1
|
Wei KC, Lin JT, Lin CH. Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats. Neurochem Int 2025; 183:105926. [PMID: 39734024 DOI: 10.1016/j.neuint.2024.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats. Cortical astrocytes were treated with celecoxib (20 μM) for 24 h, resulting in a significant increase in COX-2 expression and up-regulation of GFAP, a marker of astrocyte activation, and the COX-2 induced by celecoxib is functionally active in prostaglandin E2 (PGE2) synthesis. Celecoxib also enhanced LPS-induced COX-2 expression, but its ability to inhibit PGE2 synthesis decreased at higher concentrations. Celecoxib induced phosphorylation of Extracellular signal-regulated Kinase (ERK) and c-Jun N-terminal Kinase (JNK) but not p38 Mitogen-Activated Protein Kinase (p38 MAPK), and inhibition of activity of ERK and JNK by U0126 and SP600125 effectively blocked COX-2 and GFAP induction by celecoxib. Celecoxib increased the accumulation of transcription factor AP-1 (composed of phosphorylated c-Jun and c-fos) in the nucleus. Inhibition of AP-1 activity with SR11302 significantly prevented celecoxib-induced COX-2 and GFAP expression. Additionally, the inhibiting activity of ERK and JNK can effectively suppress AP-1 expression and activity induced by celecoxib. These findings demonstrated that celecoxib induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway, highlighting its potential effect in modulating inflammatory responses in the central nervous system.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung, 813, Taiwan; College of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jun-Ting Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan.
| |
Collapse
|
2
|
Zhou T, Zhou Y, Ge D, Xie Y, Wang J, Tang L, Dong Q, Sun P. Decoding the mechanism of Eleutheroside E in treating osteoporosis via network pharmacological analysis and molecular docking of osteoclast-related genes and gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1257298. [PMID: 38027135 PMCID: PMC10663945 DOI: 10.3389/fendo.2023.1257298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Eleutheroside E (EE) is an anti-inflammatory natural compound derived from the edible medicinal herb Acanthopanax senticosus. This study aims to investigate the underlying mechanism of the anti-osteoporosis action of EE through network pharmacology, molecular docking and gut microbiota. Materials and methods Network pharmacology was used to explore the potential core targets and main pathways mediated by EE in osteoporosis (OP) treatment. Molecular docking was exploited to investigate the interactions between the active anti-OP compounds in EE and the potential downstream targets. Following the multi-approach bioinformatics analysis, ovariectomy (OVX) model was also established to investigate the in vivo anti-OP effects of EE. Results The top 10 core targets in PPI network were TP53, AKT1, JUN, CTNNB1, STAT3, HIF1A, EP300, CREB1, IL1B and ESR1. Molecular docking results that the binding energy of target proteins and the active compounds was approximately between -5.0 and -7.0 kcal/mol, which EE has the lowest docking binding energy with HIF1A. Enrichment analysis of GO and KEGG pathways of target proteins indicated that EE treatment could potentially alter numerous biological processes and cellular pathways. In vivo experiments demonstrated the protective effect of EE treatment against accelerated bone loss, where reduced serum levels of TRAP, CTX, TNF-α, LPS, and IL-6 and increased bone volume and serum levels of P1NP were observed in EE-treated mice. In addition, changes in gut microbiota were spotted by 16S rRNA gene sequencing, showing that EE treatment increased the relative abundance of Lactobacillus and decreased the relative abundance of Clostridiaceae. Conclusion In summary, these findings suggested that the characteristics of multi-target and multi-pathway of EE against OP. In vivo, EE prevents the onset of OP by regulating gut microbiota and inflammatory response and is therefore a potential OP drug.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongdong Ge
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qunwei Dong
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, China
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Qiu ZK, Zhou BX, Pang J, Zeng WQ, Wu HB, Yang F. The network pharmacology study and molecular docking to investigate the potential mechanism of Acoritataninowii Rhizoma against Alzheimer's Disease. Metab Brain Dis 2023; 38:1937-1962. [PMID: 37032419 DOI: 10.1007/s11011-023-01179-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/04/2023] [Indexed: 04/11/2023]
Abstract
Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Bai-Xian Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Jiali Pang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Wei-Qiang Zeng
- Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China.
| |
Collapse
|
4
|
Bharti Sonkar A, Kumar P, Kumar A, Kumar Gautam A, Verma A, Singh A, Kumar U, Kumar D, Mahata T, Bhattacharya B, Keshari AK, Maity B, Saha S. Vinpocetine mitigates DMH-induce pre-neoplastic colon damage in rats through inhibition of pro-inflammatory cytokines. Int Immunopharmacol 2023; 119:110236. [PMID: 37148772 DOI: 10.1016/j.intimp.2023.110236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Colorectal cancer (CRC) is currently recognized as the third most prevalent cancer worldwide. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine. It has been found effective in ameliorating the growth and progression of cancerous cells. However, its pharmacological effect on colon damage remains elusive. Hence, in this study, we have shown the role of vinpocetine in DMH-induced colon carcinogenesis. At first, male albino Wistar rats were administered with DMH consistently for four weeks to induce pre-neoplastic colon damage. Afterward, animals were treated with vinpocetine (4.2 and 8.4 mg/kg/day p.o.) for 15 days. Serum samples were collected to assess the physiological parameters, including ELISA and NMR metabolomics. Colon from all the groups was collected and processed separately for histopathology and western blot analysis. Vinpocetine attenuated the altered plasma parameters; lipid profile and showed anti-proliferative action as evidenced by suppressed COX-2 stimulation and decreased levels of IL-1β, IL-2, IL-6, and IL-10. Vinpocetine is significantly effective in preventing CRC which may be associated with its anti-inflammatory and antioxidant potential. Accordingly, vinpocetine could serve as a potential anticancer agent for CRC treatment and thus be considered for future clinical and therapeutic research.
Collapse
Affiliation(s)
- Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India.
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bolay Bhattacharya
- Geethanjali College of Pharmacy, Cheeryal, Keesara, Hyderabad 501301, India
| | - Amit K Keshari
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raibareli Road, Lucknow 226025, India
| |
Collapse
|
5
|
Zhang D, Liu B, Hu L, Yu J, Cheng S, Ahmad M, Xu BX, Luo H. A novel L-phenylalanine dipeptide inhibits prostate cancer cell proliferation by targeting TNFSF9. Biomed Pharmacother 2023; 160:114360. [PMID: 36804121 DOI: 10.1016/j.biopha.2023.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, a series of novel L-phenylalanine dipeptides were designed and synthesized by a multi-step sequence of reactions, including carbodiimide-mediated condensation, hydrolysis, mixed anhydride condensation, and nucleophilic substitution. Among them, compound 7c exhibited potent antitumor activity against prostate cancer cell PC3 in vitro and in vivo via inducing apoptosis. We investigated the significantly differentially expressed proteins in the cells caused by the compound 7c to unravel the molecular mechanisms underlying the regulation of PCa cell growth, which indicated that 7c mainly regulated the protein expression of apoptosis-related transcription factors, including c-Jun, IL6, LAMB3, OSMR, STC1, OLR1, SDC4 and PLAU; and 7c also regulated the protein expression of inflammatory cytokines including IL6, CXCL8, TNFSF9, TNFRSF12A and OSMR, and the phosphorylation levels of RelA. The action target confirmed that TNFSF9 protein is the critical binding target of 7c. These findings suggested that 7c could regulate the apoptosis and inflammatory response related signaling pathways for the inhibition of the proliferation of PC3 cells, implying that 7c could be considered a promising therapeutic candidate for PCa therapy.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; College of pharmacy, Guizhou Medical University, Guiyang, China; Zhijin County People's Hospital, Bijie, China
| | - Bo Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; College of pharmacy, Guizhou Medical University, Guiyang, China
| | - Lei Hu
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, China.
| |
Collapse
|
6
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
7
|
Zeng R, Xiong X. Effect of NMB-regulated ERK1/2 and p65 signaling pathway on proliferation and apoptosis of cervical cancer. Pathol Res Pract 2022; 238:154104. [PMID: 36095918 DOI: 10.1016/j.prp.2022.154104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Aberrant expression of Neuromedin B (NMB) is associated with the malignant progression of cancer, such as breast cancer, lung cancer and glioma. However, the role of NMB in cervical cancer remains unclear. The present study found that NMB and its receptor NMBR are aberrantly expressed in cervical cancer. NMB activates ERK1/2 and NF-κB signaling pathways, which promote the proliferation of cervical cancer cells and increase the expression of tumor necrosis factor α (TNF-α). The downregulation of NMBR by the specific inhibitor, PD168368, abrogates proliferation and promotes apoptosis of cervical cancer cells. In addition, the NMB/NMBR signaling axis mediates the promoting effect of cancer-associated adipocytes on cervical cancer progression. These findings demonstrate the potential role of NMB/NMBR-regulated ERK1/2 and p65 signaling pathway in cervical cancer progression, which provide new opportunities to diagnose and treat cervical cancer.
Collapse
Affiliation(s)
- Ruijiang Zeng
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
8
|
Chen DT, Rao W, Shen X, Chen L, Wan ZJ, Sheng XP, Fan TY. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol 2022; 13:981048. [PMID: 36188548 PMCID: PMC9520082 DOI: 10.3389/fphar.2022.981048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Higenamine (HG) is a chemical compound found in various plants, such as aconite. Recent pharmacological studies have demonstrated its effectiveness in the management of many diseases. Several mechanisms of action of HG have been proposed; however, they have not yet been classified. This review summarises the signalling pathways and pharmacological targets of HG, focusing on its potential as a naturally extracted drug. Articles related to the pharmacological effects, signalling pathways and pharmacological targets of HG were selected by searching the keyword "Higenamine" in the PubMed, Web of Science and Google Scholar databases without limiting the search by publication years. HG possesses anti-oxidant, anti-apoptotic, anti-inflammatory, electrophysiology regulatory, anti-fibrotic and lipid-lowering activities. It is a structural analogue of catecholamines and possesses characteristics similar to those of adrenergic receptor ligands. It can modulate multiple targets, including anti-inflammation- and anti-apoptosis-related targets and some transcription factors, which directly or indirectly influence the disease course. Other naturally occurring compounds, such as cucurbitacin B (Cu B) and 6-gingerol (6-GR), can be combined with HG to enhance its anti-apoptotic activity. Although significant research progress has been made, follow-up pharmacological studies are required to determine the exact mechanism of action, new signalling pathways and targets of HG and the effects of using it in combination with other drugs.
Collapse
Affiliation(s)
- De-ta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Shen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-jian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-you Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7664290. [PMID: 35242277 PMCID: PMC8888119 DOI: 10.1155/2022/7664290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.
Collapse
|
10
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
11
|
Huang Q, Jin X, Li P, Zheng Z, Jiang Y, Liu H. Elevated inflammatory mediators from the maternal-fetal interface to fetal circulation during labor. Cytokine 2021; 148:155707. [PMID: 34560611 DOI: 10.1016/j.cyto.2021.155707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Elevated cytokines, like IL-1βand IL-6, are known to contribute to the pathogenesis of labor. However, the change of inflammatory mediators in maternal-fetal interface to fetal circulation is obscure. STUDY DESIGN AND METHODS We investigated the changes of inflammatory cytokines, chemokines and macrophage in maternal-fetal interface tissues and fetal circulation of women in labor vs. non-labor. Human myometrium, placenta, decidua, fetal membrane and umbilical blood were obtained from in-labor and non-in-labor women who eventually delivered live, singleton infants at term (>37 weeks gestation) by elective caesarean section. Luminex was used to measure the level of cytokines (TNF-α, IL-1β, IL-6, IL-8) and chemokines (MCP-1, GM-CSF, MIP-1α, MIP-1β) in each sample (tissue and umbilical blood). Macrophage infiltration was demonstrated by immunohistochemistry. RESULTS During labor, the level of cytokines TNF-α, IL-1β, IL-6 and IL-8 and chemokine MCP-1 and MIP-1β in myometrium is significantly higher (p < 0.05), than those obtained from non-laboring patients. This increase coincides with the influx of macrophage into the myometrium. In addition, IL-1β and IL-8 (p < 0.05) are also up regulated in fetal membrane during labor compared to non-labor. The cytokines do not change significantly in placenta and decidua tissue. In fetal circulation, IL-6 (p < 0.05) is up regulated in umbilical vein blood in labor group. IL-8 (p = 0.08) in umbilical vein also show an increasing trend during labor. CONCLUSIONS There are markedly elevated inflammatory mediators in maternal-fetal interface during labor. The increased maternal inflammatory factors released into the fetal circulation through placenta circulation at the time of labor. This increase coincides with the influx of macrophage into the pregnancy tissue, suggesting that the inflammatory response might play an important role in the onset of labor.
Collapse
Affiliation(s)
- Qian Huang
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Jin
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Pin Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Department of Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Transcription factors regulated by cAMP in smooth muscle of the myometrium at human parturition. Biochem Soc Trans 2021; 49:997-1011. [PMID: 33860781 PMCID: PMC8106496 DOI: 10.1042/bst20201173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) contributes to maintenance of a quiescent (relaxed) state in the myometrium (i.e. uterine smooth muscle) during pregnancy, which most commonly has been attributed to activation of protein kinase A (PKA). PKA-mediated phosphorylation of cytosolic contractile apparatus components in myometrial smooth muscle cells (mSMCs) are known to promote relaxation. Additionally, PKA also regulates nuclear transcription factor (TF) activity to control expression of genes important to the labour process; these are mostly involved in actin-myosin interactions, cell-to-cell connectivity and inflammation, all of which influence mSMC transition from a quiescent to a contractile (pro-labour) phenotype. This review focuses on the evidence that cAMP modulates the activity of TFs linked to pro-labour gene expression, predominantly cAMP response element (CRE) binding TFs, nuclear factor κB (NF-κB), activator protein 1 (AP-1) family and progesterone receptors (PRs). This review also considers the more recently described exchange protein directly activated by cAMP (EPAC) that may oppose the pro-quiescent effects of PKA, as well as explores findings from other cell types that have the potential to be of novel relevance to cAMP action on TF function in the myometrium.
Collapse
|
13
|
Chen J, Shi Y, Huang J, Luo J, Zhang W. Neuromedin B receptor mediates neuromedin B-induced COX-2 and IL-6 expression in human primary myometrial cells. J Investig Med 2020; 68:1171-1178. [PMID: 32699178 PMCID: PMC7418630 DOI: 10.1136/jim-2020-001412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/02/2022]
Abstract
The precise mechanisms that lead to parturition remain unclear. In our initial complementary DNA (cDNA) microarray experiment, we found that the neuromedin B receptor (NMBR) was differentially expressed in the human myometrium during spontaneous or oxytocin-induced labor. We have previously shown that neuromedin B (NMB) could induce interleukin 6 (IL-6) and type 2 cyclo-oxygenase enzyme (COX-2) expression in the primary human myometrial cells via nuclear factor kappa B (NF-κB) transcription factor p65 (p65) and Jun proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (c-Jun). This study is aimed to investigate whether NMBR is required for NMB-induced effect. Primary myometrial cell culture was established to provide a suitable model to investigate the mechanism of NMB in labor initiation. Immunochemical staining was conducted to validate the NMBR expression in primary myometrial cells. The mRNA and protein expression of NMBR, p65, c-Jun, COX-2 and IL-6 were assessed by Quantitative Real Time PCR (RT-qPCR) and western blotting. Lentiviruses with shRNAs targeting NMBR or containing cDNA sequence of NMBR were transfected to primary myometrial cells to knockdown or overexpress NMBR. Cell death was determined by annexin V and propidium iodide staining and analyzed by flow cytometry. The upregulation of COX-2 and IL-6 and phosphorylation of p65 and c-Jun were significantly attenuated by knockdown of NMBR and enhanced by overexpressed NMBR following NMB treatment, with no significant change in total p65 and c-Jun. In summary, this study showed that NMBR-mediated NMB-induced NF-κB and AP-1 activation, which in turn, induce expression of IL-6 and COX-2 in primary myometrial cells.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Shi
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingrui Huang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiefeng Luo
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weishe Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China .,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| |
Collapse
|