1
|
Karaosmanoğlu C, Yıldız SH, Akdoğan M, Erdoğan MÖ. Association of CUL4B with the pathogenesis of age-related cataract. Int Ophthalmol 2024; 44:288. [PMID: 38937308 DOI: 10.1007/s10792-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/29/2023] [Indexed: 06/29/2024]
Abstract
PURPOSE Age-related cataract (ARC) is the most common cause of visual impairment and blindness in older adults. However, the role of CUL4B in the ARC remains unclear. Therefore, we investigated CUL4B expression and its effects on apoptosis. MATERIALS AND METHODS CUL4B expression levels were detected by a quantitative real-time polymerase chain reaction from the anterior lens capsules of patients with ARC and HLE-B3 cells treated with different concentrations of H2O2. CUL4B expression was silenced by siRNA transfection to evaluate apoptosis. CUL4B and apoptotic proteins B cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), caspase-3, cleaved caspase-3, Bax, Bak, and Bid were assessed using western blot analysis. Apoptosis was monitored using the TUNEL assay. RESULTS CUL4B expression was downregulated in the anterior lens capsules (P < 0.0001) and H2O2-treated HLE-B3 cells (P = 0.0405). CUL4B protein levels were significantly lower in 100 µmol/L (P = 0.0012) and 200 µmol/L (P = 0.0041) H2O2-treated HLE-B3 cells than in the untreated cells. CUL4B expression was significantly knocked down at the mRNA (P = 0.0043) and protein levels (P = 0.0002) in HLE-B3 cells. Bcl-2 (P = 0.0199), Mcl-1 (P = 0.0042), and caspase-3 (P = 0.0142) were significantly downregulated, whereas cleaved caspase-3 (P = 0.0089) and Bak (P = 0.009) were significantly upregulated in the knockdown group. The TUNEL assay showed a greater induction of apoptosis. CONCLUSIONS CUL4B downregulation promotes the apoptosis of lens epithelial cells. Our study may help in understanding the role of CUL4B in ARC pathogenesis.
Collapse
Affiliation(s)
- Cem Karaosmanoğlu
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Saliha Handan Yıldız
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Müberra Akdoğan
- Department of Ophthalmology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Müjgan Özdemir Erdoğan
- Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
2
|
Li D, Che X, Gao N, Li J. CircSTRBP contributes to H 2O 2-induced lens epithelium cell dysfunction through increasing NOX4 mRNA stability by recruiting IGF2BP1. Exp Eye Res 2024; 241:109817. [PMID: 38340945 DOI: 10.1016/j.exer.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.
Collapse
Affiliation(s)
- Di Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Xuanyi Che
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ningning Gao
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
3
|
Benavides-Aguilar JA, Morales-Rodríguez JI, Ambriz-González H, Ruiz-Manriquez LM, Banerjee A, Pathak S, Duttaroy AK, Paul S. The regulatory role of microRNAs in common eye diseases: A brief review. Front Genet 2023; 14:1152110. [PMID: 37065488 PMCID: PMC10090401 DOI: 10.3389/fgene.2023.1152110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNA molecules (∼21 nucleotides) that regulate numerous biological processes, including developmental timing, hematopoiesis, organogenesis, apoptosis, cell differentiation, and proliferation either by mRNA degradation or translation repression. Since eye physiology requires a perfect orchestration of complex regulatory networks, an altered expression of key regulatory molecules such as miRNAs potentially leads to numerous eye disorders. In recent years, comprehensive progress has been made in demonstrating the precise roles of miRNAs, emphasizing their potential use in diagnostic and therapeutic purposes of chronic human diseases. Thus, this review explicitly illustrates the regulatory roles of miRNAs in four common eye disorders, such as cataract, glaucoma, macular degeneration, and uveitis, and their application in disease management.
Collapse
Affiliation(s)
| | | | | | - Luis M. Ruiz-Manriquez
- Tecnológico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Science, Monterrey, Mexico
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnológico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
4
|
Kang L, Luo J, Li P, Zhang G, Wei M, Ji M, Guan H. miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells. Int Ophthalmol 2022; 43:1261-1274. [PMID: 36173547 DOI: 10.1007/s10792-022-02524-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore the regulatory effect of miR-125a-3p on lens epithelial cells (LECs) under ultraviolet radiation B (UVB) irradiation. METHODS The expression of miR-125a-3p in age-related cataract (ARC) specimens and cell models was detected by qRT-PCR. UVB was utilized to establish DNA damage model of LECs. Cell count kit-8 was applied in detecting cell viability. Cell apoptosis ratio was analyzed by flow cytometry. Dual luciferase reports were applied to analyze the mechanism between miRNA and target genes. Nanoparticle tracking analysis, and Western blot were used to identify whether the exosomes were typical exosomes. RESULTS miR-125a-3p was upregulated in ARC tissues and LECs treated with UVB. Knockdown of miR-125a-3p in LECs significantly decreased apoptosis and increased viability of UVB-irradiated LECs. We predicted that miR-125a-3p could regulate transmembrane Bax inhibitor motif containing 4 (TMBIM4) by the bioinformatics databases TargetScan, miRBase, and miRWalk. Luciferase reporter assays demonstrated that miR-125a-3p may suppress TMBIM4 protein translation by binding to 3'UTR of TMBIM4 mRNA. Overexpression of miR-125a-3p decreased TMBIM4, which suggested that miR-125a-3p could inhibit TMBIM4. Moreover, knockdown of TMBIM4 decreased cell viability and enhanced cell apoptosis during UVB irradiation. In addition, the exosome secretion of LECs irradiated by UVB was enhanced, and the expression of miR-125a-3p was high. Cell viability was significantly decreased, and cell apoptosis was increased during UVB-exos treatment. CONCLUSION This study indicated that miR-125a-3p regulated apoptosis by suppressing TMBIM4 in LECs under oxidative damage, providing a new idea for clinical therapeutic target of cataract.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Miao Wei
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
5
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
6
|
Xu Y, Zheng Y, Shen P, Zhou L. Role of long noncoding RNA KCNQ1 overlapping transcript 1/microRNA-124-3p/BCL-2-like 11 axis in hydrogen peroxide (H 2O 2)-stimulated human lens epithelial cells. Bioengineered 2022; 13:5035-5045. [PMID: 35170373 PMCID: PMC8973598 DOI: 10.1080/21655979.2022.2032966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Age-related cataract (ARC) is one of the most common causes of vision loss in aging people. This research analyzed the functions and mechanism of long noncoding RNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) in hydrogen peroxide (H2O2)-stimulated human lens epithelial cells (SRA01/04 cells) in ARC. SRA01/04 cells were stimulated with 200 µM H2O2 to establish oxidative damage in the ARC model. A MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry analysis were conducted to evaluate cell growth and apoptosis. The relevance between KCNQ1OT1 and microRNA (miR)-124-3p or miR-124-3p and BCL-2-like 11 (BCL2L11) was measured through Starbase and a dual luciferase reporter gene assay. The levels of KCNQ1OT1 and miR-124-3p were assessed via quantitative real-time polymerase chain reaction (qRT-PCR). We observed that KCNQ1OT1 was over-expressed and miR-124-3p was low-expressed in H2O2-stimulated SRA01/04 cells. KCNQ1OT1 interacted with miR-124-3p and negatively mediated its levels. In addition, KCNQ1OT1-siRNA reversed the effects of H2O2 on SRA01/04 cells, evidenced by enhanced cell viability, inhibited apoptotic cells, promoted Bcl-2 expression, and reduced Bax levels. Nevertheless, these observations were inverted after miR-124-3p inhibitor treatment. Likewise, miR-124-3p mimic had a protective effect on H2O2-stimulated SRA01/04 cells. Our data suggested that BCL2L11 targeted miR-124-3p directly. In summary, the data indicated that lncRNA KCNQ1OT1 down-regulation protected SRA01/04 cells from oxidative stress stimulated damage via the miR-124-3p/BCL2L11 pathway.
Collapse
Affiliation(s)
- Yue Xu
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanhua Zheng
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Pincheng Shen
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liping Zhou
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
7
|
Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:164. [PMID: 33975615 PMCID: PMC8111743 DOI: 10.1186/s13046-021-01942-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
Background Temozolomide (TMZ) resistance limits its application in glioma. Exosome can carry circular RNAs (circRNAs) to regulate drug resistance via sponging microRNAs (miRNAs). miRNAs can control mRNA expression by regulate the interaction with 3’UTR and methylation. Nanog homeobox (NANOG) is an important biomarker for TMZ resistance. Hitherto, it is unknown about the role of exosomal hsa_circ_0072083 (circ_0072083) in TMZ resistance in glioma, and whether it is associated with NANOG via regulating miRNA sponge and methylation. Methods TMZ-resistant (n = 36) and sensitive (n = 33) patients were recruited. The sensitive cells and constructed resistant cells were cultured and exposed to TMZ. circ_0072083, miR-1252-5p, AlkB homolog H5 (ALKBH5) and NANOG levels were examined via quantitative reverse transcription polymerase chain reaction and western blot. The half maximal inhibitory concentration (IC50) of TMZ, cell proliferation, apoptosis, migration and invasion were analyzed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing and transwell assays. The in vivo function was assessed using xenograft model. The N6-methyladenosine (m6A) level was analyzed via methylated RNA immunoprecipitation (MeRIP). Target relationship was investigated via dual-luciferase reporter assay and RNA immunoprecipitation. Warburg effect was investigated via lactate production, glucose uptake and key enzymes expression. Exosome was isolated and confirmed via transmission electron microscopy and specific protein expression. Results circ_0072083 expression was increased in TMZ-resistant glioma tissues and cells. circ_0072083 knockdown restrained the resistance of resistant cells via decreasing IC50 of TMZ, proliferation, migration, invasion and xenograft tumor growth and increasing apoptosis. circ_0072083 silence reduced NANOG expression via blocking ALKBH5-mediated demethylation. circ_0072083 could regulate NANOG and ALKBH5 via targeting miR-1252-5p to control TMZ resistance. Warburg effect promoted the release of exosomal circ_0072083 in resistant cells. Exosomal circ_0072083 from resistant cells increased the resistance of sensitive cells to TMZ in vitro and xenograft model. Exosomal circ_0072083 level was enhanced in resistant patients, and it had a diagnostic value and indicated a lower overall survival in glioma. Conclusion Exosomal circ_0072083 promoted TMZ resistance via increasing NANOG via regulating miR-1252-5p-mediated degradation and demethylation in glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01942-6.
Collapse
|
8
|
Xu X, Gao R, Li S, Li N, Jiang K, Sun X, Zhang J. Circular RNA circZNF292 regulates H 2 O 2 -induced injury in human lens epithelial HLE-B3 cells depending on the regulation of the miR-222-3p/E2F3 axis. Cell Biol Int 2021; 45:1757-1767. [PMID: 33851769 DOI: 10.1002/cbin.11615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the pathogenesis of age-related cataract (ARC). CircRNA zinc finger protein 292 (circZNF292, hsa_circ_0004058) is downregulated in ARC lens capsules. Here, we focused on its precise roles in oxidative stress underlying the pathogenesis of ARC. CircZNF292, microRNA (miR)-222-3p, and E2F transcription factor 3 (E2F3) were quantified by quantitative real-time polymerase chain reaction or western blot. Cell viability was assessed by the cell counting kit-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The activities of superoxide dismutase, catalase, and malondialdehyde were measured using the corresponding assay kit. Targeted correlations among circZNF292, miR-222-3p, and E2F3 were verified by the dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Our data showed that circZNF292 was downregulated in ARC tissues and H2 O2 -treated human lens epithelial B3 (HLE-B3) cells. Increased expression of circZNF292 alleviated H2 O2 -induced cell viability suppression, apoptosis promotion, and oxidative stress enhancement. Mechanistically, circZNF292 directly targeted miR-222-3p, and circZNF292 regulated E2F3 expression through miR-222-3p. MiR-222-3p was a functional mediator of circZNF292 in modulating H2 O2 -induced injury in HLE-B3 cells. Furthermore, reduced level of miR-222-3p ameliorated H2 O2 -induced HLE-B3 cell damage by upregulating E2F3. Our present study demonstrated that increased expression of circZNF292 ameliorated H2 O2 -induced injury in HLE-B3 cells at least in part through the miR-222-3p/E2F3 axis, highlighting a novel insight into the involvement of circRNAs in the pathogenesis of ARC.
Collapse
Affiliation(s)
- Xinyan Xu
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Rongyu Gao
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Shuchan Li
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Nan Li
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Keke Jiang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Xianyong Sun
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| | - Jie Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, Shandong, China
| |
Collapse
|
9
|
Yao P, Jiang J, Ma X, Chen Z, Hong Y, Wu Y. miR-23a-3p regulates the proliferation and apoptosis of human lens epithelial cells by targeting Bcl-2 in an in vitro model of cataracts. Exp Ther Med 2021; 21:436. [PMID: 33777189 PMCID: PMC7967796 DOI: 10.3892/etm.2021.9853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 11/06/2022] Open
Abstract
Cataracts account for ~50% of the cases of blindness in individuals worldwide. The apoptosis of lens epithelial cells (LECs) occurs during the formation of cataracts, which is a non-congenital condition. Numerous microRNAs (miRs) have been reported to regulate apoptosis in LECs. For instance, miR-23a expression levels were shown to be upregulated in cataractous lenses; however, the function of miR-23a in cataracts remains undetermined. To establish an in vitro model of cataracts, human LECs, HLE-B3 cells, were induced with 200 µmol/l H2O2 for 24 h. HLE-B3 cells were transfected with the miR-negative control (NC) mimic, miR-23a-3p mimic, miR-NC inhibitor, miR-23a-3p inhibitor, small interfering RNA (siRNA) targeting BCL2 (siRNA-BCL2) and siRNA-NC. The expression levels of miR-23a-3p were detected using reverse transcription-quantitative PCR. The interaction between miR-23a-3p and the 3'-untranslated region (UTR) of the target mRNA BCL2 was predicted by TargetScan 7.1, and further validated using a dual luciferase reporter assay. The BCL2 protein expression levels were analyzed using western blotting, cell proliferation was determined using a CCK-8 assay and the levels of cell apoptosis were analyzed using flow cytometric analysis. The results of the present study revealed that the expression levels of miR-23a-3p were significantly upregulated, while the expression levels of BCL2 were significantly downregulated in H2O2-induced HLE-B3 cells compared to untreated control cells. BCL2 was shown to be a target of miR-23a-3p. The miR-23a-3p inhibitor subsequently attenuated H2O2-induced apoptosis and increased the proliferation of HLE-B3 cells, which was partially reversed by siRNA-BCL2. In conclusion, the findings of the current study suggested that the inhibition of miR-23a-3p may attenuate H2O2-induced cataract formation by targeting BCL2, thus providing a novel therapeutic target for the treatment of patients with cataracts in the clinic.
Collapse
Affiliation(s)
- Pengxiang Yao
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiaoping Ma
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Zhenzhong Chen
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Yufang Hong
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| | - Yang Wu
- Department of Ophthalmology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
10
|
Zhou B, Zhao G, Zhu Y, Chen X, Zhang N, Yang J, Lin H. Protective Effects of Nicotinamide Riboside on H 2O 2-induced Oxidative Damage in Lens Epithelial Cells. Curr Eye Res 2020; 46:961-970. [PMID: 33297791 DOI: 10.1080/02713683.2020.1855662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To investigate the protective effects of nicotinamide riboside (NR) on oxidative damage in hydrogen peroxide (H2O2)-exposed human lens epithelial cell lines (SRA01/04) and the possible mechanisms underlying its protective effects.Materials and methods: SRA01/04 cells were divided into three groups: the control (CON) group, model (H2O2) group and treatment (NR+H2O2) group. Superoxide dismutase (SOD), catalase (CAT) and total glutathione (GSH) levels were detected to evaluate oxidative damage induced by different concentrations of H2O2 in SRA01/04 cells. After SRA01/04 cells were treated with NR and/or H2O2, cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Hoechst staining, cell apoptosis was analysed using flow cytometry, reactive oxygen species (ROS) were measured with the DCFH-DA probe, and mitochondria were stained with MitoTracker to measure the mitochondrial membrane potential (MMP). In addition, western blotting was performed to detect the levels of proteins associated with apoptosis and related signalling pathways.Results: H2O2 induced oxidative damage in SRA01/04 cells by inhibiting the activity of SOD and CAT and reducing total GSH levels. Treatment of SRA01/04 cells with NR significantly increased cell viability and reduced cell apoptosis and ROS generation, whereas SOD and CAT activities and total GSH and MMP levels were improved by the NR treatment in an H2O2-exposed cell model. Furthermore, NR significantly inhibited the activation of the MAPK pathway but promoted activation of the JAK2/Stat3 pathway compared with the model group.Conclusions: NR may alleviate oxidative damage by targeting the MAPK and JAK2/Stat3 pathways in H2O2-treated SRA01/04 cells. NR may represent anovel drug for preventing or treating cataracts.
Collapse
Affiliation(s)
- Biting Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Guangyu Zhao
- Department of Ophthalmology, Fuzhou South East Eye Hospital (Jinshan New Hospital), Fuzhou, Fujian, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Juhua Yang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Hong Lin
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Liang S, Dou S, Li W, Huang Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging (Albany NY) 2020; 12:17271-17287. [PMID: 32913142 PMCID: PMC7521481 DOI: 10.18632/aging.103683] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Age-related cataract (ARC) is one of the major causes of visual impairment and reversible blindness worldwide. Accumulating evidence has revealed that circular RNAs (circRNAs) are involved in multiple regulatory processes in various ocular diseases. However, the expression profile, regulatory roles, and underlying mechanisms of circRNAs in ARC remain largely unknown. Herein we deep-sequenced circRNAs of anterior lens capsules from normal and ARC lenses, and detected 23,787 candidate circRNAs. Of these, 466 were significantly differentially expressed, and a higher correlation in down-regulated circRNAs between ARC and diabetic cataract was observed compared with up-regulated ones. Subsequent bioinformatics analysis disclosed that certain differentially expressed circRNAs participated in oxidative stress and apoptosis-related signaling pathways in ARC. Notably, the level of circZNF292 was significantly decreased, while miR-23b-3p was significantly increased in ARC. The target region prediction and dual-luciferase reporter assays proved that circZNF292 acted as a competitive endogenous RNA to regulate the expression of anti-oxidative genes through competing with miR-23b-3p. Our results indicate that circZNF292, a down-regulated circRNA in the anterior lens capsule of ARC patients, may be involved in resistance to oxidative damage and apoptosis of lens epithelial cells by sponging miR-23b-3p, providing a potential target for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Shuqi Liang
- Medical College of Qingdao University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Wenfeng Li
- Department of Medical Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yusen Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
12
|
Research Progress of Drug Prophylaxis for Lens Capsule Opacification after Cataract Surgery. J Ophthalmol 2020; 2020:2181685. [PMID: 32714607 PMCID: PMC7355348 DOI: 10.1155/2020/2181685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Phacoemulsification combined with intraocular lens (IOL) implantation is the international standard operation procedure for cataract and has been generalized worldwide. However, lens capsule opacification, one of the common complications after cataract surgery, impacts the recovery of patients' visual function to a large extent. Lens capsule opacification has two types, anterior capsule opacification (ACO) and posterior capsule opacification (PCO), according to the location. There is not an accepted approach to treat ACO. Nd : YAG laser capsulotomy, the common treatment of PCO, can effectively improve the vision, but may cause a series of complications and is inappropriate for children who are too young to cooperate with this treatment. It is generally known that the responses of lens epithelial cells (LECs) after cataract surgery, including cell proliferation, migration, and epithelial-mesenchymal transition (EMT), play a key role in the pathogenesis of lens capsule opacification. Scholars found that substantial drugs can reduce the occurrence of lens capsule opacification by inhibiting, clearing, or killing LECs, and made great efforts as well as innovations on the exploration of drug species or modes of administration. This article is a systematic interpretation and elaboration about how to prevent lens capsule opacification after cataract surgery via different drugs.
Collapse
|
13
|
MicroRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling. BMC Ophthalmol 2020; 20:233. [PMID: 32552665 PMCID: PMC7301500 DOI: 10.1186/s12886-020-01489-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear. Methods The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2′,7′-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis. Results We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p. Conclusions We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.
Collapse
|