1
|
Zhu L, Yang Y, Tan J, Lin Y, Qing J, Li X, Zeng L. Effect of 2,5-hexanedione on rat ovarian granulosa cell apoptosis involves endoplasmic reticulum stress-dependent m-TOR signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:319-328. [PMID: 39668517 DOI: 10.1080/15287394.2024.2438832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Occupational exposure to N-hexane/2,5-hexanedione (2,5-HD) was found to adversely affect reproductive functions in females. However, there are few studies regarding the mechanisms underlying reproductive system damage initiated by 2,5-HD. Several studies demonstrated that 2,5-HD exerts hormonal dysfunctions in females by promoting apoptosis using rat ovarian granulosa cells (GCs) as a model. The endoplasmic reticulum (ER) plays a key role in cellular processes such as protein folding and modification, Ca2+ storage, and lipid synthesis, which are known to involve the activation of stress (ERS)-dependent m-TOR signaling pathway. Thus, the aim of this study was to examine the effects of 2,5-HD on ER and the associated activation of stress (ERS)-dependent m-TOR signaling pathway resulting in consequent apoptosis of ovarian GCs. Data demonstrated that after intraperitoneal treatment with 100, 200, or 400 mg/kg 2,5-HD for 6 consecutive weeks, 5 times per week, a decrease in body weight, ovarian weight, and relative ovary weight was found. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that 2,5-HD promoted apoptosis of ovarian GCs, which involved enhanced relative protein expression levels of m-TOR/p-mTOR. Our findings demonstrated that 2,5-HD (1) elevated expression levels of pro-apoptosis-related genes Bax and Caspase 3, (2) decreased expression levels of the anti-apoptosis gene Bcl-2, and (3) activated the protein expression of glucose-regulatory protein 78 (GRP78), inositol-requiring enzyme-1 (IRE1), and c-Jun terminal kinase (JNK) associated with increased apoptosis. Evidence indicates that chronic exposure to 2,5-HD induced apoptosis of ovarian GCs, and the possible mechanism underlying this effect involves the ERS-dependent m-TOR signaling pathway.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yue Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yibo Lin
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Jiaqi Qing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Xin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Lingfeng Zeng
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
- Department of Pharmacology and Toxicology, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
2
|
Mukherjee R, Rana R, Mehan S, Khan Z, Das Gupta G, Narula AS, Samant R. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations. Mol Neurobiol 2025:10.1007/s12035-025-04725-8. [PMID: 39920438 DOI: 10.1007/s12035-025-04725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Neurological illnesses are debilitating diseases that affect brain function and balance. Due to their complicated aetiologies and progressive nature, neurodegenerative and neuropsychiatric illnesses are difficult to treat. These incurable conditions damage brain functions like mobility, cognition, and emotional regulation, but medication, gene therapy, and physical therapy can manage symptoms. Disruptions in cellular signalling pathways, especially those involving oxidative stress response, memory processing, and neurotransmitter modulation, contribute to these illnesses. This review stresses the interplay between key signalling pathways involved in neurological diseases, such as the Nrf2/Keap1/HO-1/SIRT-1 axis and the p75NTR/PI3K/Akt/MAPK cascade. To protect neurons from oxidative damage and death, the Nrf2 transcription factor promotes antioxidant enzyme production. The Keap1 protein releases Nrf2 during oxidative stress for nuclear translocation and gene activation. The review also discusses how neurotrophin signalling through the p75 neurotrophin receptor (p75NTR) determines cell destiny, whether pro-survival or apoptotic. The article highlights emerging treatment approaches targeting these signalling pathways by mapping these connections. Continued research into these molecular pathways may lead to new neurological disease treatments that restore cellular function and neuronal survival. In addition to enhanced delivery technologies, specific modulators and combination therapies should be developed to fine-tune signalling responses. Understanding these crosstalk dynamics is crucial to strengthening neurological illness treatment options and quality of life.
Collapse
Affiliation(s)
- Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Rajaram Samant
- Chief Scientific Officer, Celagenex Research, Mumbai, India
| |
Collapse
|
3
|
Nguyen HD, Jo WH, Cha JO, Hoang NHM, Kim MS. Elucidation of the effects of 2,5-hexandione as a metabolite of n-hexane on cognitive impairment in leptin-knockout mice (C57BL/6-Lepem1Shwl/Korl). Toxicol Res 2024; 40:389-408. [PMID: 38911537 PMCID: PMC11187033 DOI: 10.1007/s43188-024-00228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 06/25/2024] Open
Abstract
Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3β/p-tau/amyloid-β), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00228-1.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Jae Ok Cha
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| |
Collapse
|
4
|
Chen D, Werder EJ, Stewart PA, Stenzel MR, Gerr FE, Lawrence KG, Groth CP, Huynh TB, Ramachandran G, Banerjee S, Jackson Ii WB, Christenbury K, Kwok RK, Sandler DP, Engel LS. Exposure to volatile hydrocarbons and neurologic function among oil spill workers up to 6 years after the Deepwater Horizon disaster. ENVIRONMENTAL RESEARCH 2023; 231:116069. [PMID: 37149022 PMCID: PMC10330421 DOI: 10.1016/j.envres.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, oil spill response and cleanup (OSRC) workers were exposed to toxic volatile components of crude oil. Few studies have examined exposure to individual volatile hydrocarbon chemicals below occupational exposure limits in relation to neurologic function among OSRC workers. OBJECTIVES To investigate the association of several spill-related chemicals (benzene, toluene, ethylbenzene, xylene, n-hexane, i.e., BTEX-H) and total petroleum hydrocarbons (THC) with neurologic function among DWH spill workers enrolled in the Gulf Long-term Follow-up Study. METHODS Cumulative exposure to THC and BTEX-H across the oil spill cleanup period were estimated using a job-exposure matrix that linked air measurement data to detailed self-reported DWH OSRC work histories. We ascertained quantitative neurologic function data via a comprehensive test battery at a clinical examination that occurred 4-6 years after the DWH disaster. We used multivariable linear regression and modified Poisson regression to evaluate relationships of exposures (quartiles (Q)) with 4 neurologic function measures. We examined modification of the associations by age at enrollment (<50 vs. ≥50 years). RESULTS We did not find evidence of adverse neurologic effects from crude oil exposures among the overall study population. However, among workers ≥50 years of age, several individual chemical exposures were associated with poorer vibrotactile acuity of the great toe, with statistically significant effects observed in Q3 or Q4 of exposures (range of log mean difference in Q4 across exposures: 0.13-0.26 μm). We also observed suggestive adverse associations among those ≥ age 50 years for tests of postural stability and single-leg stance, although most effect estimates did not reach thresholds of statistical significance (p < 0.05). CONCLUSIONS Higher exposures to volatile components of crude oil were associated with modest deficits in neurologic function among OSRC workers who were age 50 years or older at study enrollment.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, USA
| | - Fredric E Gerr
- Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Tran B Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Kate Christenbury
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, NC, USA
| | - Richard K Kwok
- Population Studies and Genetics Branch, National Institute on Aging, Bethesda, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Cravotto C, Fabiano-Tixier AS, Claux O, Abert-Vian M, Tabasso S, Cravotto G, Chemat F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022; 11:3412. [PMID: 36360023 PMCID: PMC9655691 DOI: 10.3390/foods11213412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Hexane is a solvent used extensively in the food industry for the extraction of various products such as vegetable oils, fats, flavours, fragrances, colour additives or other bioactive ingredients. As it is classified as a "processing aid", it does not have to be declared on the label under current legislation. Therefore, although traces of hexane may be found in final products, especially in processed products, its presence is not known to consumers. However, hexane, and in particular the n-hexane isomer, has been shown to be neurotoxic to humans and has even been listed as a cause of occupational diseases in several European countries since the 1970s. In order to support the European strategy for a toxic-free environment (and toxic-free food), it seemed important to collect scientific information on this substance by reviewing the available literature. This review contains valuable information on the nature and origin of the solvent hexane, its applications in the food industry, its toxicological evaluation and possible alternatives for the extraction of natural products. Numerous publications have investigated the toxicity of hexane, and several studies have demonstrated the presence of its toxic metabolite 2,5-hexanedione (2,5-HD) in the urine of the general, non-occupationally exposed population. Surprisingly, a tolerable daily intake (TDI) has apparently never been established by any food safety authority. Since hexane residues are undoubtedly found in various foods, it seems more than necessary to clearly assess the risks associated with this hidden exposure. A clear indication on food packaging and better information on the toxicity of hexane could encourage the industry to switch towards one of the numerous other alternative extraction methods already developed.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | | | - Ombéline Claux
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Maryline Abert-Vian
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| |
Collapse
|
6
|
Chen C, Yu Q, Huang Y, Shen XQ, Ding ZZ, Chen GW, Yan J, Gu QG, Mao X. Research on the function of the Cend1 regulatory mechanism on p75NTR signaling in spinal cord injury. Neuropeptides 2022; 95:102264. [PMID: 35728483 DOI: 10.1016/j.npep.2022.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
How to use NSC repair mechanisms, minimize the loss of neurons, and recover the damaged spinal cord functions are hotspots and difficulties in spinal cord injury research. Studies have shown that Cend1 signaling is involved in regulating the NSC differentiation, that p75NTR signaling is involved in the regulation of mature neuronal apoptosis and that NSC differentiation decreases mature neuron apoptosis. Our research group found an interaction between Cend1 and p75NTR, and there was a correlation with spinal cord injury. Therefore, we speculate that Cend1 regulates p75NTR signals and promotes the differentiation of NSCs, and inhibits neuronal apoptosis. Therefore, this study first analyzed the expression of p75NTR and Cend1 in spinal cord injury and its relationship with NSCs and neurons and then analyzed the regulatory mechanism and the mechanism of survival on neuronal apoptosis and differentiation of NSCs. Finally, we analyzed the effect of p75NTR and the regulation of Cend1 damage on functional recovery of the spinal cord with overall intervention. The completion of the subject will minimize the loss of neurons, innovative use of NSC repair mechanisms, and open up a new perspective for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China; Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Qin Yu
- Department of Imaging, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Yunsheng Huang
- Center of Stomatology, The Second Affiliated Hospital of soochow University,No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China
| | - Xiao-Qin Shen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Zhen-Zhong Ding
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Gui-Wen Chen
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of soochow University, No 1055 Sanxiang Road, Soochow 215000, Jiangsu Province, China.
| | - Qing-Guo Gu
- Department of Orthopedics, Dongtai People's Hospital, Kangfu West Road 2, Dongtai 224000, Jiangsu Province, China.
| | - Xingxing Mao
- Department of Orthopedics, The Sixth People's Hospital of Nantong, Yonghe Road 500, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
7
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
8
|
Spencer PS, Chen X. The Role of Protein Adduction in Toxic Neuropathies of Exogenous and Endogenous Origin. TOXICS 2021; 9:toxics9050098. [PMID: 33946924 PMCID: PMC8146965 DOI: 10.3390/toxics9050098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The peripheral (axonal) neuropathy associated with repeated exposure to aliphatic and aromatic solvents that form protein-reactive γ-diketones shares some clinical and neuropathological features with certain metabolic neuropathies, including type-II diabetic neuropathy and uremic neuropathy, and with the largely sub-clinical nerve damage associated with old age. These conditions may be linked by metabolites that adduct and cross-link neuroproteins required for the maintenance of axonal transport and nerve fiber integrity in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| | - Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| |
Collapse
|