1
|
Qi K, Li J, Hu Y, Qiao Y, Mu Y. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species. Front Pharmacol 2024; 15:1416781. [PMID: 39076592 PMCID: PMC11284502 DOI: 10.3389/fphar.2024.1416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive buildup of highly reactive molecules can occur due to the generation and dysregulation of reactive oxygen species (ROS) and their associated signaling pathways. ROS have a dual function in cancer development, either leading to DNA mutations that promote the growth and dissemination of cancer cells, or triggering the death of cancer cells. Cancer cells strategically balance their fate by modulating ROS levels, activating pro-cancer signaling pathways, and suppressing antioxidant defenses. Consequently, targeting ROS has emerged as a promising strategy in cancer therapy. Shikonin and its derivatives, along with related drug carriers, can impact several signaling pathways by targeting components involved with oxidative stress to induce processes such as apoptosis, necroptosis, cell cycle arrest, autophagy, as well as modulation of ferroptosis. Moreover, they can increase the responsiveness of drug-resistant cells to chemotherapy drugs, based on the specific characteristics of ROS, as well as the kind and stage of cancer. This research explores the pro-cancer and anti-cancer impacts of ROS, summarize the mechanisms and research achievements of shikonin-targeted ROS in anti-cancer effects and provide suggestions for designing further anti-tumor experiments and undertaking further experimental and practical research.
Collapse
Affiliation(s)
- Ke Qi
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jiayi Li
- Department of Clinical Test Center, Medical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yang Hu
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yiyun Qiao
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Zhao R, Yin F, Fredimoses M, Zhao J, Fu X, Xu B, Liang M, Chen H, Liu K, Lei M, Laster KV, Li Z, Kundu JK, Dong Z, Lee MH. Targeting FGFR1 by β,β-dimethylacrylalkannin suppresses the proliferation of colorectal cancer in cellular and xenograft models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155612. [PMID: 38669968 DOI: 10.1016/j.phymed.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) continues to be a major global health challenge, ranking as a top cause of cancer-related mortality. Alarmingly, the five-year survival rate for CRC patients hovers around a mere 10-30 %. The disruption of fibroblast growth factor receptor (FGFRs) signaling pathways is significantly implicated in the onset and advancement of CRC, presenting a promising target for therapeutic intervention in CRC management. Further investigation is essential to comprehensively elucidate FGFR1's function in CRC and to create potent therapies that specifically target FGFR1. PURPOSE This study aims to demonstrate the oncogenic role of FGFR1 in colorectal cancer and to explore the potential of β,β-dimethylacrylalkannin (β,β-DMAA) as a therapeutic option to inhibit FGFR1. METHODS In this research, we employed a comprehensive suite of techniques including tissue array, kinase profiling, computational docking, knockdown assay to predict and explore the inhibitor of FGFR1. Furthermore, we utilized kinase assay, pull-down, cell proliferation tests, and Patient derived xenograft (PDX) mouse models to further investigate a novel FGFR1 inhibitor and its impact on the growth of CRC. RESULTS In our research, we discovered that FGFR1 protein is markedly upregulated in colorectal cancer tissues, suggesting a significant role in regulating cellular proliferation, particularly in patients with colorectal cancer. Furthermore, we conducted a computational docking, kinase profiling analysis, simulation and identified that β,β-DMAA could directly bind with FGFR1 within ATP binding pocket domain. Cell-based assays confirmed that β,β-DMAA effectively inhibited the proliferation of colon cancer cells and also triggered cell cycle arrest, apoptosis, and altered FGFR1-mediated signaling pathways. Moreover, β,β-DMAA effectively attenuated the development of PDX tumors in mice that were FGFR1-positive, with no notable toxicity observed. In summary, our study highlights the pivotal role of FGFR1 in colorectal cancer, suggesting that inhibiting FGFR1 activity could be a promising strategy for therapeutic intervention. We present strong evidence that targeting FGFR1 with β,β-DMAA is a viable approach for the management of colorectal cancer. Given its low toxicity and high efficacy, β,β-DMAA, as an FGFR1 inhibitor, warrants further investigation in clinical settings for the treatment of FGFR1-positive tumors.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000, China
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | | | - Jianhua Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Mengrui Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN55912, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000, China
| | - Mingjuan Lei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | | | - Zhi Li
- Department of General Surgery, the Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou 450000, China.
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000, China; College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea.
| |
Collapse
|
3
|
Huang YH, Chiu LY, Tseng JS, Hsu KH, Chen CH, Sheu GT, Yang TY. Attenuation of PI3K-Akt-mTOR Pathway to Reduce Cancer Stemness on Chemoresistant Lung Cancer Cells by Shikonin and Synergy with BEZ235 Inhibitor. Int J Mol Sci 2024; 25:616. [PMID: 38203787 PMCID: PMC10779050 DOI: 10.3390/ijms25010616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is considered the number one cause of cancer-related deaths worldwide. Although current treatments initially reduce the lung cancer burden, relapse occurs in most cases; the major causes of mortality are drug resistance and cancer stemness. Recent investigations have provided evidence that shikonin generates various bioactivities related to the treatment of cancer. We used shikonin to treat multi-resistant non-small lung cancer cells (DOC-resistant A549/D16, VCR-resistant A549/V16 cells) and defined the anti-cancer efficacy of shikonin. Our results showed shikonin induces apoptosis in these ABCB1-dependent and independent chemoresistance cancer sublines. Furthermore, we found that low doses of shikonin inhibit the proliferation of lung cancer stem-like cells by inhibiting spheroid formation. Concomitantly, the mRNA level and protein of stemness genes (Nanog and Oct4) were repressed significantly on both sublines. Shikonin reduces the phosphorylated Akt and p70s6k levels, indicating that the PI3K/Akt/mTOR signaling pathway is downregulated by shikonin. We further applied several signaling pathway inhibitors that have been used in anti-cancer clinical trials to test whether shikonin is suitable as a sensitizer for various signaling pathway inhibitors. In these experiments, we found that low doses shikonin and dual PI3K-mTOR inhibitor (BEZ235) have a synergistic effect that inhibits the spheroid formation from chemoresistant lung cancer sublines. Inhibiting the proliferation of lung cancer stem cells is believed to reduce the recurrence of lung cancer; therefore, shikonin's anti-drug resistance and anti-cancer stem cell activities make it a highly interesting molecule for future combined lung cancer therapy.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ling-Yen Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
| | - Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Hsuan Hsu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chang-Han Chen
- Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou 545, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, Rauf A, Aljohani ASM, Al Abdulmonem W, Khalil AA, Sharma R, Thiruvengadam M. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact 2022; 368:110198. [PMID: 36179774 DOI: 10.1016/j.cbi.2022.110198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
One of the leading global causes of death is cancer; even though several treatment methods have improved survival rates, the incidence and fatality rates remain high. Naphthoquinones are a type of quinone that is found in nature and has vital biological roles. These chemicals have anticancer (antineoplastic), analgesic, anti-inflammatory, antimalarial, antifungal, antiviral, antitrypanosomal, antischistosomal, leishmanicidal, and anti-ulcerative effects. Direct addition of a substituent group to the 1,4-naphthoquinone ring can alter the naphthoquinone's oxidation/reduction and acid/base characteristics, and the activity can be altered. Because of their pharmacological properties, such as anticancer activity and probable therapeutic application, naphthoquinones have greatly interested the scientific community. Some chemicals having a quinone ring in malignant cells have been found to have antiproliferative effects. Naphthoquinones' deadly impact is connected with the inhibition of electron transporters, the uncoupling of oxidative phosphorylation, the creation of ROS, and the formation of protein adducts, notably with -SH enzyme groups. This review article aims to discuss naphthoquinones and their derivatives, which act against cancer and their future perspectives. This review covers several studies highlighting the potent anticancer properties of naphthoquinones. Further, various proposed mechanisms of anticancer actions of naphthoquinones have been summarized in this review.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Limon Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Pakistan, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, South Korea; Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| |
Collapse
|
5
|
Shikonin Mediates Apoptosis through G Protein-Coupled Estrogen Receptor of Ovarian Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6517732. [PMID: 36248433 PMCID: PMC9556250 DOI: 10.1155/2022/6517732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
This study was intended to establish the predictive target of Shikonin (SK) against ovarian cancer using network pharmacology and to clarify the potential mechanism of SK in promoting apoptosis in ovarian cancer. Cell Counting Kit-8 assay, plate clone assays, LDH assay, flow cytometric analysis of Annexin V-fluorescein isothiocyanate/propidium iodide staining, and western blotting were used to assess the effect of SK on apoptosis of ovarian cancer cell lines (SKOV3 and A2780). Pharmacodynamic targets were used to predict the targets of SK and ovarian cancer. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses were used to analyze the biological functions and signal pathways of these targets. SK promoted apoptosis in ovarian epithelioid adenocarcinoma cells. SK-ovarian cancer pharmacodynamic target analysis screened 17 related genes. GO and KEGG analyses showed that SK affected the estrogen signaling pathway. SK inhibited the expression of GPER in SKOV3 and A2780 cells and downregulated the expression of EGFR, p-EGFR, PI3K, and p-AKT in a concentration-dependent manner. The apoptosis-promoting effect of SK was enhanced by GPER-specific agonist G1 and inhibited by the specific inhibitor G15. The expression of EGFR, p-EGFR, PI3K, and p-AKT was decreased by G1 and reversed by G15. SK also inhibited tumor growth in the SKOV3 xenograft model, and it acted synergistically with G1. However, the effect can be attenuated by G15 in vivo. In summary, SK may affect the apoptosis of ovarian cancer cells through GPER/EGFR/PI3K/AKT, and GPER may be a key target of SK in ovarian cancer cell apoptosis.
Collapse
|
6
|
Qi H, Zhang X, Liu H, Han M, Tang X, Qu S, Wang X, Yang Y. Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells. J Cancer 2022; 13:243-252. [PMID: 34976186 PMCID: PMC8692675 DOI: 10.7150/jca.65297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Shikonin is a naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon, which has displayed potent anti-tumor properties. However, the effects of shikonin in colorectal cancer cells have not been yet fully investigated. In this study, we demonstrated that shikonin significantly inhibited the activity of colorectal cancer cells in a time- and dose-dependent manner. The flow cytometry and western blot results indicated that shikonin induced cell apoptosis by down-regulating BCL-2 and activating caspase-3/9 and the cleavage of PARP. The expression of BiP and the PERK/elF2α/ATF4/CHOP and IRE1α /JNK signaling pathways were upregulated after shikonin treatment. The pre-treatment with N-acetyl cysteine significantly reduced the cytotoxicity of shikonin. Taken together, shikonin could inhibit proliferation of the colorectal cancer cell through the activation of ROS mediated-ER stress. The in vivo results showed that shikonin effectively inhibited tumor growth in the HCT-116 and HCT-15 xenograft models. In conclusion, shikonin inhibited the proliferation of colorectal cancer cells in vitro and in vivo and warrants future investigation.
Collapse
Affiliation(s)
- Hui Qi
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.,Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Xing Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Huanhuan Liu
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Meng Han
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Xuzhen Tang
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Shulan Qu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| |
Collapse
|
7
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Zhu L, Li K, Liu M, Liu K, Ma S, Cai W. Anti-cancer Research on Arnebiae Radix-derived Naphthoquinone in Recent Five Years. Recent Pat Anticancer Drug Discov 2021; 17:218-230. [PMID: 34886780 DOI: 10.2174/1574892816666211209164745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many naphthoquinone compounds with anticancer activity have been identified in Arnebiae Radix, and some of them have the potential to be developed into anticancer drugs. OBJECTIVE This article aimed to provide a comprehensive overview of the anticancer effects of naphthoquinone compounds through a detailed review of literature and Chinese patents, and discuss their potential to be developed as anticancer drugs for clinical application. METHODS Research papers were collected through the databases of PubMed, Cnki and SciDirect using keyword searches "naphthoquinone compounds" and "anticancer". The keywords of "shikonin" and "shikonin derivatives" were also used in PubMed, Cnki and SciDirect databases to collect research articles. The Chinese patents were collected using the Cnki patent database. RESULTS Naphthoquinone compounds have been found to possess anti-cancer activity, and their modes of action are associated with inducing apoptosis, inhibiting cancer cell proliferation, promoting autophagy in cancer cells, anti-cancer angiogenesis and inhibition of cell adhesion, invasion and metastasis, inhibiting glycolysis and inhibiting DNA topoisomerase activity. CONCLUSION Most of the naphthoquinone compounds show effective anti-cancer activity in vitro. The structure modification of naphthoquinone aims to develop anti-cancer drugs with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Lian Zhu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Mingjuan Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kexin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Shengjun Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| |
Collapse
|
10
|
Pan J, Li M, Yu F, Zhu F, Wang L, Ning D, Hou X, Jiang F. Up-Regulation of p53/miR-628-3p Pathway, a Novel Mechanism of Shikonin on Inhibiting Proliferation and Inducing Apoptosis of A549 and PC-9 Non-Small Cell Lung Cancer Cell Lines. Front Pharmacol 2021; 12:766165. [PMID: 34867391 PMCID: PMC8635033 DOI: 10.3389/fphar.2021.766165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Shikonin (SHK) is a pleiotropic agent with remarkable cell growth inhibition activity against various cancer types, especially non–small cell lung cancer (NSCLC), but its molecular mechanism is still unclear. Our previous study found that miR-628-3p could inhibit the growth of A549 cells and induce its apoptosis. Bioinformatics analysis predicted that miR-628-3p promoter sequence contained p53 binding sites. Considering the regulatory effect of SHK on p53, we speculate that SHK may inhibit the growth and induce apoptosis of NSCLC cells by up-regulating miR-628-3p. CCK-8 and EdU assay confirmed the inhibitory effect of SHK on A549 and PC-9 cells. Meanwhile, quantitative reverse transcription–polymerase chain reaction and Western blot showed that SHK could promote the expression of p53 and miR-628-3p in a dose-dependent manner. Overexpression of p53 or miR-628-3p can inhibit the growth and promote apoptosis of A549 and PC-9 cells, while silencing p53 or miR-628-3p has the opposite effect. Dual luciferase reporting assay and ChIP (chromatin immunoprecipitation) assay further verified the direct interaction between p53 and the promoter of miR-628-3p. Gene knockdown for p53 or miR-628-3p confirmed that SHK inhibits the growth and induces apoptosis of A549 and PC-9 cells at least partly by up-regulating p53/miR-628-3p signaling pathway. Therefore, these novel findings provide an alternative approach to target p53/miR-628-3p axis and could be used for the development of new treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenglin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoli Hou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fusheng Jiang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Mao G, Mu Z, Wu D. Exosomal lncRNA FOXD3-AS1 upregulates ELAVL1 expression and activates PI3K/Akt pathway to enhance lung cancer cell proliferation, invasion, and 5-fluorouracil resistance. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1484-1494. [PMID: 34605863 DOI: 10.1093/abbs/gmab129] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) FOXD3-AS1 expression is upregulated in lung cancer; however, its effect and mechanism on 5-fluorouracil (5-FU) resistance remain unclear. In this study, we determined the effects of FOXD3-AS1-enriched exosomes derived from lung cancer cells on the proliferation, invasion, and 5-FU resistance of lung cancer cells. Online bioinformatics database analysis showed that FOXD3-AS1 was upregulated in lung cancer progression. Real-time quantitative PCR results confirmed that FOXD3-AS1 expression was upregulated in lung cancer tissues and cell lines, and FOXD3-AS1 was greatly enriched in lung cancer cell-derived exosomes. ELAV-like RNA-binding protein 1 (ELAVL1) was identified as an RNA-binding protein of FOXD3-AS1. The lung cancer cell-derived exosomes promoted A549 cell proliferation and invasion and inhibited apoptosis caused by 5-FU, and transfection of si-FOXD3-AS1 or si-ELAVL1 in exosome-incubated A549 cells reversed these effects. Moreover, exosome-incubated A549 cells were co-transfected with si-FOXD3-AS1 and pcDNA-ELAVL1, showing the same cell proliferation, invasion, and 5-FU resistance as those of A549 cells treated with lung cancer cell-derived exosomes alone. Mechanistic studies identified that lung cancer cell-derived exosomes activated the PI3K/Akt pathway, and transfection of si-FOXD3-AS1 or treatment with the PI3K inhibitor LY294002 reversed the activation of the PI3K/Akt axis induced by exosomes. In conclusion, our study revealed that lung cancer cell-derived exosomal FOXD3-AS1 upregulated ELAVL1 expression and activated the PI3K/Akt pathway to promote lung cancer progression. Our findings provide a new strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Guangxian Mao
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhimin Mu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Da Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
12
|
Ma Y, Yang X, Han H, Wen Z, Yang M, Zhang Y, Fu J, Wang X, Yin T, Lu G, Qi J, Lin H, Wang X, Yang Y. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem 2021; 111:104872. [PMID: 33838560 DOI: 10.1016/j.bioorg.2021.104872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 μM; SK: IC50 = 7.62 ± 0.26 μM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/β-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaorong Yang
- School of Biology and Geography Science, Yili Normal University, Yining 835000, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol Res 2021; 167:105583. [PMID: 33775864 DOI: 10.1016/j.phrs.2021.105583] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
With the development of precision medicine, molecular targeted therapy has been widely used in the field of cancer, especially in non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a well-recognized and effective target for NSCLC therapies, targeted EGFR therapy with EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has achieved ideal clinical efficacy in recent years. Unfortunately, resistance to EGFR-TKIs inevitably occurs due to various mechanisms after a period of therapy. EGFR mutations, such as T790M and C797S, are the most common mechanism of EGFR-TKI resistance. Here, we discuss the mechanisms of EGFR-TKIs resistance induced by secondary EGFR mutations, highlight the development of targeted drugs to overcome EGFR mutation-mediated resistance, and predict the promising directions for development of novel candidates.
Collapse
|
14
|
Liu C, Xuan LQ, Li K, Feng Z, Lv C, Li XJ, Ji XD, Wan R, Shen J. Shikonin Inhibits Cholangiocarcinoma Cell Line QBC939 by Regulating Apoptosis, Proliferation, and Invasion. Cell Transplant 2021; 30:963689720979162. [PMID: 33508949 PMCID: PMC7863558 DOI: 10.1177/0963689720979162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was designed to clarify whether Shikonin causes proliferation, apoptosis, and invasion in cholangiocarcinoma cells and to investigate the mechanism of action. QBC939 cells were cultured with different doses of Shikonin, and then 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium assay was used to detect cell viability. Apoptosis of cells was detected using flow cytometry with Annexin V/propidium iodide (PI) assay after being stained with Hoechst 33242. The role of Shikonin on the invasive and metastasis ability was detected using Transwell invasion assay. Real-time polymerase chain reaction and Western blotting were used to detect the expression of caspase-3, caspase-8, epidermal growth factor receptor (EGFR), and matrix metalloproteinase (MMP)-9. Shikonin inhibited proliferation and invasive ability of QBC939 cells in a dose-dependent manner; at the same time, apoptosis of cells was also observed in a concentration-dependent fashion. Moreover, Annexin V/PI assay and Transwell invasion assay results indicated that Shikonin induced apoptosis and invasion inhibitory probably due to upregulation of caspase-3 and caspase-8 expression and downregulation of MMP-9 and EGFR expression in a concentration-dependent fashion. Shikonin could enhance apoptosis and inhibit proliferation and invasion of QBC939 cells; such biological behaviors mainly occurred via upregulating the expression of caspase-3 and caspase-8 and downregulating the expression of MMP-9 and EGFR.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Li-Qian Xuan
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhuo Feng
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chan Lv
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xing-Jia Li
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiao-Dan Ji
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jie Shen
- Department of Digestive Endoscopy Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
15
|
Wang L, Stadlbauer B, Lyu C, Buchner A, Pohla H. Shikonin enhances the antitumor effect of cabazitaxel in prostate cancer stem cells and reverses cabazitaxel resistance by inhibiting ABCG2 and ALDH3A1. Am J Cancer Res 2020; 10:3784-3800. [PMID: 33294267 PMCID: PMC7716147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population among cancer cells, defined as capable of self-renewal, and driving tumor growth, metastasis, and therapeutic relapse. The development of therapeutic strategies to target CSCs is of great importance to prevent tumor metastasis and relapse. Increasing evidence shows that shikonin has inhibiting effects on CSCs. This study was to determine the effect of shikonin on prostate CSCs, and on drug resistant cells. Sphere formation assay was used to enrich prostate CSCs. The effect of shikonin on viability, proliferation, migration, and invasion was studied. Typical CSCs markers were analyzed by flow cytometry and RT-qPCR. The cytotoxic mechanism of shikonin was analyzed by staining for annexin V, reactive oxygen species (ROS) and mitochondrial membrane potential. To study the effect of shikonin on drug-resistant cells a cabazitaxel resistant cell line was established. Shikonin inhibited the viability, proliferation, migration, and invasion of prostate CSCs. Shikonin enhanced the antitumor effect of cabazitaxel, which is a second-line chemotherapeutic drug in advanced prostate cancer. Shikonin induced apoptosis through generating ROS and disrupting the mitochondrial membrane potential. Furthermore, shikonin suppressed the expression of ALDH3A1 and ABCG2 in prostate CSCs, which are two markers related to drug-resistance. When inhibiting the expression of ABCG2 and ALDH3A1, the cabazitaxel resistant cells acquired more sensibility to cabazitaxel. Shikonin enhances the cytotoxic activity of cabazitaxel in prostate CSCs and reverses the cabazitaxel-resistant state.
Collapse
Affiliation(s)
- Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University MunichGermany
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University MunichGermany
- Department of Urology, LMU Klinikum, University MunichGermany
| | - Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University MunichGermany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University MunichGermany
- Department of Urology, LMU Klinikum, University MunichGermany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University MunichGermany
- Department of Urology, LMU Klinikum, University MunichGermany
| |
Collapse
|
16
|
Shen XB, Wang Y, Han XZ, Sheng LQ, Wu FF, Liu X. Design, synthesis and anticancer activity of naphthoquinone derivatives. J Enzyme Inhib Med Chem 2020; 35:773-785. [PMID: 32200656 PMCID: PMC7144209 DOI: 10.1080/14756366.2020.1740693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Basis on molecular docking and pharmacophore analysis of naphthoquinone moiety, a total of 23 compounds were designed and synthesised. With the help of reverse targets searching, anti-cancer activity was preliminarily evaluated, most of them are effective against some tumour cells, especially compound 12: 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl-4-oxo-4-((4-phenoxyphenyl)amino) butanoate whose IC50 against SGC-7901 was 4.1 ± 2.6 μM. Meanwhile the anticancer mechanism of compound 12 had been investigated by AnnexinV/PI staining, immunofluorescence, Western blot assay and molecular docking. The results indicated that this compound might induce cell apoptosis and cell autophagy through regulating the PI3K signal pathway.
Collapse
Affiliation(s)
- Xiao-Bao Shen
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Xuan-Zhen Han
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Liang-Quan Sheng
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Fu-Fang Wu
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| |
Collapse
|
17
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
18
|
Zang F, Rao Y, Zhu X, Wu Z, Jiang H. Shikonin suppresses NEAT1 and Akt signaling in treating paclitaxel-resistant non-small cell of lung cancer. Mol Med 2020; 26:28. [PMID: 32268876 PMCID: PMC7140387 DOI: 10.1186/s10020-020-00152-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of paclitaxel-resistance led to the tumor relapse and treatment failure of non-small cell lung cancer. Shikonin has been demonstrated to show anti-cancer activity in many cancer types. The present study aimed to investigate the anti-cancer activity of shikonin in paclitaxel-resistant non-small cell lung cancer treatment. METHODS MTT, clonogenic assay, apoptotic cell death analysis, western blot, qRT-PCR, gene knockdown and overexpression, xenograft experiment, immunohistochemistry were performed. RESULTS Shikonin decreased paclitaxel-resistant NSCLC cell viability and inhibited the growth of xenograft tumor. Shikonin induced apoptotic cell death of paclitaxel-resistant NSCLC cell lines and suppressed the level of NEAT1 and Akt signaling of paclitaxel-resistant NSCLC cell lines and xenograft tumors. Either low dose or high dose of shikonin considerably suppressed the cell growth and induced the cell apoptotic death in NEAT1 knockdown A549/PTX cells, and p-Akt expression was decreased. CONCLUSIONS Shikonin could be a promising candidate for paclitaxel-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Farong Zang
- Department of Respiratory and Oncology, Changxing County People's Hospital, Changxing, Zhejiang, 313100, People's Republic of China
| | - Yuanquan Rao
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Xinhai Zhu
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China.
| | - Hao Jiang
- Department of Oncology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, People's Republic of China.
| |
Collapse
|
19
|
Hu X, Zhang ZY, Wu LW, Zeng LH, Chen H, Zhu HJ, Zhang JK, Shao J, Zhang C, Li YL, Lin NM. A natural anthraquinone derivative shikonin synergizes with AZD9291 against wtEGFR NSCLC cells through reactive oxygen species-mediated endoplasmic reticulum stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153189. [PMID: 32070867 DOI: 10.1016/j.phymed.2020.153189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND NSCLC is the major type of lung cancer and the survival rates of NSCLC patients remain low. AZD9291 is a third-generation EGFR-TKI and approved to treat NSCLC patients harboring EGFR T790M mutation and common targetable activating EGFR mutations, but it has a limited effect for wtEGFR NSCLC. PURPOSE The current study investigated whether shikonin could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells. METHODS SRB and colony formation assay were used to detect the proliferation of NSCLC cells, propidium iodide staining was performed to detect the apoptosis, ROS was analyzed using DCFH-DA staining, and western blot was used to detect the expression of indicated proteins. RESULTS We demonstrated that shikonin, a natural ROS inducer, could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells. In addition, shikonin increased AZD9291-induced apoptosis accompanying with the generation of ROS and activation of ER stress. Furthermore, ROS inhibition by NAC or GSH reversed the apoptosis induced by shikonin plus AZD9291, and recovered the ER stress activated by combination treatment, indicating that ROS mediated ER stress played a vital role in this combination therapy. Moreover, shikonin increased the anticancer activity of AZD9291 in primary wtEGFR NSCLC cells through ROS-mediated ER stress. CONCLUSION Our study suggests that combining shikonin with AZD9291 is a promising therapeutic strategy for treating wtEGFR NSCLC patients.
Collapse
Affiliation(s)
- Xiu Hu
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China,; College of Pharmaceutical Sciences, Zhejiang University, No.866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Zuo-Yan Zhang
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China,; College of Pharmaceutical Sciences, Zhejiang University, No.866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Lin-Wen Wu
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China,; College of Pharmaceutical Sciences, Zhejiang University, No.866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
| | - Hui Chen
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
| | - Hua-Jian Zhu
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, No.51 Huzhou Street, Hangzhou, Zhejiang, 310015, China,.
| | - Yang-Ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Hangzhou, Zhejiang, 310006, China.
| | - Neng-Ming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
20
|
Liu T, Li S, Wu L, Yu Q, Li J, Feng J, Zhang J, Chen J, Zhou Y, Ji J, Chen K, Mao Y, Wang F, Dai W, Fan X, Wu J, Guo C. Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2. J Hepatocell Carcinoma 2020; 7:19-31. [PMID: 32110554 PMCID: PMC7035901 DOI: 10.2147/jhc.s237614] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Shikonin is a natural product with many activities, including anti-cancer effects. Pyruvate kinase type M2 (PKM2) plays a crucial role in the growth of tumor cells. However, the effect of shikonin on PKM2 in hepatocellular carcinoma (HCC) is unclear. METHODS Cell viability, apoptosis level, glucose uptake, and lactate production were detected in HCC cells. Lentivirus-overexpressed and -shRNA of PKM2 were used to verify the key target of shikonin. A xenograft mouse model was used to detect the efficacy of shikonin and its combination with sorafenib in vivo. RESULTS Shikonin inhibited proliferation and glycolysis and induced apoptosis in HCC cells. Either PKM2-overexpressed or PKM2-shRNA alleviated or enhanced this effect. The results of CCK-8 showed that shikonin significantly inhibited cell viability of HCC cells. The levels of glucose uptake and lactate production were dramatically decreased by shikonin-treated. Results of flow cytometry and Western blot showed that the levels of apoptosis of HCC cells were significantly increased in a dose-dependent manner after shikonin treatment. In addition, shikonin enhanced the anti-cancer effect of sorafenib in vitro and in vivo. Our results showed that SK combined with sorafenib markedly inhibits tumor growth in HCC-transplanted nude mice compared to SK or sorafenib alone. CONCLUSION By inhibiting PKM2, shikonin inhibited proliferation and glycolysis and induced cell apoptosis in HCC cells. The effect of shikonin on tumor cell proliferation, apoptosis and glycolsis will make it promising drug for HCC patients.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital of Shandong University, Ji’nan250000, People’s Republic of China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai200072, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai200072, People’s Republic of China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai200072, People’s Republic of China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai200072, People’s Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai200032, People’s Republic of China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai201508, People’s Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| |
Collapse
|
21
|
Guo C, He J, Song X, Tan L, Wang M, Jiang P, Li Y, Cao Z, Peng C. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol Res 2019; 149:104463. [PMID: 31553936 DOI: 10.1016/j.phrs.2019.104463] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
Abstract
Shikonin is the major bioactive component extracted from the roots of Lithospermum erythrorhizon which is also known as "Zicao" in Traditional Chinese Medicine (TCM). Recent studies have shown that shikonin demonstrates various bioactivities related to the treatment of cancer, inflammation, and wound healing. This review aimed to provide an updated summary of recent studies on shikonin. Firstly, many studies have demonstrated that shikonin exerts strong anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis. Shikonin also triggers Reactive Oxygen Species (ROS) generation, suppressing exosome release, and activate anti-tumor immunity in multiple molecular mechanisms. Examples of these effects include modulating the PI3K/AKT/mTOR and MAPKs signaling; inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK; and regulating the expression of ERP57, MMPs, ATF2, C-MYC, miR-128, and GRP78 (Bip). Next, the anti-inflammatory and wound-healing properties of shikonin were also reviewed. Furthermore, several studies focusing on shikonin derivatives were reviewed, and these showed that, with modification to the naphthazarin ring or side chain, some shikonin derivatives display stronger anticancer activity and lower toxicity than shikonin itself. Our findings suggest that shikonin and its derivatives could serve as potential novel drug for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
22
|
Wang F, Yao X, Zhang Y, Tang J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia 2019; 134:329-339. [DOI: 10.1016/j.fitote.2019.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
|