2021; 14:413-428. [PMID: 33628043 PMCID: PMC7898231 DOI: 10.2147/jir.s297081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To explore the molecular mechanism and search for candidate lncRNA and mRNA associated with pyroptosis in the gene expression profile of LPS-induced acute lung injury (ALI). Methods We investigated lncRNA and mRNA expression in lipopolysaccharide (LPS)-induced ALI at an early stage. RNA sequencing (RNA-Seq) was carried out to analyze lncRNA and mRNA expression profiles between the LPS-induced and control groups. We used bioinformatics analysis to predict target genes of early differential lncRNAs among obtained the differential mRNAs. Results A total of 78 lncRNAs and 248 mRNAs were upregulated at 2 hours and downregulated at 9 hours, and 21 lncRNAs and 107 mRNAs were downregulated at 2 and upregulated at 9 hours in early ALI models. We predicted 7 cis-and trans-regulated target genes of the top 20 lncRNAs. Gene Ontology (GO) analysis indicated that the target genes for the screened lncRNAs were most enriched in three-terms: regulation of protein serine/threonine kinase activity, pertussis, and cellular response to LPS. Additionally, target genes of lncRNAs were the top three enriched in pertussis, osteoclast differentiation, and cAMP signaling pathways with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. We also identified vital mRNAs and lncRNAs. Protein-protein interaction (PPI) network analysis suggested that Tnf, Jun, and Atf3 were the top three key genes. Hub lncRNA4344 (NONRATT004344.2) and cis-regulated target mRNA (NLRP3) were validated in vitro. Finally, luciferase assay results confirmed that lncRNA4344 sponged miR‐138-5p to promote pyroptosis in inflammatory responses to LPS‐induced acute lung injury by targeting NLRP3. Conclusion Based on analysis of lncRNA and mRNA expression profiles by RNA-Seq and experimental verification, this study is the first to reveal that lncRNA4344 sponged miR‐138-5p to promote pyroptosis in inflammatory responses of LPS‐induced acute lung injury by targeting NLRP3. These newly identified lncRNA, miRNA, and mRNA might be novel potential targets for early treatment and prevention in early ALI.
Collapse
Affiliation(s)
- Deqiang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China.,Department of Intensive Care Unit, The Fifth People's Hospital of Shangrao City, Shangrao, 334000, People's Republic of China
| | - Fen Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Jianguo Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Qiang Shao
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Wenqiang Tao
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Rui Xiao
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Wei Dai
- Department of Intensive Care Unit, The Fifth People's Hospital of Shangrao City, Shangrao, 334000, People's Republic of China
| | - Chengzhi Ding
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Kejian Qian
- Department of Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| |
Collapse
|
13
|
Expression Profiling of Long Noncoding RNA and Messenger RNA in a Cecal Ligation and Puncture-Induced Colon Injury Mouse Model. Mediators Inflamm 2020; 2020:8925973. [PMID: 33204219 PMCID: PMC7657679 DOI: 10.1155/2020/8925973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Emerging evidence reveals that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of sepsis. However, the detailed regulatory mechanisms of lncRNAs or whether certain lncRNA could serve as a biomarker in the septic colon remains unclear. The aim of this study was to investigate the profiles of lncRNAs and mRNAs in the septic colon through whole-transcriptome RNA sequencing and to reveal the associated regulatory mechanism. Method and Result We established a mouse model of sepsis by cecal ligation and puncture (CLP). Colon samples were collected upon CLP or sham surgery after 24 h. Whole-transcriptome RNA sequencing was performed to profile the relative expressions of lncRNAs and mRNAs. 808 lncRNAs and 1509 mRNAs were differentially found in the septic group compared with the sham group. Bioinformatics analysis including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) was performed to predict the potential functions of these RNAs. GO analysis showed that the altered lncRNAs were enriched and involved in multiple immune responses, which may be a response to sepsis stress. KEGG analysis indicated that upregulated lncRNAs were significantly enriched in the p53 signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway. Downregulated lncRNAs were mostly found to be involved in tight junction, leukocyte transendothelial migration, and HIF-1 signaling pathway. Conclusion Our results indicate that these altered lncRNAs and mRNAs may have crucial roles in the pathogenesis of sepsis. This study could contribute to extending the understanding of the function of lncRNAs in sepsis, which may help in searching for new diagnostic biomarkers and therapeutic targets to treat sepsis.
Collapse
|
14
|
Liao H, Zhang S, Qiao J. Silencing of long non-coding RNA MEG3 alleviates lipopolysaccharide-induced acute lung injury by acting as a molecular sponge of microRNA-7b to modulate NLRP3. Aging (Albany NY) 2020; 12:20198-20211. [PMID: 32852284 PMCID: PMC7655187 DOI: 10.18632/aging.103752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
We aimed to elucidate the roles of the long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3)/microRNA-7b (miR-7b)/NLR pyrin domain containing 3 (NLRP3) axis in lipopolysaccharide (LPS)-induced acute lung injury (ALI). Mouse alveolar macrophage NR8383 and mice were administrated with LPS to establish ALI models in vitro and in vivo. NLRP3 was silenced while miR-7b was overexpressed in LPS-induced NR8383 cell model of ALI. The interleukin-18 (IL-18) and IL-1β, as well as caspase-1, tumor necrosis factor-α (TNF-α) and IL-6 protein levels were assayed. To further investigate the underlying mechanisms of NLRP3 in ALI, lncRNA MEG3 was silenced and miR-7b was overexpressed in LPS-induced NR8383 cell model of ALI, after which in vivo experiments were performed for further verification. NLRP3 was highly expressed in LPS-induced NR8383 cell model of ALI. Silencing NLRP3 or overexpressing miR-7b inhibited IL-18 and IL-1β, as well as caspase-1, TNF-α and IL-6. LncRNA MEG3 could sponge miR-7b, and lncRNA MEG3 silencing or miR-7b overexpression downregulates NLRP3 expression, thus reducing IL-18 and IL-1β, as well as caspase-1, TNF-α and IL-6 levels. The in vivo experiments further confirmed the aforementioned findings. Silencing lncRNA MEG3 augments miR-7b binding to NLRP3 and downregulates NLRP3 expression, which ultimately improves LPS-induced ALI.
Collapse
Affiliation(s)
- Handi Liao
- Department of Intensive Care Unit, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Suning Zhang
- Department of Emergency Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, P.R. China
| | - Jianou Qiao
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|