1
|
Nassar YM, Abd El-Ghany WA, Ibrahim AK, Hamouda AS, El-Bakery AM, Mekkawy AM. Ameliorating effects of antibiotic alternatives on the performance and pathological parameters of Salmonella Typhimurium infected broiler chickens. Microb Pathog 2025; 200:107305. [PMID: 39824261 DOI: 10.1016/j.micpath.2025.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope. Two hundred and forty broiler chicks were divided into six equal groups. Group 1 was given TO (1ml/4L of the drinking water). However, group 2 and group 3 were given CS-NPs and TO-loaded-CS-NPs in a 2 ml/chick dose by oral gavage. Group 4 was given a Cip (0.5 g/mL of drinking water). Treatments started on the 20th day of age and continued for 5 successive days. Each chicken in groups 1-5 was orally infected with 1 ml of 1 × 109 CFU/ml S. Typhimurium 14 days old. Chickens in group 6 were kept as blank control negative without treatment or infection. All groups were kept for 4 weeks post-infection to record clinical observations, performance parameters, the shedding rate of S. Typhimurium, and the histopathological parameters of different organs. Results showed that the infected untreated group had the lowest performance (BWT: 2164.60 ± 31.90), with the highest bacterial count (BC) (8.56 ± 0.14) and lesion scores. The best results were obtained in response to TO-loaded-CS-NPs (BWT: 2422.70 ± 51.15 and BC: 6.62 ± 0.32) and Cip (BWT: 2431.50 ± 40.01 and BC: 5.32 ± 0.16). Therefore, it is recommended to use TO-loaded-CS-NPs as an alternative antibacterial agent in controlling S. Typhimurium infection without taking the risk of developing resistant bacterial strains as with antibiotics.
Collapse
Affiliation(s)
- Yousra M Nassar
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel K Ibrahim
- Clinical Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Hamouda
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amal M El-Bakery
- Plant Pathology Research Institute, Agricultural Research Centre (ARC), Giza, 12211, Egypt
| | - Aya M Mekkawy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
2
|
Hassanen EI, Hassan NH, Mehanna S, Hussien AM, Ibrahim MA, Mohammed FF, Farroh KY. Oral supplementation of curcumin-encapsulated chitosan nanoconjugates as an innovative strategy for mitigating nickel-mediated hepatorenal toxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03799-4. [PMID: 39836252 DOI: 10.1007/s00210-025-03799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs. After 30 days, blood and tissue (liver and kidneys) were collected to measure hepatorenal biomarkers, oxidant/antioxidant balance, inflammatory gene expression, liver and kidney histopathology, and immunohistochemistry. Results revealed disruption of hepatorenal functions, oxidative stress, and inflammatory markers at biochemical and molecular levels associated with severe hepatorenal histopathological alterations and abnormal immunohistochemical tissue expression for caspase-3 and cyclooxygenase-2. On the contrary, the treatment of Ni-intoxicated rats with CS/CU NCs markedly mitigated the adverse effect of Ni on hepatorenal tissue via regulation of oxidative stress, inflammatory, and apoptotic markers. The present study provides a novel nanoformulation for curcumin using CS NPs encapsulation that selectively targets the injured cells and improves the beneficial effect of CU via enhancing the antioxidant activity and regulating both inflammatory and apoptotic markers.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sally Mehanna
- Department of Biotechnology, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Hofuf, Al Ahsa, Saudi Arabia
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024; 29:442-458. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
4
|
Hassan MH, Emam IA, Farghali H, Ibrahim MA, Hassan NH, Farroh KY, Hassanen EI. Toxicological screening of zinc oxide nanoparticles in mongrel dogs after seven days of repeated subcutaneous injections. BMC Vet Res 2024; 20:476. [PMID: 39425163 PMCID: PMC11487719 DOI: 10.1186/s12917-024-04268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have recently been applied in various veterinary and medical fields, however, the toxicological evaluations of these NPs in dogs are lacking. Therefore, the current study is designed to assess the impact of exposure to daily subcutaneous (SC) injections of ZnO NPs at different concentrations on various organs of mongrel dogs. Nine dogs were randomly divided into three groups (n = 3 for each) as follows: group (1) served as the control group, whereas groups (2&3) received SC injections of 50 and 100 ppm ZnO NPs (8 and 16 μg/kg bwt), respectively, once/day for 7 days. Our results revealed that ZnO NPs disrupted the oxidant/antioxidant balance in the lungs, liver, and kidneys of dogs in a dose-dependent manner. ZnO NPs induced dose-dependent radiological, ultrasonographical, and histopathological alterations in various organs especially lungs, spleen, liver, and kidneys along with disturbance in both liver and kidney biomarkers levels. Most organs of both ZnO NPs receiving groups displayed strong caspase-3 protein expression. Additionally, it upregulates the transcriptase levels of TNF-α and VEGF, as well as downregulates the antiapoptotic gene IL-10 in lung, kidney, and liver tissue homogenates. It was concluded that the daily SC injections of dogs with ZnO NPs at concentrations of 50 and 100 ppm caused extensive oxidative stress damage in various organs which provoked serious pathological processes such as apoptosis and inflammation.
Collapse
Affiliation(s)
- Marwa H Hassan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ibrahim A Emam
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haitham Farghali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| |
Collapse
|
5
|
Abdelrazek HM, Ghozlan HA, Sabry SA, Abouelkheir SS. Copper oxide nanoparticles (CuO-NPs) as a key player in the production of oil-based paint against biofilm and other activities. Heliyon 2024; 10:e29758. [PMID: 38720728 PMCID: PMC11076648 DOI: 10.1016/j.heliyon.2024.e29758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Copper oxide nanoparticles are among the metal nanoparticles gaining popularity in many biotechnological fields, particularly in marine environments. Their antimicrobial and antibiofilm activities make them appealing to many researchers. Among the various methods of producing nanoparticles, biosynthesis is crucial. Thus, a large number of reports have been made about the microbiological manufacture of these nanoparticles by bacteria. Nevertheless, bio-production by means of the cell-free supernatant of marine bacteria is still in its primary phase. This is landmark research to look at how bacteria make a lot (14 g/L) of copper oxide nanoparticles (CuO-NPs) via the cell-free supernatant of Bacillus siamensis HS, their characterization, and their environmental and medical approaches. The biosynthesized nanoparticles were characterized using a UV-visible spectrum range that provides two maximum absorption peaks, one obtained at 400 nm and the other around 550-600 nm. Diffraction of X-rays (XRD) clarifies that the size of the NPs obtained was estimated to be 18 nm using Debye-Scherrer's equation. Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) displays 91.93 % copper oxide purity. The Transmission Electron Microscope (TEM) image proves that the particles have a spherical form and an average diameter of 6.54-8.60 nm. At the environmental level, nanoparticles incorporated into oil-based paint can be used as antibiofilm tools to diminish the biofilm formed on the submerged surface in the marine environment. In disease management, NPs can be used as a wound healing agent to reduce the wound gap size as well as an anti-tumour agent to control liver cancer cells (hepatoma cells (HepG2)).
Collapse
Affiliation(s)
- Hanan M. Abdelrazek
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | - Hanan A. Ghozlan
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | - Soraya A. Sabry
- Faculty of Science, Alexandria University, Moharrem Bey, 21511 Alexandria, Egypt
| | | |
Collapse
|
6
|
Hassanen EI, Hussien AM, Mehanna S, Morsy EA. Chitosan coating silver nanoparticles as a promising feed additive in broilers chicken. BMC Vet Res 2023; 19:265. [PMID: 38071292 PMCID: PMC10709949 DOI: 10.1186/s12917-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The present study aimed to evaluate the potential of chitosan coating silver nanoparticles to enhance the growth performance and immune status of broilers without inducing oxidative stress-related pathological lesions in any organs or leaving residues of silver in the edible parts. Five clusters of Cobb one-day-old chicks (n = 10/group in each replication) were given oral therapy, once a week for 36 days as follows: (1) distilled water, (2, 3) 0.5- and 5 ppm silver nanoparticles (AgNPs), respectively, (4, 5) 0.5- and 5 ppm chitosan/silver nanoconjugates (CS/Ag-NCs), respectively. The results demonstrated a marked elevation in the body weight gain with a decline in the food conversion ratio and marked improvement in feeding and drinking behavior of all nanoparticles treated groups, but higher in CS/Ag-NCs groups than AgNPs groups and control group. In contrast to the 0.5 ppm AgNPs receiving group, the group receiving 5 ppm AgNPs noticed remarkable histological changes in some organs, including the liver, kidneys, spleen, and heart. Moreover, the administration of CS/Ag-NCs at two dosage levels didn't influence any histological changes. The AgNPs groups' antibody titers against the ND and AI viruses were almost identical to those of the control group. Otherwise, CS/Ag-NCs groups recorded the highest antibody titers. Additionally, there was a significant increase in silver content in most edible organs of AgNPs groups at a dosage level of 5 ppm. Otherwise, the coating of AgNPs by CSNPs could decrease the aggregation of silver in the biological organs. Thus, we recommend utilizing 0.5 ppm CS/Ag-NCs in broiler farms to promote their growth performance and strengthen their immune defense.
Collapse
Affiliation(s)
- Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, P.O.Box 12211, Giza, Egypt.
| | - Ahmed M Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sally Mehanna
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman A Morsy
- Poultry Disease Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Hassanen EI, Ahmed LI, Fahim KM, Shehata MG, Badr AN. Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM 1-induced hepatorenal toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123925-123938. [PMID: 37995030 PMCID: PMC10746602 DOI: 10.1007/s11356-023-31016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Lamiaa I Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karima M Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
8
|
El-Shenawy FA, El-Sherbeny EME, Kassem S. Efficacy of zinc oxide and copper oxide nanoparticles on virulence genes of avian pathogenic E. coli (APEC) in broilers. BMC Vet Res 2023; 19:108. [PMID: 37542317 PMCID: PMC10401765 DOI: 10.1186/s12917-023-03643-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Colibacillosis is one of the broilers' most dominant bacterial diseases, either as a primary or a secondary infection. As E. coli antimicrobial drug resistance is rising; there is a need to develop new approaches to its control. In light of this, a comparative study of the in-vitro antibacterial activity of Arabic gum stabilized zinc and copper nanoparticles (AG-ZnNPs and AG-CuNPs) against PCR-identified field avian pathogenic E. coli (APEC) strains and virulence genes (ibeA, hlyA, iss, pap C and ompA) was applied to study the therapeutic effect of zinc and copper nanoparticles to be used as an antibiotic alternative (Nanobiotic). Furthermore, the in-vivo effects of CuNPs were evaluated. Additionally, the CuNPs liver and muscle residues with or without infection were examined. The eighty broilers were divided into four groups; G1: negative control, G2: infected control with E. coli O17, G3: non-infected treated (AG-CuNPs 50 mg/kg body weight), and G4: infected treated (AG-CuNPs 50 mg/kg body weight). AG-CuNPs treatment was given to broilers for five days in drinking water. RESULTS E. coli was isolated from diseased broilers at an average incidence rate of 20% from intestinal and liver samples. All identified serotypes (O17, O78, O91, O121, and O159) were resistant to AG-ZnNPs and sensitive to AG-CuNPs. AG-CuNPs minimal inhibitory and bactericidal concentrations (MIC and MBC) for O17 were 7.5 and 60 mg/ml, respectively. Conventional uniplex PCR results showed that strain O17 contained virulence genes (ibeA, hlyA, iss, and papC), where AG-CuNPs significantly reduced the expression of all target genes when examined by Real-time quantitative PCR. Additionally, the bactericidal activity of AG-CuNPs on O17 was 100% at 20 minutes and 40 mg/ml and confirmed by transmission electron microscopy. Furthermore, no mortality was recorded in treated groups compared to G2. Subsequently, no E. coli was re-isolated from the liver in the G4 after treatment. The total protein, albumin, globulin, and lysozyme activity were significantly increased in G4 compared to G2, while the activities of liver enzymes (alanine aminotransferase (ALT), Gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP)) were markedly decreased in G4 compared to G2. Additionally, uric acid, creatinine, and C-reactive protein levels were decreased in G4 compared to G2. However, the liver enzymes, kidney functions, C-reactive protein levels, and Cu residues were non-significantly changed in G4 compared to G1. CONCLUSION Green synthesized AG-CuNPs are recommended as an effective antimicrobial alternative against APEC strains.
Collapse
Affiliation(s)
- Fawzia A El-Shenawy
- Bacteriology unit, Tanta lab. (AHRI), Animal Health Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Eman M El El-Sherbeny
- Pharmacology unit, Tanta lab. (AHRI), Animal Health Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Samr Kassem
- Nanomaterials research and Synthesis unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
9
|
Al-Zghoul MB, Jaradat ZW, Ababneh MM, Okour MZ, Saleh KMM, Alkofahi A, Alboom MH. Effects of embryonic thermal manipulation on the immune response to post-hatch Escherichia coli challenge in broiler chicken. Vet World 2023; 16:918-928. [PMID: 37576780 PMCID: PMC10420701 DOI: 10.14202/vetworld.2023.918-928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Thermal manipulation (TM), exposure to mild heat shock during embryogenesis, which is a critical developmental period of broiler chickens, improves tissue stability, oxidative stress response, and immune response during heat stress. Thermal manipulation could be more cost-effective than other methods to boost the immune response. This study aimed to evaluate the impact of TM during embryogenesis, concomitant with an Escherichia coli challenge, on body weight (BW), body temperature (Tb), and splenic mRNA expression of cytokines (Interleukin [IL]-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and interferon [IFN]-γ) in poultry. Materials and Methods A total of 740 fertile eggs were procured from a certified Ross broiler breeder. The eggs were divided into two incubation groups: the control and TM groups. The eggs in the control group were kept at 37.8°C air temperature and 56% relative humidity (RH) during incubation; eggs of the TM group were incubated under standard conditions, except for embryonic days 10-18, during which they were incubated at 39°C and 65% RH for 18 h daily. On the 7th day of incubation, eggs with dead embryos were excluded. After hatching was complete, each group was further subdivided into saline-treated or E. coli-challenged groups. The E. coli (serotype 078 with the dose of 1.5 × 105 colony-forming unit/mL) challenge was performed when the birds were 20 days old. Body weight and Tb measurements were taken on post-hatch days 20, 21, 23, and 25. Splenic mRNA expression of cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and IFN-γ) was analyzed by real-time quantitative polymerase chain reaction. Results Following the E. coli challenge, the TM-treated group's body performance parameters (BW and Tb) were significantly increased compared with the control group. Body weight was higher in the TM group than in the control group (p < 0.05); Tb was lower in the TM group than in the control group (p < 0.05). The mRNA levels of IL and IFN-γ were more stable and moderately induced in the TM group compared with the control group. Thermal manipulation altered the basal mRNA levels of ILs and IFN-γ and changed their expression dynamics after the E. coli challenge. Conclusion Thermal manipulation during embryogenesis could boost the immune system response to E. coli.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Waheed Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mustafa M. Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Ziad Okour
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Ayesha Alkofahi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Hussien Alboom
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Abdelrahman RE, Khalaf AAA, Elhady MA, Ibrahim MA, Hassanen EI, Noshy PA. Antioxidant and antiapoptotic effects of quercetin against ochratoxin A-induced nephrotoxicity in broiler chickens. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103982. [PMID: 36179809 DOI: 10.1016/j.etap.2022.103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The mycotoxin ochratoxin A (OTA) is produced by the fungi Aspergillus and Penicillium. The flavonoid quercetin (QUE) is distinguished by its antioxidant, anti-inflammatory, and antiapoptotic properties. This study was designed to determine whether QUE can protect broiler chickens against OTA-induced nephrotoxicity. Forty broiler chicks were randomly divided into four equal groups: control, OTA, QUE, and OTA + QUE. For 6 weeks, OTA (0.5 mg/kg) and/or QUE (0.5 g/kg) were added to the diet of chickens. The results demonstrated that OTA exposure increased serum levels of creatinine, uric acid, and blood urea nitrogen. OTA exposure also increased renal malondialdehyde content but decreased renal antioxidants. OTA-exposed chickens exhibited multiple pathological kidney lesions. Moreover, OTA exposure induced apoptosis in renal tissue, which was manifested by the up-regulation of proapoptotic genes and down-regulation of antiapoptotic genes via the suppression of the PI3K/AKT pathway. In addition, coadministration of QUE and OTA mitigated most of these nephrotoxic effects.
Collapse
Affiliation(s)
- Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Azeim A Khalaf
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Metabolism, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
Protective Effects of Bacillus Subtilis Fermentation Extract Against Ochratoxin A-induced Nephrotoxicity and Immunotoxicity in Broiler Chickens. J Vet Res 2022; 66:167-177. [PMID: 35892096 PMCID: PMC9281517 DOI: 10.2478/jvetres-2022-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a mycotoxin notably produced by Aspergillus and Penicillium spp. Bacillus subtilis fermentation extract (BSFE) contains specific enzymes which hydrolyse OTA. This study evaluated the efficiency of BSFE in ameliorating the immunotoxic and nephrotoxic effects of OTA in broiler chickens. Material and Methods Day-old broiler chicks were divided equally into four groups of ten: control, OTA (0.5 mg/kg feed), BSFE product (1 mL/L water) and OTA + BSFE at the same concentrations. The chicks were vaccinated against avian influenza, Newcastle disease, and infectious bronchitis, and lymphoproliferation was induced in all birds by phytohaemagglutinin-P (PHA-P). Serum samples were taken before sacrifice and organ tissue samples were taken after, in which renal function biomarkers were assayed and the presence of OTA residue was evaluated by high-performance thin-layer chromatography. Protein markers of apoptosis were determined by qPCR, and tissue lesions were examined histopathologically. Results Exposure to OTA significantly decreased the antibody response to the vaccines and the lymphoproliferative response to PHA-P, and significantly elevated the renal function indicators: serum urea, uric acid and creatinine. It also induced oxidative stress (reduced catalase activity and glutathione concentration), lipid peroxidation (increased malondialdehyde content), apoptosis (increased Bax and Caspase-3 and decreased Bcl-2 gene levels) and pathological lesions in kidney, bursa of Fabricius, spleen and thymus tissue. Residues of OTA were detected in the serum and tissue. BSFE mitigated most of these toxic effects. Conclusion BSFE counters OTA-induced immunotoxicity and nephrotoxicity because of its content of carboxypeptidase and protease enzymes.
Collapse
|
12
|
Khan MJ, Ramiah SK, Selamat J, Shameli K, Sazili AQ, Mookiah S. Utilisation of pullulan active packaging incorporated with curcumin and pullulan mediated silver nanoparticles to maintain the quality and shelf life of broiler meat. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muhammad Jamshed Khan
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Jinap Selamat
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Saminathan Mookiah
- Malaysian Palm Oil Board 6, Persiaran Institusi, Bandar Baru Bangi Kajang, Selangor, Malaysia
| |
Collapse
|
13
|
Morgan AM, Hassanen EI, Ogaly HA, Al Dulmani SA, Al-Zahrani FAM, Galal MK, Kamel S, Rashad MM, Ibrahim MA, Hussien AM. The ameliorative effect of N-acetylcysteine against penconazole induced neurodegenerative and neuroinflammatory disorders in rats. J Biochem Mol Toxicol 2021; 35:e22884. [PMID: 34392569 DOI: 10.1002/jbt.22884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
Penconazole (PEN) is a widely used systemic fungicide to treat various fungal diseases in plants but it leaves residues in crops and food products causing serious environmental and health problems. N-acetylcysteine (NAC) is a precursor of the antioxidant glutathione in the body and exerts prominent antioxidant and anti-inflammatory effects. The present study aimed to explore the mechanistic way of NAC to ameliorate the PEN neurotoxicity in male rats. Twenty-eight male rats were randomly divided into four groups (n = 7) and given the treated material via oral gavage for 10 days as the following: Group I (distilled water), Group II (50 mg/kg body weight [bwt] PEN), Group III (200 mg/kg bwt NAC), and Group IV (NAC + PEN). After 10 days all rats were subjected to behavioral assessment and then euthanized to collect brain tissues to perform oxidative stress, molecular studies, and pathological examination. Our results revealed that PEN exhibits neurobehavioral toxicity manifested by alteration in the forced swim test, elevated plus maze test, and Y-maze test. There were marked elevations in malondialdehyde levels with reduction in total antioxidant capacity levels, upregulation of messenger RNA levels of bax, caspase 3, and caspase 9 genes with downregulation of bcl2 genes. In addition, brain sections showed marked histopathological alteration in the cerebrum and cerebellum with strong bax and inducible nitric oxide synthetase protein expression. On the contrary, cotreatment of rats with NAC had the ability to improve all the abovementioned neurotoxic parameters. The present study can conclude that NAC has a neuroprotective effect against PEN-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic effect. We recommend using NAC as a preventive and therapeutic agent for a wide variety of neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ashraf M Morgan
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sharah A Al Dulmani
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Mona K Galal
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa Kamel
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|